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Abstract
Quantum processes of inherent dynamical nature, such as quantum walks, defy a description in terms of an
equilibrium statistical physics ensemble. Until now, identifying the general principles behind the underlying unitary
quantum dynamics has remained a key challenge. Here, we show and experimentally observe that split-step quantum
walks admit a characterization in terms of a dynamical topological order parameter (DTOP). This integer-quantized
DTOP measures, at a given time, the winding of the geometric phase accumulated by the wavefunction during a
quantum walk. We observe distinct dynamical regimes in our experimentally realized quantum walks, and each regime
can be attributed to a qualitatively different temporal behavior of the DTOP. Upon identifying an equivalent many-
body problem, we reveal an intriguing connection between the nonanalytic changes of the DTOP in quantum walks
and the occurrence of dynamical quantum phase transitions.

Introduction
Coherence in quantum dynamics is at the heart of fas-

cinating phenomena beyond the realm of classical physics,
such as quantum interference effects1, entanglement
production2,3 and geometric phases4–6. However, the
identification of the general principles behind the inherent
nonequilibrium nature of unitarily evolved quantum
states still invokes central open questions7, which we
experimentally address in the context of quantum walks
below8. Quantum walks provide a powerful and flexible
platform to experimentally realize and probe coherent
quantum time evolution far from thermal equilibrium. As
opposed to classical random walks, quantum walks are
characterized by quantum superpositions of amplitudes
rather than classical probability distributions. This genu-
ine quantum character has already been harnessed in
various fields of physics, ranging from the design of

efficient algorithms in quantum information proces-
sing9–11, the observation of correlated dynamics12–19 and
Anderson localization20,21 to the realization of exotic
physical phenomena in the context of topological pha-
ses22–38. While the topological order can be retrieved in
real space39,40, accessing the full complex amplitude
information characterizing a coherent superposition
remains one of the key challenges in quantum walk
experiments.
In this work, we report the direct observation of a

dynamical topological order parameter (DTOP) that
provides a dynamical characterization of quantum walks.
To this end, we realize a split-step quantum walk in a
photonic system using the framework of time multi-
plexing. Using a previously developed technique, we
achieve full-state tomography of the time-evolved quan-
tum state for up to 10 complete time steps. Importantly,
this measurement provides us with the full complex
amplitude information of the quantum walk state. This
information is essential for our central goal of a dynamical
classification of a quantum walk using the DTOP, since
the DTOP measures the phase winding number ωD(t) in
momentum space, namely, of the so-called Pancharatnam
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geometric phase (PGP)41,42. From our measurements, we
find that dynamical transitions between topologically
distinct classes of quantum walks can be uniquely dis-
tinguished experimentally by the observed time-
dependent behavior of ωD(t): For a quench between two
systems with the same topological character, we find
ωD(t)= 0 for all time steps; however, for a quench
between two topologically different systems, ωD(t) also
starts at ωD(t= 0)= 0 but monotonously changes at cer-
tain critical times. Generalizing these observations, we
establish a unique relation between the behavior of ωD(t)
and the change over a parameter quench in the topolo-
gical properties of an effective Floquet Hamiltonian that
stroboscopically describes the quantum walk.
While the quantum walk in our experiment realizes the

dynamics of a single quantum particle, we establish an
underlying many-body context that explains the points at
which the DTOP ωD(t) changes nonanalytically in terms
of a dynamical critical phenomenon. To this end, we map
the superposition of Bloch waves realized in the quantum
walk to a product state of a corresponding fermionic
many-body system. Therefore, an intriguing analogy
between our present experiment and the notion of
dynamical quantum phase transitions (DQPTs) occurring
in the unitary evolution of the quenched many-body
system is revealed. Our work provides a dynamical char-
acterization of the bulk topological properties and there-
fore complements the recent measurement of
topologically protected boundary modes in quantum
walks24, thus providing an important step toward a
comprehensive understanding of the role of topology in
quantum dynamics.

Results
Quantum walk setup
This work is carried out on our recently developed

photonic discrete-time quantum walk platform based on a
time-multiplexing protocol38,43. The critical operation in
a discrete-time quantum walk is the conditional shift of
the walker, which generates effective spin-orbit cou-
plings8. Conventionally, in a photonic time-multiplexing
quantum walk, this shift is implemented by optical
loops44. Here, we use birefringent crystals that avoid extra
loss appearing in conventional time-multiplexing
schemes12. The experimental setup is sketched in Fig. 1a.
Here, we employ the two orthogonal polarizations, hor-
izontal and vertical, of the heralded single photon as the
internal coin space, which is represented in the following
as a pseudospin μ= ↑, ↓. We use two half-wave plates
(HWPs) and two calcite crystals to implement a full split-
step quantum walk22–24, as shown in Fig. 1a. That is, at
each time, we repeat an identical sequence of four
operations to manipulate the walker. First, a rotation

R̂ θ1ð Þ in the internal pseudospin space with a tunable
angle θ1 is realized via the first HWP. This rotation is
followed by a conditional shift T̂" of the walker to the
neighboring lattice site to the right provided its internal
state is ↑, which is achieved through a birefringent crystal.
Then, we perform another rotation R̂ θ2ð Þ with an angle θ2
and a further conditional shift T̂#, where this time the
walker moves one lattice site to the left provided its
internal state is ↓. Probing the dynamics stroboscopically
after each completed step of the quantum walk realizes a
periodic Floquet evolution where the unitary time evo-
lution operator Û for one cycle is given by
Û θ1; θ2ð Þ ¼ T̂#R̂ θ2ð ÞT̂"R̂ θ1ð Þ. In a time-multiplexing
quantum walk, the discrete position space consists of
time bins that stand for the arrival time of the walker and
can be indexed by integers44. Initially, we prepare the
photonic walker in a localized state on a given lattice site,
e.g., x= 0 with a tunable superposition of ↑ and ↓ in the
coin space. In our experimental realization, we can fully
reconstruct the quantum state |Ψt〉 in the subsequent
evolution of the walker (see Methods)

Ψtj i ¼
X
x;μ

ψt x; μð Þ xμj i ð1Þ
where x 2 Z denotes the spatial point on the one-
dimensional lattice and the quantum number μ= ↑, ↓
for the internal coin space. Accordingly, we achieve full
experimental access to the state amplitudes ψt x; μð Þ at
each of the up to 10 time quench steps studied in this
experiment, which is essential for the central goal of
this work of dynamically characterizing quantum walks.
The stroboscopic evolution of our periodically time-
dependent system is determined by the associated
Floquet Hamiltonian ĤF θ1; θ2ð Þ defined via
Û θ1; θ2ð Þ ¼ e�iHF θ1;θ2ð Þ. For the split-step quantum walk,
ĤF θ1; θ2ð Þ ¼ R π

�πdkH
k
F θ1; θ2ð Þ is analogous to the

Hamiltonian characterizing electrons in a solid with
two bands, where k denotes the conserved lattice
momentum45,46. From this perspective, this quantum
walk can exhibit interesting topological properties in
the sense that the corresponding ground state repre-
sents a topological insulator. As a natural periodically
driven system, a complete classification of its topolo-
gical phase needs to take into account the time frames,
that is, the choice of the starting point26–31. In the split-
step quantum walk, we have two nonequivalent times

frames, i.e., Û1 θ1; θ2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
R̂ θ1ð Þ

q
T̂#R̂ θ2ð ÞT̂"

ffiffiffiffiffiffiffiffiffiffiffiffi
R̂ θ1ð Þ

q
and

Û2 θ1; θ2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
R̂ θ2ð Þ

q
T̂"R̂ θ1ð ÞT̂#

ffiffiffiffiffiffiffiffiffiffiffiffi
R̂ θ2ð Þ

q
. It is easy to

check that the conventional time frame Û defined
above is equivalent to Û1. The complete phase diagram
of ĤF θ1; θ2ð Þ can then be given with the winding
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numbers defined in the two nonequivalent time
frames38, which is shown in Fig. 1b. While quantum
walks describe an inherently nonequilibrium dynamical
process, signatures of these quasi-equilibrium topolo-
gical properties have been observed experimentally,
e.g., via the concomitant topological edge states24.
The purpose of our present work is to go beyond such

a quasi-equilibrium picture and characterize the
dynamics of the quantum walk through a DTOP. To this
end, we initially prepare the walker at t= 0 as a wave
packet localized at x= 0 with Ψ0j i ¼ P

μ ψ0 0; μð Þ 0μj i.
We choose the superposition in the coin space such that
|Ψ0〉 represents a single-particle eigenstate in the lower
of the two bands of an initial Floquet Hamiltonian Hi

F ,

which we can also implement dynamically in our setup.
Preparing the ground state of Hi

F is possible whenever
Hi

F exhibits flat bands, as it can be realized for the case
where Hi

F is topologically trivial or nontrivial; see Fig. 2b
and Fig. 3c. Subsequently, we evolve the system
according to the chosen split-step quantum walk char-
acterized by HF, sequencing and monitoring the full
nonequilibrium dynamics of the wavefunction. This
protocol can be interpreted as a quantum quench from
Hi

F to HF, which, as detailed below, we can identify as a
quench in a corresponding many-body system. Although
the ground state of HF cannot be reached in a quantum
walk, from the observed dynamics of the DTOP, we
obtain information about its topological properties.
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Fig. 1 Sketch of the experimental setup. a Implementation of the time-multiplexing split-step quantum walk. A heralded single photon with a
central wavelength of 780 nm generated from beam-like spontaneous parametric down conversion is adopted as the walker. The anticorrelation
parameter63 measured in experiment is 0.031 ± 0.001. The polarization of the walker is prepared by a spin initialization module consisting of a PBS,
HWP and QWP in sequence at the beginning and is measured by a spin analyzer consisting of a QWP, HWP and PBS in sequence at the end of the
quantum walk. A full step of the split-step quantum walk is realized with two HWPs with their optical axes oriented at θ1 and θ2, respectively, for
implementing the coin tossing, and two calcite crystals with their optical axes cut colinearly and orientated horizontally, for implementing the spin-
orbit coupling. The final arrival time of the photon is measured by a homemade upconversion single-photon detector. In the inset of a, we show a
diagram of the split-step quantum walk in the conventional time frame. To access the two shifted nonequivalent time frames, we change the
rotation angle of the first HWP and add an extra HWP at the end for each complete step. The walker’s position space consists of the time bins
(defining the arriving time of a single photon) with a pulse interval of 5 ps (determined by the length of the calcite crystal). The maximum repetition
rate is 76 MHz, corresponding to a time of 13 ns. Here, we use ten quantum walk modules in total for a split-step quantum walk and one extra
quantum walk module for adiabatically preparing some special initial states. b The complete topological phase diagram hidden in the split-step
discrete-time quantum walk. In c, we present the probability distributions at times t= 0, t= 1 and t= 6 in the first configuration, i.e., the quench from
a ground state of the Hamiltonian in the trivial phase (θ2= π) and ending in a nontrivial phase (θ1= 8π/9 and θ2=−π/3). The total coincidence
counts between the idle photon and the upconversion signal are above 200 Hz, and for each basis, we set the integration time to 200 s. PBS polarized
beam splitter, HWP half-wave plate, QWP quarter-wave plate.
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Dynamical topological order parameter
For the definition of the DTOP, it is essential that we

have experimental access to the full amplitudes ψt x; μð Þ,
including the phase information. In this sense, the pro-
posed dynamical characterization relies crucially on the
quantum nature of the quantum walk. The DTOP is
defined through a lattice-momentum-dependent PGP
ϕG
k tð Þ, extending the concept of Berry’s geometric phase

to nonadiabatic and noncyclic dynamics, which is natu-
rally realized in our quantum walk experiment. Specifi-
cally, ϕG

k tð Þ measures the gauge invariant and geometric
content of the acquired phase during the evolution at a
given lattice momentum k. In formal terms, let us expand
the state at a given time step t not in the real-space basis
|xμ〉 as in Eq. (1) but rather in the lattice-momentum basis
via jΨti ¼

R π
�πdkjψt kð Þi with jψt kð Þi ¼ P

μψt k; μð Þjkμi
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Fig. 2 Experimental measurement of the DTOP for observing the DQPT. a The quenching strategy in terms of the phase diagram, starting from
a ground state of the Hamiltonian with a flat band (θ2= π) in the trivial phase and ending in a nontrivial phase (pentagram with θ1= 8π/9 and θ2=
−π/3). The energy band (theoretical) and the initial state (black point for the theoretical expectation and arrow for the experiment) are presented in
b. We fit the experimental data in rank 2 to reveal the decoherence, and the purity for each step is given in c (the errors are smaller than the point
size). In d, we show how to extract the dynamical phase with full knowledge of the wavefunction for each step. The imaginary part of the Loschmidt
amplitude is presented at the top, with three cases k= 1, k= 11 and k= 21 shown at the bottom. We read out the amplitude and period by fitting
the measured results (circle points) to a trigonometric function. Density plots of the associated PGP ϕG

k tð Þ are shown in e, from left to right, for a
theoretical consideration in momentum space (continuous-time evolution), theoretical simulation of the QW (discrete-time evolution) and our
experimental results. The exact critical time is calculated from the continuous-time evolution, which is tc= 1.513 and predicts the first occurrence of
the DQPT. The experimentally measured DTOP is presented in f with the opaque bars; the blue line is the theoretical prediction numerically
calculated in momentum space (continuously), and the transparent bars are the predictions from the simulation of the quantum walk. The vertical
dashed lines show the critical times for each occurrence of the DQPT. At the bottom, we present the rate function λ(t) with the red line (obtained in
the continuous simulation) and the experimental measured values with points. Each nonanalyticity predicts the occurrence of a DQPT. The errors are
estimated using numerical Monte Carlo simulations considering the counting noise.
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and ψt k; μð Þ, the Fourier transform of ψt x; μð Þ. The
acquired phase ϕk tð Þ relative to the initial condition at a
given k and time step t can be obtained from a
polar decomposition of the Loschmidt amplitude
GkðtÞ ¼ hψ0ðkÞjψtðkÞi ¼ rkðtÞeiϕkðtÞ. Importantly, ϕk tð Þ
contains a gauge invariant part ϕG

k tð Þ ¼ ϕk tð Þ � ϕdyn
k tð Þ,

called the PGP, after subtracting a dynamical contribution,
which in our case of a sudden quench is given by

ϕdyn
k tð Þ ¼ �t ψt kð Þ� ��HF ψt kð Þ�� �

. With the acquired ϕk tð Þ
and dynamical phase ϕdyn

k tð Þ, we can now define the
DTOP ωD(t) as an integer-valued winding number asso-
ciated with ϕG

k tð Þ:

ωD tð Þ ¼ 1
2π

Z π

0

∂ϕG
k tð Þ
∂k

2 Z ð2Þ

An analog of the DTOP in the context of quenched
topological superconductors has been defined in ref. 47.
The quantization of ωD is imposed by particle-hole

symmetry, which ensures that ϕG
k¼0 tð Þ ¼ ϕG

k¼π tð Þ and
consequently ϕG

k tð Þ forms a loop on the unit circle47.
Based on a full-state reconstruction of ψt(x, μ), in our
experiment, we measure the acquired phase ϕk(t) and,
importantly, the dynamical phase ϕdyn

k tð Þ, which allows us
to map out the full momentum-dependent PGP ϕG

k tð Þ; see
Methods for technical details. In Fig. 2e, as an example of
one realization of the split-step quantum walk, we show
the experimentally obtained ϕG

k tð Þ along a trajectory of 10
time steps and compare the results with the theoretically
expected values. For the first few time steps, the experi-
mental data closely follow the ideal theoretical predic-
tions. With the measured PGP ϕG

k tð Þ for each momentum,
the integer-valued winding number ωD(t) can then be
directly given by a simple Riemann sum according Eq. (2),
as shown in Fig. 2f for instance. At later times, deviations
become visible, which we trace back mainly to deco-
herence in the experiment leading to a reduction of the
purity of the walker’s state and experimentally estimate in
Fig. 2c. A loss of purity of only a few percent leads to
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substantial changes in the details of ϕG
k tð Þ, highlighting

the accuracy required both in the implementation of the
unitary dynamics and in the state reconstruction. How-
ever, we find that as a dynamical topological quantum
number, the DTOP ωD(t) is much more robust to a loss of
purity, as shown below.

Dynamical phase diagram of the split-step quantum walk
In the following, we use the observed integer-valued

quantum number ωD(t) to dynamically characterize the
realized quenched split-step quantum walk. The Floquet
Hamiltonian before and after the quench is characterized
by a doublet of topological invariants (ν0, νπ), where each
invariant can take values of ±1/2 in our setup (as shown in
Fig. 1b). When simply calling a Floquet Hamiltonian
topologically trivial or nontrivial, we refer to the coarser
Z2 classification obtained from the sign of the product
ν0νπ, where sign ν0νπð Þ ¼ �1 signifies the trivial phase.
We start by considering a setup where the initial condi-
tion of the walker implements an eigenstate of an asso-
ciated topologically trivial Floquet Hamiltonian
Hi

F ¼ HF 8π=9;πð Þ with ν0; νπð Þ ¼ þ1=2;�1=2ð Þ and the
subsequent time evolution is governed by a topologically
nontrivial HF ¼ HF 8π=9;�π=3ð Þ with ν0; νπð Þ ¼
þ1=2;þ1=2ð Þ; see Fig. 2a. Figure 2e shows the measured
PGP ϕG

k tð Þ for this experimental sequence. With these
geometric phases, we can further obtain the DTOP ωD(t),
which is shown in Fig. 2f and closely follows the ideal
theoretically expected values. For the first two time steps,
the DTOP is consistent with ωD(t)= 0. Afterward, how-
ever, we observe a sudden jump of the DTOP to ωD(t)= 1;
similarly, at later times, the DTOP jumps to ωD(t)= 2.
Since ωD(t) is a quantized integer, this change in ωD(t)
can only occur in a nonanalytic fashion, which is indi-
cative of behavior that is typically associated with phase
transitions. Below, we show that such a relation to a
dynamical analog of a phase transition can indeed be
established.
We now study the dynamics of the quantum walk not

only for a fixed parameter set but also along a line in
parameter space upon keeping the initial condition fixed
as specified in Fig. 4a. The time evolution of the DTOP for
the different sets (θ1, θ2) is shown in Fig. 4c. For θ1= 5π/9
and θ2= 8π/9, which is indicated by a star and closest in
terms of distance to the initial condition, we observe that
the DTOP ωD(t)= 0 vanishes along the full trajectory. We
also find that the same behavior for θ1= 6π/9 and θ2=
7π/9 (square symbol) represents a qualitatively different
dynamical regime than the case observed in Fig. 2f.
However, as soon as our parameter quench crosses the
boundary between the two Floquet regimes characterized
by ν0; νπð Þ ¼ þ1=2;�1=2ð Þ and ν0; νπð Þ ¼ þ1=2;þ1=2ð Þ,
we recover the jumps in ωD(t) at successive times with an
overall monotonously increasing envelope for the next

parameter sets θ1= 7π/9 and θ2= 6π/9 (triangle symbol)
and θ1= 8π/9 and θ2= 5π/9 (circle symbol), respectively.
According to these observations, at this point, we can
identify two qualitatively different dynamical phases as
characterized by the temporal behavior of the DTOP.
We find, however, that there exists also a third phase

characterized by yet another behavior of ωD(t). For
observing this behavior, we study the DTOP for a differ-
ent initial condition for which the hypothetical ground
state of the Floquet Hamiltonian Hi

F would be of topo-
logical nature with ν0; νπð Þ ¼ þ1=2;þ1=2ð Þ; see Fig. 3a.
Upon time evolution with HF corresponding to a different
topological phase, we again observe that the DTOP
changes its value at a sequence of points in time. Different
from the previous cases, however, we observe that the
DTOP can behave nonmonotonously over time. By
drawing an analogy between the realized quantum walk
and an equivalent quantum many-body problem, we
explain the three observed dynamical phases in terms of a
DQPT below.
For a complete classification of a periodically driven

system, it is important to consider different time
frames26–31. To this end, besides the conventional quench
realized by sudden changes in the control parameter θ1 or
θ2, we now consider a modified quench protocol, i.e., a
quench induced by a sudden change of the time frame
(see Fig. 5a for an illustration). First, we fix the time frame
in Û1. By performing an adiabatic evolution starting from
the origin with the spinor state |↓y〉 (which is the super-
position state of the lower band states for quantum walks
with the parameters constrained on the dashed line in the
trivial phase as shown in Fig. 5a), the system can be fur-
ther initialized in the superposition state of the lower
band states of a more general quantum walk with the
Hamiltonian Heff �π=3; 8:6π=9ð Þ. (Note this quantum
walk is still in the trivial phase.) Then, we suddenly
change the time frame from Û1 to a nonequivalent time
frame Û2 (ref. 38) while keeping the parameters unchan-
ged. Nevertheless, the effective Hamiltonians HF changes
with different topological invariants upon changing time
frames. The experimental results for this scenario are
shown in Fig. 5b, c. Again, we observe characteristic
behavior of the DTOP, monotonously increasing with
time, which corresponds to the dynamical phase shown in
Figs. 2f and 4c, as expected.

Dynamical quantum phase transitions
The real-time nonanalytic behavior of the DTOP

enables an intriguing analogy with the phenomenon of
DQPTs48,49, which allows us to explain our observations
in light of an equivalent many-body problem. To this end,
we map our quantum walk system, for which the state is
given by a coherent superposition jΨti ¼

R π
�πdkjψtðkÞi of

lattice-momentum modes (Bloch states), to a fermionic
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many-body system, whose state is given by a Slater
determinant of |ψt(k)〉. We note that this mapping
requires complete access to |ψt(k)〉, which we can achieve
in our setup in parallel due to the large degree of coher-
ence. Within the theory of DQPTs, the central object is
the Loschmidt amplitude G tð Þ, which for the corre-
sponding many-body system factorizes as
G tð Þ ¼ Q

k Gk tð Þ. DQPTs are hallmarked by nonanalytic
points in time of the associated rate function

g tð Þ ¼ �N�1log G tð Þ½ �, which plays the role of a formal
analog to a free energy density. Here, N denotes the
number of degrees of freedom, i.e., the number of
involved lattice-momentum modes. Such DQPTs and
their signatures have been recently observed in various
systems50–57.
In all the figures, we have included a theoretical calcu-

lation of λ tð Þ ¼ 2Re g tð Þ½ � for the many-body system
equivalent to the respective implemented quantum walk.
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For example, in Fig. 2f, the situation corresponds to a
quantum quench in a two-band fermionic system from an
initial topologically trivial insulating state, the ground
state of Hi

F , to a final Hamiltonian HF exhibiting topolo-
gically nontrivial properties.
Using the analogy with the equivalent many-body sys-

tem, we can further relate the equilibrium properties of
the Floquet Hamiltonian HF to the dynamics of the DTOP
observed for the quantum walk. First, it is shown that a
jump in the DTOP always occurs with a DQPT in the
considered systems48,49. This is indeed what we find in
our experiment. The times where the observed DTOP
changes its topologically quantized value coincide with
the critical times at which the corresponding many-body
system undergoes a DQPT, as hallmarked by a logarith-
mic singularity in g(t).
All potential DQPTs that can occur in the considered

models can be grouped into two classes, enabling an

overall classification in terms of three dynamical phases,
with the third phase being the dynamics without the
occurrence of a DQPT yielding ωD(t)= 0. First, DQPTs
have to occur whenever the initial and final Hamiltonians,
here Hi

F and HF , are topologically inequivalent in the Z2

classification corresponding to a positive or negative sign
of ν0νπ

58, where ν0νπ > 0 refers to the topological phase
and ν0νπ < 0 refers to the trivial phase, respectively. In this
sense, these DQPTs are topologically protected, and their
data are shown in Fig. 2. Second, DQPTs can be acci-
dental, without changing the product ν0νπ, thus leaving
the Z2 classification of the static system unchanged.
Notably, in our present Floquet context, such accidental
DQPTs occur precisely when both ν0 and νπ switch signs
while leaving their product unchanged. This scenario
gives a clear topological meaning to this second kind of
DQPT in our split-step quantum walk setup. Remarkably,
the DTOP observed in this work is capable of qualitatively
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distinguishing these different kinds of DQPT scenarios
(cf. Figs. 2 and 3).

Discussion
In this experiment, we have achieved a dynamical

characterization of split-step quantum walks using a
DTOP—an integer-valued quantum number that mea-
sures the winding of the geometric phase in the lattice-
momentum space. The possibility to reconstruct the full
wavefunction of the quantum walk state with access to the
full set of quantum amplitudes, including their phase
information, has been central for our measurement of the
DTOP. Our results clearly show that as a global quantum
number of the system’s dynamical topological phase, the
DTOP is robust with respect to decoherence in our
experimental platform on the time scales studied in this
work. The robustness of the DTOP to disorder59 might
deserve further experimental investigations in the future.
With a mapping onto a quantum quench in an equivalent
quantum many-body problem, we have shown that this
dynamical characterization is intimately related to the
phenomenon of DQPTs in the unitary real-time evolu-
tion. In this way, we provide a nonequilibrium perspective
of quantum walks, which can be understood as a starting
point for approaching time-dependent processes from an
inherently dynamical angle that goes beyond the notion of
equilibrium statistical physics. With this perspective and
by mapping onto quenches in an equivalent quantum
many-body system, our experiment offers a versatile
platform for the study of the coherent nonequilibrium
dynamics of many paradigmatic models such as the Su-
Schrieffer-Heeger model45, the p-wave Kitaev chain60, or
the transverse field Ising model61 in the future. We expect
that our method to be straightforwardly extended to other
photonic systems, such as continuous-time quantum
walks based on integrated photonics62.

Materials and methods
Initial state preparation
Before starting the quantum walks, we prepare the

system initially in a single-particle eigenstate of an effec-
tive Floquet Hamiltonian Hi

F , which we can finally
associate with a quantum quench in an equivalent
quantum many-body problem. We proceed by distin-
guishing three different cases for Hi

F : (a) a trivial flat-band
Hamiltonian, (b) a topologically nontrivial flat-band
Hamiltonian and (c) a general Hamiltonian without flat
bands. For (a), the ground state of the flat band can be
localized on a single site at the origin in real space with

the spin pointing in the y-direction, e.g., Ψ0j i ¼
x ¼ 0 #y
�� E

for Hi
F θi1;π
� �

. The situation in scenario (b) is

slightly more complicated. We first initialize the system in

the state x ¼ 0 "j i. Then, we perform a full quantum walk
step with the parameters (π, π/2); finally, we perform an
additional spin rotation along the σ2 axis with an angle π/2
(see Fig. 3c). In this way, the system is prepared in the
state �1 "j i � i 0 #j ið Þ= ffiffiffi

2
p

, which, in its momentum space
representation, corresponds to a superposition including
all of the single-particle states in the lower band of the
nontrivial flat-band Hamiltonian Hi

F π; θi2
� �

. Case (c) is
important for effectively realizing quantum quenches
between two inequivalent nontrivial Hamiltonians Hi

F and
HF in the equivalent many-body problem and for a
quantum quench driven by a change of time frame. To
achieve an initial state corresponding to a nonflat-band
Hamiltonian, we start from a flat-band ground state
according to (a) or (b). Then, we perform an additional
step to adiabatically transfer the system into the ground
state of a general target Hamiltonian with the same phase,
which is always possible due to the finite energy gap.

Full state reconstruction
Our new platform for implementing quantum walks

allows us to access the full wavefunction, including the
phase information (see ref. 38 for a detailed discussion). In
brief terms, suppose that the system after t steps of the
quantum walk is in state |Ψt〉 (see Eq. 1). We then carry
out three steps to obtain the complex coefficients ψt(x, μ):
First, we perform a local projection measurement on the
spin for each site and obtain a count set S. Then, after
shifting all of the spin-up components a step backward
(by inserting an additional birefringent crystal), we per-
form a local projection measurement on the spin again
and obtain another count set ~S. Finally, based on a
simulated annealing algorithm, we carry out a numerical
global program to find an optimal state of the form given
in Eq. (1), which reproduces the two count sets S; ~S with
the largest probability. As the number of projection bases
equals 4(2N− 1), with N being the lattice size, which is
much greater than the number of independent variables
2(2N− 1) in the wavefunction in Eq. (1), we can sys-
tematically improve the rank of the target state and
monitor the decoherence in the experiment. With full
knowledge of |Ψt〉, i.e., both the amplitudes and phases of
the coefficients ψt(x, μ), we can readily obtain the wave-
function in the momentum representation by performing
a Fourier transform. Concretely, we perform a discrete
Fourier transform separately on the spin-up and spin-
down components and then renormalize the components
for each quasimomentum. The decoherence in our system
resulting in a degeneration of the purity can be estimated
by increasing the rank of the target density matrices (the
pure state situation corresponds to rank 1). The results for
the rank 2 scenario are shown in Fig. 2c.
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Measuring the Pancharatnam geometric phase
We now provide details on how the PGP, which is at the

heart of our present study, can be directly extracted from
our experimental data. We focus on the PGP ϕG

k associated

with a fixed lattice momentum k, defined via Gk tð Þ ¼
ψ0 kð Þjψt kð Þ� � ¼ rk tð Þeiϕk tð Þ with ϕk tð Þ ¼ ϕG

k tð Þ þ ϕdyn
k tð Þ.

Our direct observation of ϕG
k then results from the inde-

pendent observation of the total phase ϕk tð Þ and the

dynamical phase ϕdyn
k tð Þ of the time-evolved wavefunction

ψt kð Þ�� �
relative to the initial condition ψt 0ð Þ�� �

. The total
phase is an immediate result of the full-state tomography of
the time-evolved wavefunction. To isolate the dynamical

phase ϕdyn
k tð Þ, we expand the initial state ψt 0ð Þ�� � ¼

gk u�k
�� �þ ek uþk

�� �
in the eigenbases u±

k

�� �
of the final

Hamiltonian HF with ± ϵfk denoting the corresponding
eigenenergies. In this representation, the Loschmidt ampli-

tude takes the form Gk tð Þ ¼ gkj j2þ ekj j2� �
cos ϵfk t

� 	
þ

i gkj j2� ekj j2� �
sin ϵfk t

� 	
. By observing the amplitude and

phase of the oscillations of Gk tð Þ, we hence obtain

gkj j2� ekj j2� �
and ϵfk , respectively; see Fig. 2d. The acquired

gkj j2� ekj j2� �
and ϵfk determine the dynamical phase

ϕdyn
k tð Þ ¼ ϵfk t gkj j2� ekj j2� �

and thus the PGP ϕG
k tð Þ ¼

ϕk tð Þ � ϕdyn
k tð Þ. It should be noted here that to perform

such a fitting, we should sample the Loschmidt amplitude at
least over one period. Generally, without considering deco-
herence, we obtain a higher quality fit for a larger number of
time steps. To obtain a clear experimental signature of the
quantization of the DTOP and the transition between these
discrete values, we must ensure that the plateaus of the
constant value of the DTOP extend at least over a range of
three discrete time steps. While our system can support
much larger scale quantum walks38, to achieve a balance
between the experimental challenge and the clarity of the
phenomena, here we perform 10 full time steps, covering a
1.5 oscillation period, as shown in Fig. 2d, which are suffi-
cient for extracting the dynamical phase.
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