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The Apicomplexa phylum comprises diverse parasitic organ-
isms that have evolved from a free-living ancestor. These obli-
gate intracellular parasites exhibit versatile metabolic capabili-
ties reflecting their capacity to survive and grow in different
hosts and varying niches. Determined by nutrient availability, they
either use their biosynthesis machineries or largely depend on their
host for metabolite acquisition. Because vitamins cannot be syn-
thesized by the mammalian host, the enzymes required for their
synthesis in apicomplexan parasites represent a large repertoire of
potential therapeutic targets. Here, we review recent advances
in metabolic reconstruction and functional studies coupled to
metabolomics that unravel the interplay between biosynthesis and
salvage of vitamins and cofactors in apicomplexans. A particular
emphasis is placed on Toxoplasma gondii, during both its acute
and latent stages of infection.

Members of the Apicomplexa encompass a large number of
parasites exhibiting a great level of diversity in their life cycles,
with morphologically distinct stages in one or more hosts.
The phylum includes coccidians, hemosporidians, piroplasms,
Cryptosporidia, and gregarines that occupy divergent niches
(1). Toxoplasma gondii is the most successful zoonotic parasite
of the cyst-forming subclass of coccidians. The proliferative
tachyzoites infect and replicate in most cell types and are
responsible for an acute infection, whereas the dormant cyst-
forming bradyzoites are responsible for chronic infection, pre-
dominantly in the brain and striated muscles (2, 3). Plasmo-
dium falciparum is the deadliest form of the human malaria
parasites that proliferate in erythrocytes and hepatocytes.
T. gondii and malaria parasites replicate intracellularly within a
parasitophorous vacuole membrane that is permeable to small
metabolites (4 –8). In contrast, Theileria and Babesia species
that belong to the genera of piroplasms rapidly escape the vac-
uole and proliferate freely in the cytoplasm of lymphocytes and
red blood cells, respectively, with a more direct access to host

nutrients (9, 10). Cryptosporidium, an enteric pathogen that
relies only on a single host for both its sexual and asexual repro-
duction, develops in an extracytoplasmic compartment con-
fined to the apical surfaces of epithelial cells and in a vacuole
connected to the host cell via an extensively folded membrane
structure called the feeder organelle (11). In humans, the caus-
ative agents of malaria, toxoplasmosis, and cryptosporidiosis
are responsible for over a million deaths each year. From an
evolutionary point of view, it is useful to compare the needs and
capabilities between the closely related alveolates from the Api-
complexa and Chromerida phylum that group species capable
of photosynthesis (12).

Our knowledge of apicomplexan metabolism has greatly
benefited from the assembly of parasite genomes and has
advanced through functional studies, in particular of T. gondii
and Plasmodium spp. A necessary step toward a global under-
standing of the central carbon metabolism as well as the syn-
thesis and uptake of amino acids, lipids, vitamins, and cofactors
involves the use of in silico methods capable of predicting
essential reactions, genes, and synthetic lethal pairs (13–16).3
Currently available genome-scale computational models for
T. gondii and the malaria parasites (14 –17)3 have recently been
challenged by an impressive series of genome-wide gene fitness
screens (17–19) and stage-specific transcriptomics data (20 –
22). These global approaches have turned out to be instrumen-
tal for the curation and validation of computational networks.
Ultimately, incorporating functional analyses of metabolic
pathways with molecular biology and metabolomic techniques
will improve the accuracy of computational predictions.

In the recent past, several studies have illustrated the power
of combining genetic and metabolomics approaches to under-
stand metabolic functions in T. gondii. To summarize, it was
shown that glucose and glutamine are the major carbon sources
utilized by T. gondii tachyzoites (23, 24) and that glycolysis is
essential for bradyzoites (25). The gluconeogenic enzyme fruc-
tose bisphosphatase was essential to regulate glycolytic flux in a
futile cycle with phosphofructokinase (26). Uniquely, acetyl-
CoA in the mitochondrion was shown to be produced via the
branched-chain �-ketoacid dehydrogenase complex and not
the canonical pyruvate dehydrogenase (PDH)4 complex (27).
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PDH is required for a functional fatty acid (FA) synthase com-
plex, also known as the FASII, in the apicoplast that produces
medium-chain FAs, further elongated at the endoplasmic retic-
ulum to form long monounsaturated FAs (28, 29).

Given the availability of large-scale data sets, systems-wide
analysis of parasite metabolism offers a great opportunity to
identify essential metabolic functions for targeted drug inter-
vention. In a recent study,3 a well-curated computational
genome-scale model, iTgo (in silico T. gondii), was generated.
iTgo contains 556 metabolic genes and integrates all available
data sets to serve as a valuable platform for model-guided inves-
tigations. To harmonize the model with the genome-wide fit-
ness scores for metabolic genes, additional constraints on sub-
strate availabilities from the host as well as reaction utilization
based on transcriptomics data were applied (16, 30). The work-
flow led to a model, 80% consistent with experimentally
observed phenotypes,3 allowing for reliable hypothesis genera-
tion for experimental validation. The two previous metabolic
reconstructions (13, 15) identified several essential metabolic
functions and differences within the clonal strains of T. gondii
that display distinct virulence profiles. Within the apicomplexans,
the most studied and comprehensive metabolic reconstructions
were generated for P. falciparum and the rodent malaria parasite,
Plasmodium berghei (14, 16, 31). Constant modeling efforts with
the incorporation of physiological parameters, such as metabolo-
mics and fluxomics, continue to expand our knowledge of the met-
abolic versatility of the apicomplexans. Although challenging,
future models should consider the kinetic properties of reactions,
allowing the simulation of altered enzymatic activities in both the
host and parasite (31). Ideally, as complementary constituents
of an iterative process, both computational and experimen-
tal efforts will ultimately lead to the identification of poten-
tial drug targets, mechanisms of drug action and complex
host-pathogen interactions.

Among the indispensable pathways for parasite proliferation
and persistence, the biosynthesis of vitamins and cofactors
offers potential targets for intervention. Vitamins are essential
precursors for the production of cofactors and, in humans, can
be acquired solely through the diet (32). To date, 13 metabolites
are classified as vitamins, required for the functioning of a
mammalian cell, facilitating numerous enzymatic reactions.
Nine of the 13 vitamins are known to be utilized by the apicom-
plexans, with three of them (vitamins B5, B6, and B9) being de
novo–synthesized by some parasites (33). The vitamins that can
be synthesized de novo are probably low in abundance in one or
more niches and cannot be sufficiently salvaged. Comparison
across the phylum can reveal interesting insights into the ori-
gins and subsequent loss of several pathways in certain genera,
such as the Cryptosporidia and piroplasms (34 –36) (Fig. 1).
Both genera possess limited biosynthesis capabilities, reflecting
their lifestyle in a nutrient-rich environment and adaptation to

mechanisms for metabolite acquisition from the host. Concor-
dantly, the genome of Cryptosporidium hominis was shown to
encode more than 80 genes with strong similarity to known
transporters and several hundred genes with transporter-like
properties (37). Cryptosporidia are also in close contact with
the microbiome in the intestinal gut, thus expanding their
capacity for nutrient acquisition (38).

In the next sections, we review the progress made in T. gondii
and apicomplexans in general, to better understand the inter-
relationship of de novo synthesis and scavenge routes for vita-
mins and cofactors and their utilization in different life cycle
stages. An overview of the pathways in both T. gondii and its
mammalian host is presented in Fig. 2. Further, the latest obser-
vations are discussed in the context of long-standing questions
on the roles of the metabolic pathways for latency and their
potential as drug targets.

Vitamin B1

Vitamin B1, or thiamine, is an important precursor for its
metabolically active form, thiamine pyrophosphate (TPP). TPP
acts as a cofactor for enzymes implicated in carbohydrate and
amino acid metabolism, such as the PDH complex, 2-oxogl-
utarate dehydrogenase, pyruvate decarboxylase, and dihydrolipo-

pantothenate; PLP, pyridoxal 5�-phosphate; PLK, pyridoxal kinase or PdxK;
CPO, coproporphyrinogen oxidase; CPDH, coproporphyrinogen dehydro-
genase; FC, ferrochelatase; FA, fatty acid; TPP, thiamine pyrophosphate; FS,
fitness score(s); ETC, electron transport chain; KPHMT, Ketopantoate hy-
droxymethyltransferase; KPR, �-ketopantoate reductase; PanK, pantothe-
nate kinase; DOXP, 1-deoxy-D-xylulose 5-phosphate; ACCase, acetyl-CoA
carboxylase; ALA, �-aminolevulinic acid; ProtoIX, protoporphyrin IX.

Figure 1. Conservation of vitamin and cofactor biosynthesis or scavenge
pathways within the apicomplexans and the human host. The presence or
absence of metabolic pathways within the Apicomplexan and Chromerida
phylum and the human host, Homo sapiens, is summarized. The gene identi-
fiers and enzyme names in each pathway can be found in Table S1. For each
genus, representative organisms were chosen: coccidians (T. gondii),
hemosporidians (P. falciparum), piroplasms (Babesia bovis and Theileria annu-
lata), Cryptosporidia (Cryptosporidium muris), gregarines (Gregarina niphan-
drodes), and chromerida (C. velia and V. brassicaformis).
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amide dehydrogenase. In T. gondii, these enzymes are either resi-
dents of the secondary endosymbiotic organelle, called the
apicoplast, or the mitochondrion, suggesting a need for the cofac-
tor within these subcellular compartments. Like their mamma-
lian host, the parasites do not possess the pathway for thia-
mine biosynthesis and must therefore acquire it.
Hemosporidians (in particular P. falciparum) are the only
apicomplexans that possess the enzymes to synthesize thia-
mine, like bacteria, plants, and fungi (39 –41). The genes
implicated in the synthesis of TPP are, however, expressed
only in the mosquito vector (salivary gland sporozoites)
stage (42). Despite the ability to synthesize thiamine, Plas-
modium spp., like other apicomplexans, harbor the key
enzyme thiamine diphosphokinase (TPK) to convert the
scavenged thiamine into TPP. TPK is expressed in all stages of the
Plasmodium life cycle, and several studies have shown that para-
site replication is inhibited by thiamine analogues that generate
toxic anti-metabolites (43, 44). Deduced from the genome-wide
CRISPR-Cas9 screen for T. gondii performed in vitro, TPK is crit-
ical for in vitro tachyzoite survival with a high negative fitness score
(FS) (�3.28) (Fig. 3). FS are experimentally observed measures
(ranging from �7 to �3) and assess the fitness cost of a given gene
for parasite survival (17).

The mechanism by which thiamine is taken up and translocated
across organelles where it is needed is yet to be determined. In
humans the thiamine transporters, hThTr1 and hThTr2 have
been well-characterized (45, 46), but no obvious orthologs within

the parasite’s genome could be identified. Interestingly, in certain
apicomplexans, such as Cryptosporidia and piroplasms, salvage of
the phosphorylated form (TPP) must occur.

Vitamin B2

Vitamin B2, or riboflavin, is crucial for flavin-dependent pro-
cesses occurring in all subcellular compartments. FMN and
FAD participate in redox reactions and play an essential role for
the proper functioning of the electron transport chain (ETC),
tricarboxylic acid cycle, and fatty acid biosynthesis. Like their
mammalian hosts, most apicomplexans are unable to synthe-
size riboflavin but possess the capacity to convert riboflavin
into FMN and FAD. The two genes coding for their synthesis,
riboflavin kinase and FAD synthase, are present in T. gondii and
are fitness-conferring with an FS of �3.97 and �4.87, respec-
tively (Fig. 3). Exceptionally, Cryptosporidia appear to lack
these enzymes and therefore must take up both FMN and FAD,
suggesting an exquisite adaptability to scavenge phosphorylat-
ed cofactors. Outside the Apicomplexa phylum, the absence of
an FMN/FAD synthase can be seen in obligate intracellular
�-proteobacteria, Rickettsiae (47).

Vitamin B3

Vitamin B3, or nicotinic acid, also known as niacin, is essen-
tial for generation of coenzymes NAD� and NADP�, which act
as key electron carriers in a cell. The apicomplexans are unable
to synthesize nicotinate or nicotinamide de novo, indicating

Figure 2. Vitamins and cofactors biosynthesis versus scavenge pathways in T. gondii and its mammalian host. Metabolites that can either be de novo
produced (blue) or must be salvaged (pink) from an external source are depicted. Enzymes for the production of metabolites (boldface blue type) are potential
drug targets, given the unique synthesis capability of the parasite, but not the host.
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that these metabolites are salvaged from the host. All apicom-
plexans possess the enzymes for the subsequent conversion
into NAD� and NADP�, although the corresponding genes
appear dispensable for T. gondii tachyzoites, based on their FS
(NAD� synthase, �0.03; NAD� kinase, �1.33) (Fig. 3). Of rel-
evance, the CRISPR-Cas9 screen was performed with cultured
human foreskin fibroblasts grown in rich media containing an
abundance of amino acids, vitamins, salts, and sugars. This may
allow certain genes to seem dispensable than they actually
would be in a physiological environment more restricted in
nutrients. Fitness scores might also vary, depending on the met-
abolic rates and capabilities of different host cell types (in vitro
or in vivo).

In P. falciparum, infected erythrocytes showed a 10-fold
increase in NAD� content compared with uninfected cells,
suggesting an efficient and functional biosynthesis pathway in
the parasite (48). Due to the substantial release of NAD� from
Plasmodium-infected erythrocytes, NAD� has been proposed
as a potential clinical biomarker for malaria (49). The impact of
blocking the parasite nicotinate mononucleotide adenylyl
transferase, which synthesizes NAD� from nicotinate, vali-
dates the biosynthesis pathway as an antimalarial target (50).

Vitamin B5

Vitamin B5, or pantothenate (PAN), is the precursor for
the biosynthesis of the essential cofactor, CoA. PAN synthesis
takes place in most bacteria plants and fungi, but not in animals.
The biosynthesis of CoA from PAN, on the other hand, is pres-
ent in almost all organisms. The de novo synthesis of PAN
requires three enzymatic activities: hydroxymethyl transfer to
ketoisovalerate (KPHMT), �-ketopantoate reduction (KPR) to
pantoate, and pantoate-�-alanine ligation (PBAL). Interest-
ingly, T. gondii encodes the pathway in two sequences con-
served within the coccidians, which include Hammondia,
Neospora, Besnoitia, Cyclospora, and Eimeria genera. The
PAN synthesis pathway has been partially characterized in
T. gondii, and its essentiality has been proposed based on the
use of chemical inhibitors (51). However, the tested drugs
had been developed for Mycobacterium tuberculosis homo-
logue (panC), and off-target effects cannot be excluded.

In T. gondii, the first enzyme in the PAN synthesis pathway is
bifunctional, encoding the first two enzymatic steps ketopan-
toate hydroxymethyl transferase and ketopantoate reductase
(KPHMT-KPR). The KPHMT and KPR domains of the protein

present conserved key catalytic residues (52, 53) when com-
pared with Escherichia coli panB and panE, respectively. The
fusion of the two catalytic domains into one ORF can also be
found outside the Apicomplexa phylum in Dinoflagellates (Per-
kinsus marinus) and free-living photosynthetic Chromerida
(Vitrella brassicaformis and Chromera velia), where, interest-
ingly, a single ORF comprises all three enzymes for the synthe-
sis of PAN (Table S1).

The final step of PAN synthesis is catalyzed by PBAL, which
ligates pantoate with �-alanine. Sequence comparison with
E. coli panC indicates that �30% of the catalytic domain and all
catalytic residues (54) are conserved in T. gondii PBAL, point-
ing to a possible conservation of function. In all members of the
phylum, the protein presents an extended N and C terminus
(the latter conserved �45% within Neospora, Hammondia, and
Besnoitia genera), although no known molecular function has
been associated to date. The respective FS of KPHMT-KPR
(�0.09) and PBAL (�0.72) indicate in vitro dispensability for
PAN synthesis, suggesting that T. gondii, as demonstrated for
P. falciparum (55), utilizes host derived PAN for CoA synthesis.
Except for the coccidians, the apicomplexans lack PAN synthe-
sis enzymes, and attempts to identify a PAN transporter by
orthology have proven difficult (56 –58).

CoA, the end product of the pathway, is essential for a broad
range of metabolic functions. It provides activated acyl groups
for various metabolic pathways, such as the tricarboxylic acid
cycle, fatty acid synthesis, and heme synthesis, as well as for
gene regulation and post-translational modification of proteins
(59). Pantothenate kinase (PanK), which catalyzes the first
step in CoA synthesis, has been extensively characterized in
P. falciparum (60), allowing pantothenamides (pantothenate
mimetic compounds) to be catabolized into CoA antimetabo-
lites (61) with deleterious effects for the parasite (62). Interest-
ingly, of the five enzymes required for CoA synthesis, phospho-
pantetheine-cysteine ligase and phosphopantothenoylcysteine
decarboxylase, which catalyze the second and third step,
respectively, are dispensable in both the rodent malaria para-
sites Plasmodium yoelii and P. berghei (19, 63). This observa-
tion could be explained by the promiscuous activity of PanK
(64), allowing usage of pantetheine (an intermediate) scavenged
from the host cell (65). In T. gondii, the FS of all of the enzymes
of the CoA synthesis pathway indicate essentiality (including
the two different genes encoding for PanK) (Fig. 4). We have
recently identified the gene coding for the final step, dephos-

Figure 3. The scavenge pathways and bioconversion of vitamins (B1, B2, B3, and B7). T. gondii must uptake vitamins B1, B2, B3, and B7 via unknown transport
mechanisms and subsequently convert them into the cofactors for utilization within the parasite. FS for the enzymes for the bioconversion are color-coded (in
circles). NPPRT, nicotinate phosphoribosyltransferase; NNAT, nicotinate-nucleotide adenylyl transferase.
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pho-CoA kinase, previously thought to be missing from the
genome, and have shown that the activity is essential for para-
site survival by conditional disruption.5

Taken together, it appears that most apicomplexans share
the capability to scavenge PAN from their host. Hence, the
retention of the PAN synthesis pathway among the coccidians
is intriguing. It is likely that PAN synthesis is required in life
cycle stages where exogeneous PAN levels are limiting, such as
in sporozoites or in the cyst-enclosed bradyzoites of T. gondii.
Importantly, PAN synthesis requires �-alanine, for which no
synthesis pathway has been clearly identified in the genome of
T. gondii. Thus, the parasite would have to acquire this metab-
olite from its environment. Further research is necessary to
delineate the relevance of PAN synthesis in coccidians.

Vitamin B6

Vitamin B6 is part of the essential vitamin B group of mole-
cules, consisting of pyridoxal, pyridoxamine, and pyridoxine.
The metabolically active form is pyridoxal 5�-phosphate (PLP).
PLP is a crucial cofactor for the activity of over 140 enzymes,
several of them involved in amino acid metabolism (66, 67).
Two different routes for the de novo synthesis of PLP exist in
organisms: 1-deoxy-D-xylulose 5-phosphate (DOXP)-depend-

ent and DOXP-independent (68). The DOXP-dependent route
occurs in proteobacteria and most other bacteria, whereas
eukaryotes, including the apicomplexans, utilize the DOXP-
independent route. In this route, PLP is synthesized via the
activity of two enzymes, PDX1 (PLP synthase subunit) and
PDX2 (class I glutamine amidotransferase). Free vitamin B6
forms can also be phosphorylated via the action of pyridoxal
kinase (PLK or PDXK). The subsequent conversion of pyri-
doxamine-5P and pyridoxine-5P to PLP can be performed via a
different enzyme, pyridoxal 5�-phosphate synthase (PLP
synthase).

Both coccidians and hemosporidians possess all of the
enzymes for de novo synthesis as well as scavenge of the vitamin
(69, 70). The FS for the genes coding for PDX1 (�0.59), PDX2
(�0.08), PLP synthase (�0.33), and PLK (�0.41) indicate dis-
pensability in vitro (Fig. 5), indicating redundancy between syn-
thesis and salvage for PLP production. In a recent study, dis-
rupting de novo biosynthesis of PLP via conditional knockdown
of PDX1 was detrimental in parasites lacking the PLK gene.3

The synthetic lethality showed that blocking both routes for
cofactor generation is deleterious, and several PLP-dependent
enzymes must become inactive. One such enzyme is glycogen
phosphorylase, which breaks down the storage polysaccharide
amylopectin (71). In T. gondii, loss of glycogen phosphorylase is
associated with amylopectin accumulation and lethal for both
tachyzoites and bradyzoites (72). Indeed, amylopectin accumu-
lation was observed in mutants depleted of PLP.3 Although PLP
requirement for several enzymes is fulfilled with either the bio-
synthesis or scavenge pathway in vitro, contrastingly, the dele-
tion of PDX1 alone was sufficient to abolish T. gondii virulence
in mice.3 This points to limited or insufficient amounts of pyr-
idoxal in the organs or tissues infected with T. gondii in vivo
(73). The sole reliance on the de novo pathway for PLP produc-
tion in vivo makes PDX1 an attractive drug target or candidate
for an attenuated live vaccine.5 M. Lunghi, J. Kloehn, and D. Soldati-Favre, unpublished observations.

Figure 4. PAN (vitamin B5) and CoA biosynthesis pathway. T. gondii can de
novo–synthesize or uptake PAN and subsequently convert it into CoA within
the parasite. The bifunctional enzyme for PAN synthesis is shown in blue. FS
for the enzymes are color-coded (in circles). BCAT, branched-chain amino acid
transaminase; HMT, hydroxymethyltransferase; PPCL, phosphopantetheine-
cysteine ligase; PPCD, phosphopantothenoylcysteine decarboxylase; PPAT,
pantetheine-phosphate adenylyl transferase.

Figure 5. Pyridoxal-5P (vitamin B6) biosynthesis and scavenge path-
ways. T. gondii can de novo synthesize PLP or uptake the vitamers to subse-
quently convert them into PLP within the parasite. PLK (in blue) can phosphor-
ylate any of the vitamers—pyridoxal, pyridoxamine, or pyridoxine—and is
synthetically lethal with the synthesis enzyme, PDX1. FS for the enzymes for
the bioconversion are color-coded (in circles). Experimentally validated
enzymes are circled in black.3
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If the biosynthesis pathway is the major route for PLP pro-
duction in T. gondii in vivo, the presence and role of PLK is
puzzling. To test its role during latency, mice infected with
parasites lacking PLK were examined for cyst formation.3 No
reduction in cyst number was observed, compared with the
WT, suggesting its dispensability for the chronic stage. It is
plausible that the enzyme has a role during the sexual or oocyst
stages, recycling any free pyridoxal in the cell and preventing
toxic accumulation of the vitamers. How the vitamers enter the
parasite remains unknown, and the absence of the biosynthesis
of PLP in Cryptosporidia and piroplasms further indicates an
unusual salvage mechanism for the phosphorylated cofactor.

In P. falciparum, both PLP biosynthesis and salvage path-
ways have been shown to be functional. The two genes (encod-
ing for PDX1 and PDX2) are expressed throughout the intra-
erythrocytic and gametocyte development and have been
explored as potential drug targets (74 –77). Prodrugs such as
pyridoxyl-tryptophan chimeras that interfere with PLP-depen-
dent enzymes and poison the parasite have also been investi-
gated as antimalarials (78, 79). For organisms that lack biosyn-
thesis capabilities, identification of the transporter of pyridoxal
and its derivatives would be of significant interest.

Vitamin B7

Vitamin B7 or biotin can be synthesized by bacteria, plants,
and some fungi, but not by animals. The apicomplexans also
lack the biosynthesis capability for biotin. Biotin is an impor-
tant cofactor for the enzyme acetyl-CoA carboxylase (ACCase),
of which ACCase1 was found in the apicoplast of T. gondii (80).
In bacteria, biotin covalently attaches to the �-amino group of
specific lysine residues in the carboxylases via the action of a
biotin-ligase (81). A putative biotin-ACC-ligase, with similarity
to the E. coli biotin operon repressor (BirA) was found in the
genome of most apicomplexans. If its role is similar to that of
BirA for sensing biotin levels and regulating transcription is
unknown (82). How biotin is acquired from the host and trans-
ported into the apicoplast, where ACCase1 resides, also
remains to be understood. Biotin uptake is mediated by solute
transporters in prokaryotes (83) and via a monocarboxylate
transporter (MCT1) in mammalian cells (84).

Vitamin B9

Vitamin B9 or folate is crucial for DNA replication, cell divi-
sion, and synthesis of several amino acids. The folate derivative,
5,10-methylenetetrahydrofolate, is essential for the production
of dTMP and dUMP nucleotides. In addition to the de novo
folate biosynthesis pathway from shikimate and chorismate,
most apicomplexans can also salvage folate from the host via
dedicated BT1 or FT transporters (85, 86) (Fig. 6). The high-
affinity folate transporters were shown to take up radiolabeled
exogenous folic acid in T. gondii (85). If folates are taken up to
sustain the acute stage of T. gondii, the existence of the biosyn-
thesis pathway is likely relevant for downstream metabolite
production or for a different life cycle stage where the parasite
encounters limited access to folates or its precursors. Numer-
ous studies have shown the effects of targeting the folate path-
way (87, 88). Several anti-parasitic drugs are currently in use,
such as sulfonamides targeting dihydropteroate synthase in

combination with inhibitors of the dihydrofolate reductase-
thymidylate synthase. Although the anti-folates are thought to
be safe, recent studies in P. falciparum have shown emerging
resistance to the once potent drug combination. Future studies
would have to unravel the molecular mechanisms of resistance
and enable future development of alternative strategies target-
ing the crucial biosynthesis and scavenge pathways (89). In
recent in vivo experiments, the contributions of para-amino
benzoic acid (pABA), a precursor for folate synthesis, were also
re-examined (90, 91). pABA is synthesized with the action of
two enzymes, aminodeoxychorismate synthase and aminode-
oxychorismate lyase. The two genes were knocked out in the
rodent malaria parasite P. berghei, and the deletions were
shown to be dispensable for parasite propagation in mice fed
with a conventional diet. However, in mice fed with milk (lack-
ing pABA), the mutants displayed a severe growth phenotype,
abolished with the supplementation of pABA (90, 91). In the
liver stage, the lack of aminodeoxychorismate synthase was dis-
pensable, suggesting an active salvage, given the folate-rich
environment of the liver. The results therefore indicate a com-
bination of salvage and synthesis in Plasmodium parasites, to
ensure the folate requirements for the fast-growing asexual
stages are met.

Figure 6. Folate (vitamin B9) and biopterin biosynthesis and scavenge
pathways. T. gondii can de novo–synthesize or uptake folates and biopterins.
FS for the enzymes for the bioconversion are color-coded (in circles). Enzymes
in blue are bifunctional, capable of catalyzing two subsequent reaction steps.
TS, thymidylate synthase; DHFR, dihydrofolate reductase; DHPS, dihydrop-
teroate synthase; GTP-CH, GTP cyclohydrolase; MDTS1, molybdopterin cofac-
tor synthesis protein 1 (MOCS1); MDTS2, molybdopterin cofactor synthesis
protein 2 (MOCS2/MoaE); MDTS3, molybdopterin cofactor synthesis protein 3
(MOCS3/MoaB); 6PTPS, 6-pyruvoyltetrahydropterin synthase; SPR, sepia-
pterin reductase; DHPR, 6,7-dihydropteridine reductase; DHPS, dihydrop-
teroate synthase; DHFR, dihydrofolate reductase; TS, thymidylate synthase;
MTHD, methylenetetrahydrofolate dehydrogenase; MTHF-CH, methenyl-tet-
rahydrofolate cyclohydrolase; SHMT, serine hydroxymethyltransferase; DHFS,
dihydrofolate synthase; THFS, tetrahydro-folylpolyglutamate synthase; Met-
tRNA, methionyl-tRNA formyl-transferase.
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Heme

Heme is an essential cofactor required for the function of
various enzymes, including cytochromes, catalases, peroxi-
dases, hemoglobin, and others. Heme alternates between an
oxidized and reduced state, enabling heme-containing enzymes
to catalyze electron transfer reactions in the ETC and other
pathways. Heme can be synthesized de novo, via a highly con-
served eight-step pathway (92, 93). Alternatively, it can be sal-
vaged via heme-binding proteins and porphyrin transporters,
which have been partially identified in protozoan parasites such
as trypanosomes but remain elusive in apicomplexans (93–95).
Whereas Trypanosoma cruzi and Trypanosoma brucei are
unable to synthesize heme, Leishmania spp. have acquired the
last three enzymes of the biosynthesis pathway via horizontal
gene transfer, possibly acquiring and converting heme precur-
sors from the host (93, 96, 97). Within the Apicomplexa, Cryp-
tosporidia have lost all enzymes required for heme synthesis,
relying entirely on an uptake mechanism. Coccidians and
hemosporidians encode all enzymes necessary for de novo syn-
thesis of heme (93). They possess a peculiar synthesis pathway,
which spans three subcellular compartments, the mitochon-
drion, apicoplast, and cytosol, and comprises enzymes with dis-
tinct ancestral origins (93, 98) (Fig. 7). The parasites utilize the
so-called C4 pathway of �-proteobacterial origin, in which the
heme precursor �-aminolevulinic acid (ALA) is synthesized
through condensation of succinyl-CoA and glycine in the mito-
chondrion. �-ALA is transported to the apicoplast, where the
four-step conversion into coproporphyrinogen III occurs, cat-
alyzed by enzymes originating from the algal endosymbiont (98,
99). Coproporphyrinogen III is exported from the apicoplast to
the cytosol, where it is converted to protoporphyrinogen IX by
a coproporphyrinogen III oxidase (CPO). Protoporphyrinogen
IX is subsequently transported to the mitochondrion and con-
verted to heme through the activity of protoporphyrinogen oxi-
dase and ferrochelatase (FC). The contribution of heme uptake
versus its de novo synthesis has been investigated in depth in
Plasmodium spp. In its blood stages, Plasmodium parasites deal
with very high levels of heme, which are released during the
digestion of hemoglobin. P. falciparum detoxifies heme by
depositing it in a large crystalline pigment termed hemozoin.
Hemozoin formation is mediated by a multiprotein complex in
the food vacuole, which contains several proteases and a heme
detoxification protein (100). Whereas protein-driven hemo-
zoin formation has been postulated before (101), lipid-driven
mechanisms (102, 103) and an autocatalytic process have also
been proposed (104). Unsurprisingly, heme synthesis is not
essential for Plasmodium during the intraerythrocytic develop-
ment, but the pathway becomes fitness-conferring during liver
stages and is essential for development in the mosquito (105–
109). Specifically, the loss of FC impairs male gamete formation
and ablates oocyst formation in mosquitoes, indicating that
Plasmodium can utilize salvaged heme but relies on its synthe-
sis when levels of exogeneous heme become limiting within the
insect vector (105, 106).

Heme has also been intensely researched for its role in deter-
mining sensitivity of the parasite to the antimalarial drug arte-
misinin. Heme-bound iron derived from de novo synthesis or

hemoglobin digestion reacts with artemisinin, forming active
cytotoxic artemisinin radicals (110 –112). It has been shown
that enhancing heme synthesis, by providing excess heme pre-
cursors, increases the sensitivity of Plasmodium to artemisinin.
Conversely, the reduction of heme synthesis by genetic means
or through pharmacological inhibition decreases sensitivity of
both T. gondii and P. falciparum to artemisinin (113, 114).

Whereas T. gondii does not have to deal with copious
amounts of heme as in the intra-erythrocytic stage of P. falcip-
arum, it is also expected to encounter varying levels of heme
during its complex life cycle. Based on their FS, all enzymes
implicated in the heme synthesis pathway appear highly fitness-
conferring (17) (Fig. 7), indicating that in vitro tachyzoites are
unable to scavenge sufficient amounts of heme from their host.
The enzyme catalyzing the second step of the pathway, ALA
dehydratase or porphobilinogen synthase, has been character-
ized biochemically (115). Its crystal structure revealed that
the enzyme functions as an octamer in T. gondii and does not
contain any metal ions in the active site, although Mg2� ions are
present at the intersections between pro-octamer dimers (116).
This metal-independent catalysis is unique to apicomplexans
and could render the enzyme an attractive target for
intervention.

Interestingly, T. gondii also encodes two putative and dis-
tinct types of coproporphyrinogen oxidases, a CPO and a bac-
terial-type coproporphyrinogen III dehydrogenase (CPDH)
(117, 118). Whereas CPO appears to be highly fitness-confer-
ring based on its FS (�4.64), the oxygen-independent CPDH
(�2.29) is the only dispensable enzyme associated with the
pathway. Its role in the heme synthesis of T. gondii is still
unknown, as it may function as the active CPO in a life cycle
stage where oxygen levels are limiting. Consistent with this,
RNA-Seq data revealed a striking stage specificity, with CPDH
being more than 2-fold up-regulated in bradyzoites, oocysts,
and sporozoites (20). The role of both enzymes was recently
investigated through the generation and characterization of

Figure 7. Heme biosynthesis pathway. T. gondii can de novo–synthesize
heme in a complex pathway, compartmentalized between the mitochon-
drion, cytosol, and apicoplast. FS for the enzymes are color-coded (in circles).
Experimentally validated enzymes are circled in black.3 ALAS, aminolevulinate
synthase; ALAD, aminolevulinate dehydratase; PBGD, porphobilinogen
deaminase; UROS, uroporphyrinogen synthase; UROD, uroporphyrinogen de-
carboxylase; PPO, protoporphyrinogen oxidase.

ASBMB AWARD ARTICLE: Metabolic needs/capabilities of Apicomplexa

J. Biol. Chem. (2020) 295(3) 701–714 707



mutant parasites lacking CPO, CPDH, or both. The results con-
firmed that in the absence of CPO, parasites are severely
impaired in their cell division and the overall lytic cycle is com-
promised. Contrastingly, parasites lacking CPDH grow nor-
mally as tachyzoites and are not affected in stage conversion to
bradyzoites or in cyst formation in mice.3 Furthermore, no
aggravation of the phenotype was observed in parasites lacking
both enzymes, CPO and CPDH. Overexpression of CPDH in
parasites lacking CPO further confirmed a lack of compensa-
tion, possibly due to the differential localization of the two
enzymes (CPDH in the mitochondrion and CPO in the cyto-
sol).3 Together, these findings indicate that CPDH is dispens-
able for both tachyzoites and bradyzoites, highlighting that
oxygen levels at these stages are sufficient for the oxygen-
dependent CPO to function. Importantly, the activity of CPDH
has to date not been formally demonstrated, and misannota-
tions of SAM-dependent enzymes have been reported previ-
ously (119). Hence, it remains unclear whether the enzyme
truly functions as a CPDH in sporozoites, oocysts, or gametes or
whether it functions in a different pathway.

Importantly, although parasites lacking CPO were severely
impaired, they remained viable. On the other hand, depletion of
the final enzyme, FC, was not tolerated. Mass spectrometry and
fluorescence analyses revealed that cells lacking CPO have
10-fold lower heme levels than WT parasites, but 10-fold
higher levels of its precursor protoporphyrin IX (ProtoIX).3
These findings indicate that T. gondii likely does not salvage
heme itself but rather its precursors ProtoIX or protoporphy-
rinogen IX from its host. Hence, FC is absolutely essential for
the integration of iron into ProtoIX. Conversion of salvaged
ProtoIX or protoporphyrinogen IX to heme appears to be inef-
ficient, leading to the described phenotype. This was further
supported by the observation that �-ALA supplementation res-
cues the growth defect of T. gondii lacking CPO. �-ALA supple-
mentation leads to a drastic increase in host ProtoIX levels,
probably boosting its uptake by T. gondii and allowing it to
restore heme levels.

In parasites lacking CPO, the lack of heme and accumulation
of its precursor are expected to cause deleterious impacts on
T. gondii metabolism and development. Heme is crucial for
multiple cellular processes; most notably, it serves as an essen-
tial cofactor in several enzymes of the ETC, including cyto-
chrome bc1 of complex III, soluble cytochrome c, and the Cox I
subunit of Complex IV (120). It has been proposed that oxida-
tive phosphorylation is the main energy source of tachyzoites
and accounts for �90% of the ATP generated in egressed
tachyzoites (23). We found that heme depletion in parasites
lacking CPO largely disables mitochondrial respiration,
although residual low levels of respiration were detected, and
parasites devoid of CPO remained sensitive to atovaquone
treatment, which inhibits the cytochrome bc1 complex of the
ETC.3 Strikingly, these parasites appear to survive through
markedly increased rates of glycolysis and are unable to survive
in the absence of glucose. These observations highlight the
importance of de novo heme synthesis in T. gondii but also
demonstrate its astonishing flexibility to adapt and survive
solely on an inefficient precursor salvage pathway and rewiring
its central carbon metabolism. Given the absence of the heme

biosynthesis pathway in Cryptosporidia and piroplasms, future
research should focus on the identification of heme or hemo-
protein transport mechanisms.

Lipoate

Lipoate, or lipoic acid, is an essential cofactor and, in most
eukaryotes, is synthesized in the mitochondrion and trans-
ported to other subcellular compartments. In apicomplexans,
at least four metabolic complexes use the lipoic acid as a cofac-
tor: PDH, which resides in the apicoplast (121), as well as the
�-ketoglutaratedehydrogenase,branched-chain�-ketoacidde-
hydrogenase, and glycine cleavage complex, which reside in the
mitochondrion (27, 122). The coccidians and hemosporidians
are able to synthesize and scavenge lipoic acid, whereas the
pathways are absent in Cryptosporidia and Piroplasmida.
Unlike plants, which have two isoenzymes, LipA and LipB, for
lipoylation in the chloroplast and mitochondria, respectively,
apicomplexan genomes encode LipA and LipB. Both enzymes
are localized to the apicoplast, and a second enzyme, LplA, is
found in the mitochondrion (123). Lipoylation of mitochon-
drial proteins is dramatically reduced when the parasites are
grown in lipoic acid– deficient media without affecting the
lipoylation of apicoplast proteins (124). Contrastingly, the
reduced lipoylation of mitochondrial proteins could be rescued
via exogenous supplementation of lipoate in the media, indicat-
ing the salvage pathway primarily supplies lipoate for this
organelle (124). As seen by the FS of the LplA gene (�2.60),
mitochondrial lipoylation seems essential, whereas LipA
(�0.97) and LipB (�1.74) (17) in the apicoplast seem dispens-
able. In the absence of a lipoylated PDH complex, the parasites
likely compensate by taking up fatty acids from the host (Fig. 8).
Similar observations were reported during the intraerythro-
cytic stage of P. falciparum (125, 126). The plasma membrane
and organellar transporters involved in lipoate salvage have not
yet been identified. It is plausible that lipoate is directly scav-

Figure 8. Lipoic acid biosynthesis. T. gondii can de novo–synthesize lipoic
acid in the apicoplast but also scavenge the metabolite from its host for its
requirement within the mitochondrion. The bifunctional LPL enzyme (in blue)
utilizes the scavenged lipoate for the posttranslational modification of
branched-chain keto-acid dehydrogenase. LipB and LipA generate lipoate for
the modification of the E2 subunit of the apicoplast-resident PDH complex. FS
for the enzymes are color-coded (in circles). LipB, lipoyl (octanoyl)-ACP-protein
N-lipoyl (octanoyl) transferase; LPL, lipoate-protein ligase; LipA, lipoic acid
synthase; KADH, branched-chain keto-acid dehydrogenase.
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enged from the host mitochondria, which is in close contact
with the parasitophorous vacuole (127).

Shikimate

Shikimate is an important metabolite found in bacteria,
plants, and fungi but is absent in animals. It is important for
several biosynthetic processes, including the biosynthesis of
folate, aromatic amino acids, and ubiquinone. Shikimate is pri-
marily synthesized from erythrose 4-phosphate and phosphoe-
nolpyruvate and subsequently converted to chorismate in a sev-
en-step reaction. Steps 2– 6 for chorismate biosynthesis are
carried out by a pentafunctional protein (Fig. 9). In most api-
complexans, including the coccidians, hemosporidians, and
Cryptosporidia, a single gene of fungal origin exists, called the
AROM complex, encoding for all five activities in a single large
polypeptide (128, 129). The presence of all functional domains
in T. gondii has been verified with bioinformatic analyses (130,
131), although in P. falciparum the sequence similarity to the
yeast homolog could not be verified for the first two enzymatic
activities. However, evidence for the presence of a shikimate
pathway was supported in both T. gondii tachyzoites and the
erythrocytic stage of P. falciparum, by treating the parasites
with the herbicide glyphosate, inhibitor of the 5-enolpyruvyl-
shikimate-3-phosphate synthase, resulting in a growth defect
(132–134). The effect was reversible with the addition of pABA
or folate in the media, suggesting an essential role of shikimate
in providing precursors for the biosynthesis of folates (133).
The role of chorismate in folate biosynthesis has been demon-
strated in several studies, but its importance for ubiquinone
biosynthesis has not been fully defined. Further, the high neg-
ative FS of all enzymes involved in the pathway confirms its

essentiality for in vitro T. gondii tachyzoites (AROM complex,
�5.22; chorismate synthase, �2.84) and could be targeted for
intervention against the coccidians and hemosporidians.

Ubiquinone

Ubiquinone, also known as coenzyme Q, is an integral com-
ponent of the electron transport chain for the transfer of elec-
trons from NADH dehydrogenase (complex I) and succinate
dehydrogenase (complex II) to cytochrome bc1 complex (com-
plex III). In most organisms, ubiquinone is synthesized from
chorismate in nine enzymatic steps. Most of the pathway is
conserved among all apicomplexans, with two enzymes, oxo-
acid lyase and 3-octaprenyl-4-hydroxybenzoate carboxy-lyase,
missing from the genome, based on bioinformatic approaches.
The divergence of these enzymes cannot be ruled out, because a
functional synthesis pathway in P. falciparum was shown by
detecting differences in the ubiquinone side chains when com-
pared with the host (135). The 4-hydroxybenzoate backbone of
ubiquinone receives an isoprenoid side chain via the 4-HB-pre-
nyl-transferase, which has been well-characterized in P. falcip-
arum, and localized to the apicoplast (136). The production of
long-chain isoprenoids, however, occurs in the mitochondrion
via farnesyl pyrophosphate synthase (137), which could subse-
quently be utilized for the synthesis of ubiquinone and other
compounds. It was further shown that fosmidomycin, a drug
that inhibits the apicoplast-resident isoprenoid biosynthesis
pathway, leads to a decline in ubiquinone synthesis (74). In
T. gondii tachyzoites, the last three steps of the pathway (Fig. 9)
display highly negative FS (�3.61, �3.62, and �4.49), high-
lighting their importance for in vitro proliferation.

Figure 9. Shikimate, chorismate, and ubiquinone biosynthesis pathway. T. gondii can de novo–synthesize shikimate and chorismate via a pentafunctional
AROM complex, catalyzing the initial five steps (shaded in light blue) and chorismate synthase respectively. Chorismate is a precursor for the biosynthesis of
ubiquinone, and the FS for the enzymes are color-coded (in circles). 3DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; 5-EPS, 5-enolpyruvylshikimate-3-
phosphate; 3-DHQ, 3-dehydroquinate; ADCS, aminodeoxychorismate synthase; ADCL, aminodeoxychorismate lyase; PEP, phosphoenolpyruvate; 4-HB,
4-hydroxybenzoate.
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Conclusion

Apicomplexans possess versatile metabolic capabilities to
adapt and adjust to their diverse host environments. Under-
standing the parasite’s requirements for intracellular replica-
tion and the contribution of biosynthesis versus uptake of
essential metabolites is therefore crucial for the identification
of new candidate drug targets (Fig. 10). Whereas the genome
sequences of the disease-causing pathogens provide us clues on
their metabolic capabilities at a global level, an in-depth under-
standing of the needs at each life cycle stage is vital. Pathways
and enzymes that are essential for proliferation during acute
infection may be dispensable upon stage conversion to latency
and vice versa. Recent studies encompassing computational,
molecular, and metabolomic tools have advanced our under-

standing of metabolic pathways for the production of key vita-
mins and cofactors, paving the way for targeted drug develop-
ment. A few commercially available compounds targeting
vitamin and cofactor pathways, such as pyrimethamine and sul-
fonamides, already exist to treat toxoplasmosis or malaria.
With the rise in drug resistance, however, identification of new
enzymes absent in the mammalian host may be useful for a
target-directed intervention against the apicomplexans.
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Petković, H., Hayflick, S., Tiranti, V., Reijngoud, D.-J., Grzeschik, N. A.,
and Sibon, O. C. M. (2015) Extracellular 4�-phosphopantetheine is a
source for intracellular coenzyme A synthesis. Nat. Chem. Biol. 11,
784 –792 CrossRef Medline

66. Percudani, R., and Peracchi, A. (2003) A genomic overview of pyridoxal-
phosphate-dependent enzymes. EMBO Rep. 4, 850 – 854 CrossRef
Medline

67. Hoegl, A., Nodwell, M. B., Kirsch, V. C., Bach, N. C., Pfanzelt, M., Stahl, M.,
Schneider, S., and Sieber, S. A. (2018) Mining the cellular inventory of
pyridoxal phosphate-dependent enzymes with functionalized cofactor
mimics. Nat. Chem. 10, 1234 –1245 CrossRef Medline

68. Fitzpatrick, T. B., Amrhein, N., Kappes, B., Macheroux, P., Tews, I., and
Raschle, T. (2007) Two independent routes of de novo vitamin B6 biosyn-
thesis: not that different after all. Biochem. J. 407, 1–13 CrossRef Medline

69. Knöckel, J., Müller, I. B., Bergmann, B., Walter, R. D., and Wrenger, C.
(2007) The apicomplexan parasite Toxoplasma gondii generates pyridoxal
phosphate de novo. Mol. Biochem. Parasitol. 152, 108 –111 CrossRef
Medline

70. Gengenbacher, M., Fitzpatrick, T. B., Raschle, T., Flicker, K., Sinning, I.,
Müller, S., Macheroux, P., Tews, I., and Kappes, B. (2006) Vitamin B6

biosynthesis by the malaria parasite Plasmodium falciparum: biochemical
and structural insights. J. Biol. Chem. 281, 3633–3641 CrossRef Medline

71. Palm, D., Klein, H. W., Schinzel, R., Buehner, M., and Helmreich, E. J. M.
(1990) The role of pyridoxal 5�-phosphate in glycogen phosphorylase ca-
talysis. Biochemistry 29, 1099 –1107 CrossRef Medline

72. Sugi, T., Tu, V., Ma, Y., Tomita, T., and Weiss, L. M. (2017) Toxoplasma
gondii requires glycogen phosphorylase for balancing amylopectin storage
and for efficient production of brain cysts. MBio 8, e01289-17 CrossRef
Medline

73. Van de Kamp, J. L., Westrick, J. A., and Smolen, A. (1995) B6 vitamer
concentrations in mouse plasma, erythrocytes and tissues. Nutr. Res. 15,
415– 422 CrossRef

74. Cassera, M. B., Gozzo, F. C., D’Alexandri, F. L., Merino, E. F., del Portillo,
H. A., Peres, V. J., Almeida, I. C., Eberlin, M. N., Wunderlich, G., Wiesner,
J., Jomaa, H., Kimura, E. A., and Katzin, A. M. (2004) The methylerythritol
phosphate pathway is functionally active in all intraerythrocytic stages of
Plasmodium falciparum. J. Biol. Chem. 279, 51749 –51759 CrossRef
Medline

75. Wrenger, C., Eschbach, M.-L., Müller, I. B., Warnecke, D., and Walter,
R. D. (2005) Analysis of the vitamin B6 biosynthesis pathway in the human
malaria parasite Plasmodium falciparum. J. Biol. Chem. 280, 5242–5248
CrossRef Medline

76. Müller, I. B., Hyde, J. E., and Wrenger, C. (2010) Vitamin B metabolism in
Plasmodium falciparum as a source of drug targets. Trends Parasitol. 26,
35– 43 CrossRef Medline

77. Knöckel, J., Müller, I. B., Butzloff, S., Bergmann, B., Walter, R. D., and
Wrenger, C. (2012) The antioxidative effect of de novo generated vitamin
B6 in Plasmodium falciparum validated by protein interference. Biochem.
J. 443, 397– 405 CrossRef Medline

78. Kronenberger, T., Lindner, J., Meissner, K. A., Zimbres, F. M., Coronado,
M. A., Sauer, F. M., Schettert, I., and Wrenger, C. (2014) Vitamin B6-de-
pendent enzymes in the human malaria parasite Plasmodium falciparum:
a druggable target? Biomed. Res. Int. 2014, 108516 CrossRef Medline

79. Müller, I. B., Wu, F., Bergmann, B., Knöckel, J., Walter, R. D., Gehring, H.,
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