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Objective..e purpose of this work was to investigate the bioactive compounds, core genes, and pharmacological mechanisms and
to provide a further research orientation of Erzhi pill (EZP) on drug-induced liver injury (DILI). Methods. At first, we collected
information of bioactive compounds of EZP from Traditional Chinese Medicine Systems Pharmacology Database and Analysis
Platform (TCMSP) and previous studies. And then, the targets related to bioactive compounds and DILI were obtained from 4
public databases. At last, Cytoscape was used to establish a visual network. Moreover, Gene Ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to investigate potential
mechanism of EZP against DILI. Results. A total of 23 bioactive compounds and 89 major proteins of EZP were screened out as
potential players against DILI. Association for bioactive compounds, core targets, and related pathways was analyzed, implying
that core targets related to these pathways are ALB, AKT1, MAPK1, EGFR, SRC, MAPK8, IGF1, CASP3, HSP90AA1, and MMP9,
and potential mechanisms of EZP acting on DILI are closely related to negative regulation of apoptosis process, improvement of
lipid metabolism, and positive regulation of liver regeneration process. Conclusion. .is study demonstrated the multicompound,
multitarget, andmultichannel characteristics of EZP, which provided a novel approach for further research the mechanism of EZP
in the treatment of DILI.

1. Introduction

Drug-induced liver injury (DILI), which is defined as a liver
injury due to medications, xenobiotics, and herbs that leads
to liver dysfunction or abnormal liver serology, has been an
important health concern around the world [1]. Crude
annual incidence rate of DILI was 19.1 cases per 100000
inhabitants [2]. DILI can cause serious consequences.
However, there are few drugs that have liver-protective
effect. .erefore, safe and effective drugs against DILI are
urgently needed. For treating DILI, traditional Chinese
medicine (TCM) has unique advantages and has been
proven to have liver-protective effects [3].

Erzhi pill (EZP), which is composed of Ligustri lucidi
fructus (LLF) and Ecliptae herba (EH) on the ratio of 1 :1, is a
classic TCM formula and widely used to treat hepatic disease
with a long history in China. .e history of EZP treating
hepatic disease can be traced back to Wu Minji’s series “Fu
shou Jing Fang” in the Ming Dynasty. In TCM theory, EZP
can tonify liver and kidney, nourish Yin, and stop bleeding,
[4] which is applied for collapse of liver and kidney Yin
deficiency. In our previous study, we have found that the
bioactive compound of EZP shows liver-protective effect via
enhancing the antioxidative defense system, suppressing the
inflammatory response and cell apoptosis of liver [5].
However, this study still focused on “single target and single
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pathway.” A holistic “multiple compounds, multiple targets,
and multiple pathways” study is necessary to clarify how
EZP produces liver-protective effect on DILI.

Network pharmacology, first proposed in 2007 [6], has
become an effective tool to systematically analyze the mech-
anism of TCM formula with multiple compounds. Applica-
tions of network pharmacology to investigate mechanism of
TCM have become an indispensable method for development
of TCM [7]. In many previous studies, network pharmacology
has successfully predicted potential targets and pathways of
TCM [8–10]. .erefore, network pharmacology has been
proved to be an effectivemethod to explore potential targets and
pathways of TCM by analyzing network of biological systems.

However, studies about the liver-protective effect of EZP
on DILI are absenct. For the first time, this study explored
the protective effect of EZP on DILI through network
pharmacology and bioinformatic analysis. Workflow of this
work is shown in detail in Figure 1.

2. Material and Methods

2.1. Collection of BioactiveCompounds of EZP. Information of
compounds of EZP was collected from Traditional Chinese
Medicine Systems Pharmacology Database (TCMSP, http://
lsp.nwu.edu.cn/tcmsp.php, Version: 2.3), a website that can
provide information of herbal ingredients and structures. In
addition, TCMSP also provides absorption, distribution,
metabolism, and excretion (ADME)-related parameters of
herbal ingredients, such as oral bioavailability (OB), drug-
likeness (DL), and half-life [11]. OB and DL were used to
filter bioactive compounds of EZP after data were collected
from TCMSP. OB, a major pharmacokinetic parameter of
orally administered drugs, is used to measure the speed
and extent of drug absorption into blood circulatory
system [12]. DL is a qualitative principle to predict
possibility of a chemical compound to become a drug,
which can be applied to help optimize pharmacokinetics
and pharmaceutical features in drug development [9].
Only compounds with OB ≥ 30% and DL ≥ 0.18 were
identified for further study. As per this consideration,
some compounds were removed by ADME screening, but
these ingredients were identified as the main constituents
of EZP in previous studies. So, we also identified these
compounds as bioactive molecules.

2.2. Establishment of Bioactive Compounds Potential Targets
Database. All the targets related to bioactive compounds of
EZP were collected from PharmMapper (http://lilab-ecust.
cn/pharmmapper/, Version 2017) and Swiss TargetPre-
diction (http://www.Swiss.Target.Prediction.ch/, 2019 ver-
sion) by uploading the structure of bioactive compounds,
which was acquired from .e PubChem Compound Da-
tabase (https://www.ncbi.nlm.nih.gov/pccompound) or
drawn by Chem3D 16.0. PharmMapper and Swiss Target-
Prediction are web servers for potential drug target pre-
diction by reversed pharmacophore matching query
compound against an in-house pharmacophore model

database [13]. Only targets with a norm fit score (in
PharmMapper) or Probability (in Swiss TargetPrediction)
higher than 0.60 would be selected; the purpose of doing this
is to ensure the reliability of prediction.

2.3. Construction of Target Database of DILI. .e targets
related to DILI were acquired form DrugBank (https://www.
drugbank.ca/, version 5.1.4) and GeneCards (https://www.
genecards.org/). .ese two databases illuminate relationship
between targets and disease from different perspectives.
DrugBank is a comprehensive, freely available database,
from which the user can obtain information on detailed
drug, drug target, drug action, and drug interaction of FDA-
approved drugs or experimental drugs going through the
FDA approval process [14]. GeneCards is also a com-
prehensive, freely available database, which provides in-
formation about targets related to disease, mutations and
polymorphisms, gene expression, gene function, path-
ways, protein-protein interactions, and so on [15]. By
searching the key word “drug-induced liver injury,” the
targets related to DILI were collected. On the website of
DrugBank, targets related to DILI were filtered by ap-
proved drug by the FDA. For keeping the reliability of the
target prediction, we only chose the FDA-approved drugs
in DrugBank and the targets with a norm fit score higher
than 20 in GeneCards.

2.4. Network Establishment and Pathway Analyses. In order
to investigate the possible mechanisms of EZP on DILI,
common targets that related to DILI and putative targets of
bioactive compounds were selected as EZP’s targets against
DILI. .e nodes of network are bioactive compounds of LLF
and EH networked with relevant disease targets [9]. All the
targets were transferred to “ENTRY” by UniProt (https://
www.uniprot.org/) before the establishment of network..e
networks were established by Cytoscape 3.7.1, an open-
source software project that is used for integrating bio-
molecular interaction networks with high-throughput ex-
pression data and other molecular states into a unified
conceptual framework [16]. .e pathways of EZP related to
DILI were analyzed based on .e Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/home.jsp, Vision 6.8), and KEGG (https://
www.kegg.jp/, Release 91.0). .e results of GO and KEGG
pathway enrichment were considered to have statistically
significant and necessary functional mechanisms of DILI,
when P< 0.05.

2.5. Protein-Protein Interaction (PPI) Data Collection.
Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org/) was used to collect possible protein-
protein interactions (PPI) by uploading 89 common targets
that related to DILI and putative targets of active com-
pounds. Species was limited to “Homo sapiens” with a
confidence score >0.4.
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3. Results

3.1. Bioactive Compounds’ Screen of EZP. A total of 166
compounds were collected from TCMSP: 119 in LLF and 47
in EH; among them, 5 compounds were duplicated and
removed. .erefore, 161 compounds were identified from
EZP. After ADME screening by OB≥ 30% and DL≥ 0.18, 20
compounds, 13 compounds from LLF and 9 compounds
from EH with two repeated compounds (luteolin and

quercetin), were identified as bioactive compounds of EZP
(Figures 2(a) and 2(b)). Furthermore, some compounds
(oleanolic acid, salidroside, and specnuezhenide) were re-
moved by ADME screening, but these ingredients were
identified as the main constituents of EZP in previous
studies [17, 18]. At last, 23 compounds were identified as
potential bioactive molecules for further study..e results of
selected 23 compounds from LLF and EH are presented in
Table 1.
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Figure 1: Workflow of network pharmacology analysis of EZP on DILI.
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Figure 2: EZP compound-targets network. (a) Wayne figure: 166 compounds (yellow section), and 20 bioactive compounds screened by two
ADME-related parameters (blue section stands for the compounds of OB≥ 30%, green section stands for DL≥ 0.18). (b) Distributions of
different herbs. (c) Construction of EZP compound-target visual network, including 341 nodes and 2691 edges. Green nodes stand for bioactive
compounds from EH, orange nodes stand for bioactive compounds from LLF, yellow nodes stand for duplicated compounds of EH and LLF,
and blue nodes stand for putative targets.

4 Evidence-Based Complementary and Alternative Medicine



Table 1: A list of the final selected compounds from EZP for network analysis.

No. Molecule name Structure OB (%) DL Herb

1 Luteolin

H

H

H

H

O

O O

O O

O

36.16 0.25 LLF, EH

2 Quercetin

H

H

H

H

H

O

O

O

O O

O O

46.43 0.28 LLF, EH

3 Beta-sitosterol

H
O

H

H

H

H

36.91 0.75 LLF

4 Kaempferol

O

O O

O

O O

H

H
H

H 41.88 0.24 LLF

5 Acacetin

-H

-H

O

O

O O

O

34.97 0.24 EH

6 Linarin

H
H

H

H

H

H

H

O

O O O

O

O

O

O

O

O

OO

O O

39.84 0.71 EH

7 Butin
H

H

HO

O

O

O

O
69.94 0.21 EH
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Table 1: Continued.

No. Molecule name Structure OB (%) DL Herb

8 3′-O-Methylorobol

H
H

O

O
O O

OO
H

57.41 0.27 EH

9 Pratensein O

O

O

O O

H

H

H

O

39.06 0.28 EH

10 Demethylwedelolactone

HO OH

O

OH

OH

O

O

72.13 0.43 EH

11 Wedelolactone

H

H

H

O

O

O

OO

O

O 49.60 0.48 EH

12 Taxifolin

H

H

H

H

H

O

O

O O

O

O

O

57.84 0.27 LLF

13 Lucidumoside D

OH

OHHO

HO
O O

O

O O

O

O O

O

48.87 0.71 LLF

14 Lucidumoside D_qt
O

O

O

O O

O

OH
O

54.41 0.47 LLF
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Table 1: Continued.

No. Molecule name Structure OB (%) DL Herb

15 (20S)-24-ene-3β, 20-diol-3-acetate HO

O

O

40.23 0.82 LLF

16 Eriodictyol

H

H

H

H

O

O

O O

O

O

71.79 0.24 LLF

17 Syringaresinol diglucoside_qt

O

O

O

O

HO

OH

OH

HO

O

O

83.12 0.80 LLF

18 Lucidusculine

OH

OH

O

N

O

30.11 0.75 LLF

19 Olitoriside

OH

O

O

O

O

O

O

O

HO

OH

HO

HO

HO

OH

65.45 0.23 LLF

20 Olitoriside_qt

HO

HO

O

O

HO

O

103.23 0.78 LLF
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3.2. EZP Putative Targets of EZP and Construction of Com-
pounds-TargetsNetwork. 311 putative targets of LLF and 249
putative targets of EH were predicted by PharmMapper and
Swiss TargetPrediction. After removing duplicated putative
targets of LLF and EH, 318 putative targets linked to 23
compounds of EZP were collected. A visual EZP com-
pounds-targets network with 341 nodes and 2691 edges was
established by Cytoscape (Figure 2(c)). Quercetin, luteolin,
linarin, lucidumoside D, and syringaresinol diglucoside_qt
are top 5 bioactive compounds with maximum degree in
network. .ese compounds are mainly flavonoids and their
glycosides. Numerous studies have indicated that these
compounds have liver-protective effect by regulating cell
cycle or lipid metabolism [19–22]. Detailed information of
putative targets was provided in Supplementary Table S1.

3.3. Target Database Establishment of DILI and Common-
Target Network Analysis. At last, 582 targets related to DILI
were obtained (267 targets from DrugBank and 357 targets
from GeneCards with 42 targets duplicated). Detailed in-
formation on DILI-related targets is presented in Supple-
mentary Table S2. Based on previous study, 582 targets
related to DILI and 318 putative targets of EZP, 89 common
targets were selected (Figure 3(a)). Active compounds as-
sociated with selected overlapping targets are listed in
Supplementary Table S3. A visual EZP common-target
network with 112 nodes (including 23 bioactive compounds
and 89 targets) and 883 edges was established by Cytoscape
(Figure 3(b)).

3.4. PPI Network of Common Targets. PPI network was
obtained from STRING database by uploading 89 common
targets. A combined score >0.4 and “Homo sapiens” was
selected. And then, we established PPI network, which had
84 nodes and 811 edges by Cytoscape. In this network, the
protein with greater degree was described by larger node and
darker color, and the edge with greater combined score was
described by thicker and darker line (Figure 4). 10 targets
with highest degree score were select as core targets for DILI.
.e core targets, which may play an essential role against
DILI, were serum albumin (ALB), RAC-alpha serine/thre-
onine-protein kinase (AKT1), mitogen-activated protein
kinase 1 (MAPK1), epidermal growth factor receptor
(EGFR), insulin-like growth factor I (IGF1), caspase-3
(CASP3), proto-oncogene tyrosine-protein kinase Src
(SRC), mitogen-activated protein kinase 8 (MAPK8), heat
shock protein HSP 90-alpha (HSP90AA1), and matrix
metalloproteinase-9 (MMP9).

3.5.GOandKEGGPathwayEnrichmentAnalysis. In order to
explore possible mechanism of EZP against DILI, we ana-
lyzed GO term and KEGG pathway enrichment results
executed by DAVID. GO term enrichment results were
divided into biological process (BP), cell compound (CC),
and molecular function (MF). Top 10 enriched conditions in
BP and top 5 in CC and MF were shown in Figure 5(b). As
shown in Supplementary Table S4, 223 BPs, 25 CCs, and
65MFs enriched for these targets have a P value less than
0.05. In GO term enrichment, the biological process of EZP
against DILI may relate to negative regulation of apoptotic

Table 1: Continued.

No. Molecule name Structure OB (%) DL Herb

21 Oleanolic acid

O
H

H

H

H

HO

O

29.02 0.76 LLF

22 Salidroside

OH

OH
O

OHO

HO

HO

7.01 0.20 LLF

23 Specnuezhenide

OH

OH

OH

OH

OH

O

O

O

O

O

O

O

O

O

OH

OHOH

19.30 0.50 LLF
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process, oxidation-reduction process, positive regulation of
transcription from RNA polymerase II promoter, positive
regulation of transcription, signal transduction, response to
drug, and so on. Mainly, molecular functions are protein
binging on 77.53% and ATP binging on 29.21%. Cell
compound analysis showed that cytosol, nucleus, and
plasma membrane accounted for the top 3 proportion (41,

41, and 38 targets, respectively). In addition, 86 KEGG
pathways were recognized as P< 0.05. Top 20 KEGG
pathways’ enrichment analysis is shown in Figure 5(a) and
Table 2. .e results of KEGG enrichment analysis showed
that the pathways of EZP against DILI mainly focus on
multiple signaling pathways (including PI3K-Akt, FoxO,
MAPK, sphingolipid, and VEGF signaling pathways),

89
10.97%

493
60.79%

229
28.24%

DILI-related targets EZP targets

(a)

(b)

Figure 3: Common-target network. (a) 89 targets that are common to EZP and DILI. (b) Common-target network, including 112 nodes and
883 edges. Green nodes stand for bioactive compounds from EH, orange nodes stand for bioactive compounds from LLF, yellow nodes stand
for duplicated compounds of EH and LLF, and blue nodes stand for putative targets.
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regulation of actin cytoskeleton, progesterone-mediated
oocyte maturation, and so on. Interestingly, the results of
pathways enrichment analysis can be divided into two
function modules, including cell cycle regulation (such as
MAPK, PI3K-Akt, and VEGF signaling pathways) and
metabolic pathway (such as insulin signaling pathway, and
central carbon metabolism in cancer).

4. Discussion

DILI, which carries a high mortality rate, [23] has been a
major public concern impacting patients, doctors, drug
researchers, and drug regulators [24]. TCM has its unique
advantages to treat complex disease for “holistic treatment
concept.” However, multicompound and multitarget char-
acteristics of TCM also brought a lot of difficulties for
Chinese medicine research and restrained the development
of TCM. Fortunately, network pharmacology, which is es-
pecially suitable for multicompound and multitarget re-
search, provides a prospective method to solve this problem.
In this study, we predict and analyze the potential mecha-
nisms of EZP from the perspective of systematic network
pharmacology method. .e results of GO and KEGG en-
richment analysis indicated that mechanisms of EZP against
DILI may be closely associated with negative regulation of
apoptosis process, improvement of lipid metabolism, and
positive regulation of liver regeneration process.

According to GO term enrichment results, negative
regulation of apoptotic process was the biological process
with most targets (22 targets) involved with P< 0.05. Ne-
crosis and apoptosis of hepatocytes, cholangiocytes, and
endothelial cells are typical features of DILI. IGF1, SRC,
ALB, MMP9, CASP3, EGFR, AKT1, and MAKP8, which are
involved in this biological process, are included in the top
ten targets of the PPI network with highest degree. As we
know, CASP3 is a key enzyme in the execution of apoptosis.
Evidence has shown that there is a significant upregulation
of CASP3 in DILI [25]. In addition, there are two MAPK
proteins involved in core targets. MAPK1 (extensively
known as extracellular signal-regulated kinase 2, ERK2)
takes party in multiple cellular processes such as cell pro-
liferation, differentiation, adhesion, migration, and survival
[26]. MAPK8 (known as c-Jun N-terminal kinase 1, JNK1)
has diverse functions in cell cycle, such as cell death, re-
generation, and differentiation [27]. .ese 3 genes (CASP3,
MAPK1, and MAPK8) are all involved in MAPK signaling
pathway (Table 2). .ese results indicated that negative
regulation of apoptotic process and these proteins may play
an essential role in EZP against DILI. In addition, KEGG
enrichment analysis also showed that the mechanisms of
EZP against DILI are closely related to PI3K-Akt, FoxO,
MAPK, and VEGF signaling pathways. It is interesting to
note that those pathways are all associated with cell cycle. In
a previous study, it has been proved that the effect of EZP

Figure 4: Protein-protein interaction (PPI) network of active compounds of EZP against DILI. Each node stands for a related target gene.
.e protein with greater degree is described by larger node and darker color, and the edge with greater combined score is described by
thicker and darker line.
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inhibition of hepatocyte apoptosis was closely associated
with PI3K-Akt signaling pathway [28]. MAPK signaling
pathway comprises the classic MAP kinase pathway, JNK
and P38 MAP kinase pathway, and ERK5 pathway. Among
them, JNK and P38MAP kinase pathway is closely related to
DILI. Drugs can be metabolized by P450s to reactive me-
tabolites, which can activate JNK pathway to induce apo-
ptosis through the recruitment of Bax [27].

By analyzing the results of KEGG pathway enrichment,
we also found that insulin signaling pathway and insulin
resistance have a significant result in KEGG pathway en-
richment analysis as shown in Figure 5(a). .ese pathways
are emerged as key players in glucose and lipid metabolism.
Drug-induced steatohepatitis (DIS), which pathological
feature is intracellular accumulation of lipids in hepatocytes,
is another form of DILI [29]. .e mechanisms of DIS can be
aligned with the four aspects: increased fatty acid synthesis;
decreased lipoprotein export; decreased fatty acid β-oxi-
dation; and increased mobilization and uptake of fatty acids

[29–31]. .ese pathways show that EZP may have potential
for improving lipid metabolism function, which is beneficial
to ameliorate DILI, by mediating the inhibitory action of
insulin or insulin-like growth factor. In addition, these
pathways also take part in cell metabolism, differentiation,
oxidative stress, autophagy, and aging [32].

PPI network analysis, as well as GO and KEGG pathway
analysis indicated that there were 1 core target and 2
pathways closely associated with liver regeneration, namely
VEGF, VEGF signaling pathway, and PI3K-Akt signaling
pathway. .e liver is an organ with strong ability to re-
generate. .ere are three phases, priming stage, prolifer-
ative phase, and termination phase, involved in the overall
process of liver regeneration [33]. .e VEGF, a core target
of PPI network, belongs to the angiogenic factors that
potently involves in endothelial cell proliferation and
survival in liver regeneration following damage [34]. VEGF
promotes proliferation of hepatocytes through recon-
struction of liver sinusoids by proliferation of sinusoidal
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Figure 5: KEGG pathways and GO analysis. (a) KEGG pathway enrichment. (b) GO term analysis: red bars stand for BPs, yellow bars stand for
CCs, and blue bars stand for MFs.
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endothelial cells [35]. As described above, PI3K-Akt sig-
naling pathway emerged as a key player in negative reg-
ulation of apoptosis. However, the regulation of liver
regeneration is dual through PI3K-Akt signaling pathway.

On the one hand, PI3K-Akt signaling pathway plays an
essential role in liver regeneration, which has been testified
[36]. On the other hand, PI3K inhibition can diminish the
expression of IL-6 and TNF-α, which ultimately leads to

Table 2: Functions of potential target genes based on KEGG pathway analysis.

Term Number of pathway gene P value

Pathways in cancer

IGF1, FLT3, FGFR1, MET, PIK3CG, MMP9, NOS2,
CDK2, HSP90AA1, PIK3R1, MDM2, RAC2, GSTP1,
MMP2, MAPK1, FGFR2, CASP3, PPARG, EGFR,

BMP2, AKT1, BRAF, MAPK8

1.05E – 10

Proteoglycans in cancer

IGF1, SRC, FGFR1, MET, PIK3CG, MMP9, ESR1,
PIK3R1, KDR, PDPK1, MDM2, MMP2, PTPN11,
MAPK1, CASP3, PLAU, MAPK14, EGFR, AKT1,

BRAF

2.44E – 13

PI3K-Akt signaling pathway
IGF1, FGFR1, MET, PIK3CG, CDK2, IL2,

HSP90AA1, PIK3R1, KDR, PDPK1, MDM2, NOS3,
FGFR2, MAPK1, INSR, EGFR, AKT1

7.80E – 07

Rap1 signaling pathway
IGF1, SRC, FGFR1, MET, PIK3CG, PIK3R1, KDR,
RAC2, FGFR2, MAPK1, INSR, MAPK14, EGFR,

AKT1, BRAF,
5.12E – 08

FoxO signaling pathway
IGF1, PIK3CG, CDK2, PIK3R1, PDPK1, MDM2,
SOD2, MAPK1, INSR, MAPK14, EGFR, AKT1,

MAPK8, BRAF
1.74E – 09

Focal adhesion
IGF1, SRC, MET, PIK3CG, PIK3R1, KDR, MYLK,
PDPK1, RAC2, MAPK1, EGFR, AKT1, MAPK8,

BRAF
3.09E – 07

Ras signaling pathway
IGF1, PIK3R1, KDR, RAC2, FGFR1, PTPN11, MET,
MAPK1, FGFR2, PIK3CG, INSR, EGFR, AKT1,

MAPK8
8.97E – 07

Prostate cancer
IGF1, FGFR1, PIK3CG, CDK2, PIK3R1, HSP90AA1,
PDPK1, MDM2, FGFR2, MAPK1, EGFR, AKT1,

BRAF
1.42E – 10

Insulin resistance
NR1H3, PIK3CG, PYGL, PTPN1, PIK3R1, PDPK1,
NOS3, PTPN11, INSR, PPARA, AKT1, NR1H2,

MAPK8
1.62E – 09

Estrogen signaling pathway HSP90AA1, PIK3R1, HSPA8, ESR1, SRC, NOS3,
MMP2, MAPK1, PIK3CG, MMP9, EGFR, AKT1 8.25E – 09

MAPK signaling pathway MAPT, HSPA8, RAC2, FGFR1, MAPK1, FGFR2,
CASP3, MAPK14, EGFR, AKT1, BRAF, MAPK8 9.21E – 05

Hepatitis C PIK3R1, NR1H3, PDPK1, MAPK1, PIK3CG,
MAPK14, PPARA, EGFR, AKT1, BRAF, MAPK8 1.68E – 06

Regulation of actin cytoskeleton PIK3R1, MYLK, SRC, RAC2, FGFR1, MAPK1,
FGFR2, PIK3CG, EGFR, F2, BRAF 9.31E – 05

Melanoma PIK3R1, IGF1, MDM2, FGFR1, MET, MAPK1,
PIK3CG, EGFR, AKT1, BRAF 6.49E – 08

Progesterone-mediated oocyte maturation HSP90AA1, PIK3R1, IGF1, MAPK1, PIK3CG,
MAPK14, CDK2, AKT1, BRAF, MAPK8 3.88E – 07

Sphingolipid signaling pathway PIK3R1, PDPK1, RAC2, ABCC1, NOS3, MAPK1,
PIK3CG, MAPK14, AKT1, MAPK8 5.91E – 06

Insulin signaling pathway PIK3R1, PDPK1, MAPK1, PIK3CG, INSR, PYGL,
PTPN1, AKT1, BRAF, MAPK8 1.85E – 05

VEGF signaling pathway PIK3R1, KDR, SRC, RAC2, NOS3, MAPK1, PIK3CG,
MAPK14, AKT1 2.81E – 07

Central carbon metabolism in cancer PIK3R1, FLT3, FGFR1, MET, MAPK1, FGFR2,
PIK3CG, EGFR, AKT1 4.11E – 07

HIF-1 signaling pathway PIK3R1, IGF1, NOS3, MAPK1, PIK3CG, INSR,
NOS2, EGFR, AKT1 9.27E – 06
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attenuated regeneration [34]. Hence, EZP’s effect on liver
regeneration via PI3K-Akt signaling pathway is complex
and needs further research.

In this work, we investigate the potential mechanism of
EZP against DILI; however, network pharmacology is just a
prediction. Whether EZP acts against DILI by regulating
these pathways and proteins needs further experimental
verification.

5. Conclusion

In summary, this study explored the protective effect of EZP
on DILI through network pharmacology and bioinformatic
analysis for the first time. 23 bioactive compounds of EZP
and 89 targets associated with DILI were identified, and 10
core targets were identified by analyzing PPI network
analysis. GO and KEGG pathway enrichment analysis in-
dicates that the mechanisms of EZP against DILI may be
related to negative regulation of apoptosis process, im-
provement of lipid metabolism, and positive regulation of
liver regeneration process through PI3K-Akt, MAPK, Foxo,
VEGF, and insulin signaling pathways, as well as insulin
resistance.
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