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Abstract
We recently reported that KO of Dual-specificity protein phosphatase 5 (Dusp5) 
enhances myogenic reactivity and blood flow autoregulation in the cerebral and 
renal circulations in association with increased levels of pPKC and pERK1/2 in 
the cerebral and renal arteries and arterioles. In the kidney, hypertension-related 
renal damage was significantly attenuated in Dusp5 KO rats. Elevations in pPKC 
and pERK1/2 promote calcium influx in VSMC and facilitate vasoconstriction. 
However, whether DUSP5 plays a role in altering the passive mechanical proper-
ties of cerebral and renal arterioles has never been investigated. In this study, we 
found that KO of Dusp5 did not alter body weights, kidney and brain weights, 
plasma glucose, and HbA1C levels. The expression of pERK is higher in the nu-
cleus of primary VSMC isolated from Dusp5 KO rats. Dusp5 KO rats exhibited 
eutrophic vascular hypotrophy with smaller intracerebral parenchymal arterioles 
and renal interlobular arterioles without changing the wall-to-lumen ratios. These 
arterioles from Dusp5 KO rats displayed higher myogenic tones, better distensi-
bility, greater compliance, and less stiffness compared with arterioles from WT 
control rats. VSMC of Dusp5 KO rats exhibited a stronger contractile capability. 
These results demonstrate, for the first time, that DUSP5 contributes to the regula-
tion of the passive mechanical properties of cerebral and renal arterioles and pro-
vide new insights into the role of DUSP5 in vascular function, cancer, stroke, and 
other cardiovascular diseases.
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1  |   INTRODUCTION

Dual-specificity protein phosphatase 5 (DUSP5) inactivates 
the extracellular signal-related kinase (ERK1/2) by dephos-
phorylating threonine/tyrosine residues (Alonso et al., 2004; 
Kidger & Keyse, 2016; Tonks, 2013). We previously reported 
that knockout (KO) of Dusp5 enhances myogenic reactivity 
and blood flow autoregulation in the cerebral and renal circu-
lations, which is associated with increased levels of phosphor-
ylated protein kinase C (pPKC) and ERK1/2 (pERK1/2) in 
the cerebral and renal arteries and arterioles (Fan et al., 2014; 
Zhang et al., 2019). In the kidney, improved hemodynamics in 
Dusp5 KO rats may contribute, at least in part, to the protection 
from hypertension-related renal damage (Zhang et al., 2019). 
The mechanisms by which activation of the PKC and mito-
gen-activated protein (MAP)/ERK (MEK) pathways in vascu-
lar smooth muscle cells (VSMCs) promotes vasoconstriction 
involve facilitating calcium influx—by alteration of the ac-
tivities of multiple ion channels, and enhancing actin–myosin 
interactions—by modulation of the expression and activities 
of their associated enzymes and proteins (Zhang et al., 2019).

Activation of PKC and MAP/ERK pathways has been 
reported to enhance cell proliferation (Chambard, Lefloch, 
Pouyssegur, & Lenormand, 2007; Gao et al., 2009). Inhibition 
of DUSP5 expression in human corneal epithelial cells in-
creased ERK1/2 phosphorylation and cell proliferation by 
50%–60% (Wang et al., 2010). In Dusp5 KO rats, we ex-
pected that the media of the vascular wall containing VSMCs 
would be hypertrophied, which would enhance the myogenic 
response. Surprisingly, although the afferent arterioles (Af-
arts), middle cerebral arteries (MCAs), and renal interlob-
ular arterioles (IAs) of Dusp5 KO rats exhibited enhanced 
constrictions in response to elevated transmural pressure, we 
found these vessels are not larger in calcium-free media com-
pared with those isolated from wild-type (WT) control rats 
(Fan et al., 2014; Zhang et al., 2019).

Changes in the passive mechanical properties of the vas-
cular wall also have a significant influence on myogenic 
reactivity and blood flow autoregulation. This study inves-
tigated the possible role of DUSP5 on vascular mechanical 
properties by comparing the sizes, incremental distensibility, 
circumferential wall strain, stress, and the elastic modulus of 
the intracerebral parenchymal arterioles (PAs) and renal IAs 
isolated from Dusp5 KO and WT rats.

2  |   MATERIALS AND METHODS

2.1  |  Animals

Experiments were carried out on 9- to 12-week-old male 
Dusp5 KO and WT rats that we previously generated (Fan et 
al., 2014; Zhang et al., 2019). All rats were bred and housed 

at the University of Mississippi Medical Center (UMMC) 
and were fed a standard diet (Harland) and water ad libitum 
throughout the studies. All procedures were approved by the 
Institutional Animal Care and Use Committee of UMMC. 
All rats related in this project (study rats, breeders, and extra 
pups that were euthanized) were weighed upon weaning at 
3-week of age, including 38 male and 55 female Dusp5 KO 
rats, as well as 60 male and 64 female WT control rats.

2.2  |  Drugs and reagents

All chemicals were purchased from Sigma-Aldrich. 
Physiological salt solution (PSS) contained 119 NaCl, 4.7 
KCl, 1.17 MgSO4, 1.6 CaCl2, 18 NaHCO3, 5 HEPES, 1.18 
NaH2PO4, and 10 glucose (in mM, pH7.4). Calcium-free phys-
iological salt solution (PSS0Ca) was identical to PSS except for 
the exclusion of CaCl2 and the addition of EDTA (0.03 mM), as 
we previously described (Fan et al., 2015, 2014, 2017, 2013).

2.3  |  Preparation of arterioles

In the morning on the day of the experiments, plasma glucose 
and HbA1C were measured using a Contour Next Meter System 
(Fisher Scientific, Waltham, MA) and Polymer Technology 
Systems A1CNow+™ Systems (Fisher Scientific) according 
to the manufacturer's instructions. The rats were then eutha-
nized with 4% isoflurane and weighed. The brains and kidneys 
were collected, weighed, and placed in a dish filled with ice-
cold PSS0Ca. A piece of the brain surrounding the MCA was 
removed and transferred to another dish filled with ice-cold 
PSS0Ca supplemented with 1% bovine serum albumin (BSA) 
for vascular dissection. PAs branching directly from the M1 
segment of MCA were carefully dissected (Cipolla, Chan, et 
al., 2014a; Cipolla, Sweet, et al., 2014b; Pires, Dabertrand, 
& Earley, 2016) under a microscope and mounted on glass 
micropipettes in a chamber filled with warmed (37°C), oxy-
genated (21% O2, 5% CO2, and 74% N2) PSS.

The kidneys were cut into 1-mm-thick slices, and a piece of 
the cortex was transferred to a dish filled with ice-cold PSS0Ca 
containing 1% BSA. Renal IAs upstream of Af-arts were dis-
sected under a stereomicroscope and mounted on glass micro-
pipettes in a chamber filled with warmed and oxygenated PSS.

2.4  |  Pressure myography

Intact cerebral PAs and renal IAs isolated from Dusp5 KO and 
WT rats were mounted on glass cannulas in a pressure myo-
graphy chamber (Living System Instrumentation) mounted on 
an IMT-2 inverted microscope (Olympus). The pressure was 
initially set to 10 mmHg for PAs and 60 mmHg for IAs and 
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vessels were equilibrated for 30 min to generate a spontane-
ous tone. Inner and outer diameters (ID and OD) in response 
to increases in intraluminal pressures (from 10 to 60 mmHg 
for PAs and 60 to 180 mmHg for IAs) were measured using 
a digital camera attached to the microscope. Perfusion pres-
sure was slowly increased from 10 to 60 mmHg for PAs in 
10  mmHg increments. For IAs, intraluminal pressure was 
slowly raised from 60 to 180 mmHg in a stepwise fashion.

At the end of the experiment, intraluminal pressure was 
reset to 5 mmHg, and the vessels were washed with PSS0Ca 
for 6–8 times. Inner and outer diameters under calcium-free 
conditions (ID0Ca and OD0Ca) of these arterioles were deter-
mined at 5 mmHg, 10–60 mmHg for PAs, and 60–180 mmHg 
for IAs as described above.

2.5  |  Calculation of structure parameters

The following vascular mechanical properties were cal-
culated using equations described previously (Baumbach, 
Heistad, & Siems, 1989; Briones et al., 2003; Cheng et al., 
2014; Dobrin, 1978; Gonzalez et al., 2005; Hudetz, 1979; 
Izzard et al., 2003):

where ID0Ca 5mmHg is inner diameters obtained at the perfusion 
pressure of 5 mmHg in PSS0Ca.

Incremental distensibility defines as the percentage 
change in the vascular ID0Ca for every 1 mmHg changes in P. 
Where P is the intraluminal pressure in PSS0Ca.

The circumferential wall strain defined as

where P indicates intraluminal pressure (1 mmHg = 133.4 Nm-2)  
under calcium-free conditions.

Arterial stiffness refers to the ability of arteries to re-
sist elastic deformation when subjected to pressure. It is 

determined by elastic modulus (E = σ/ε). This relationship 
is non-linear and appropriate to the exponential curve. Thus, 
an exponential model with least-squares analysis was used:

where σorig is σ at the original diameter at 5 mmHg. The slope of 
the curve (β value) was used to determine the tangential or in-
cremental elastic modulus (Einc), which is directly proportional 
to Einc. An increased β value indicated increases in stiffness.

2.6  |  Isolation of vascular smooth 
muscle cells

Primary VSMCs were isolated from WT (n = 3) and Dusp5 
KO (n = 3) rats, as described previously (Fan et al., 2017). 
Briefly, the cerebral and renal vessels were isolated using the 
Evans blue sieving procedure (Fan et al., 2015, 2013), and di-
gested with dithiothreitol (2 mg/ml, Sigma-Aldrich), papain 
(22.5 U/mL, Sigma-Aldrich), trypsin inhibitor (10,000 U/mL, 
Sigma-Aldrich), collagenase (250 U/mL, Sigma-Aldrich), 
and elastase (2.4 U/mL, Sigma-Aldrich) at 37°C. After cen-
trifugation, the VSMCs were resuspended and seeded on au-
toclaved glass coverslips precoated with CellTak (Thermo 
Scientific) in a six-well plate. Early passages (P2-P3) of the 
primary VSMCs were used for the following experiments.

2.7  |  Immunocytochemistry

Primary VSMCs were fixed with 3.7% paraformaldehyde 
(Thermo Scientific), and permeabilized with 0.1% Triton-100 
(Sigma-Aldrich), and blocked with 1% BSA. The cells were 
then incubated with the primary antibody p44/42 MAPK 
(ERK1/2; 1:50, #4696, Cell Signaling) or phosphor-p44/42 
MAPK (pERK1/2; 1:100, #4377, Cell Signaling), following 
by Alexa Fluor 555 or Alexa Fluor 488–labeled secondary 
antibodies (Thermo Scientific). The slides were coverslipped 
after dropping an anti-fade mounting medium with DAPI 
(Vector Laboratories). Images were captured using a Nikon 
C2 confocal microscope (Nikon), and the mean fluorescence 
intensities per cell were compared using NIS-Elements 
Imaging Software 4.6 (Nikon). Experiments were repeated 
three times, and triplicate wells were used at each experiment.

2.8  |  Cell constriction assay

The contractile capability of primary VSMCs isolated from 
WT versus Dusp5 KO was compared using a collagen gel-
based assay kit (Cell Biolabs) following manufactory instruc-
tion. Briefly, the VSMCs (2 × 106 cells/mL) were suspended in 
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the culture medium, mixed with collagen gel working solution, 
added in a 24-well plate, and incubated at 37°C for 2 days to 
develop contractile stress. The cell contraction was initiated by 
detaching the stressed matrix from the wall of the culture plate 
using a sterile needle. Percentage changes in the size of the col-
lagen gel were imaged at 30 min interval and analyzed using 
the NIS-Elements Imaging Software 4.6 (Nikon).

2.9  |  Statistical analysis

Data are presented as mean values ± standard error (SEM). The 
differences in the means between groups and the slopes of stress–
strain curves were compared using Student's t test. The signifi-
cance of differences in pressures–diameter relationships was 
analyzed using an analysis of variance (ANOVA) for repeated 
measures with multiple groups followed by a Holm-Sidak post 
hoc test using GraphPad Prism 6 (GraphPad Software, Inc.). A 
value of p < .05 was considered to be significant.

3  |   RESULTS

3.1  |  Effects of knockout of Dusp5 on body 
weights, brain and kidney weights, plasma 
glucose, and HbA1C levels

As presented in Figure 1a, there were no differences in body 
weight in both sexes of Dusp5 KO (males: 37.82 ± 1.39 g, 
n = 38; females: 38.05 ± 1.30 g, n = 55) versus WT (males: 
40.82 ± 0.80 g, n = 60; females: 37.86 ± 0.99 g, n = 64) rats 
when they were 3-week of age. Similarly, body weight was 
not different in male Dusp5 KO (285.79 ± 4.52 g, n = 34) 
versus WT (293.16  ±  3.44  g, n  =  49) rats when they were 
at 9–12 weeks of age (Figure 1b). Brain weight was not sig-
nificantly different between Dusp5 KO (1.68 ± 0.01 g, n = 14) 
and WT (1.70 ± 0.01 g, n = 11) rats (Figure 1c). There were 
no differences in kidney weight between Dusp5 KO (left kid-
ney: 1.12 ± 0.04 g, n = 26; right kidney: 1.07 ± 0.04 g, n = 8) 
and WT (left kidney: 1.19  ±  0.03  g, n  =  29; right kidney: 
1.12 ± 0.03 g, n = 10) rats (Figure 1d). Plasma glucose (Figure 
1e) and HbA1C (Figure 1f) levels were similar in 9- to 12-week-
old Dusp5 KO (106.86 ± 1.10 mg/dl, n = 7; and 4.37 ± 0.06%, 
n = 7, respectively) versus WT (104.00 ± 2.51 mg/dl, n = 7; 
and 4.36 ± 0.08%, n = 7, respectively) rats.

3.2  |  Effects of knockout of Dusp5 on the 
expression and localization of ERK and pERK 
in primary VSMCs

The expression of total ERK was similar in the nucleus and 
cytoplasm in primary VSMCs isolated from WT and Dusp5 

KO rats (Figure 2a,b). However, the expression of pERK was 
higher in the nucleus of primary VSMCs isolated from Dusp5 
KO rats (Figure 2a,c). The ratio of pERK/ERK was increased 
by 1.9 ± 0.1 folds (Figure 2d) in Dusp5 KO versus WT rats.

3.3  |  Effects of knockout of Dusp5 on 
vascular characteristics of cerebral PAs

Figure 3 demonstrates a comparison of vascular characteris-
tics of cerebral PAs between Dusp5 KO versus WT rats. ID0Ca 
(19.87 ± 2.2 μm) and OD0Ca (36.84 ± 3.7 μm) of PAs were 
smaller in Dusp5 KO rats at 5 mmHg intraluminal pressure than 
WT (28.63 ± 2.0 μm and 49.98 ± 2.5 μm, respectively). These 
differences remained at low pressures but were diminished at 
higher perfusion pressures (Figure 3a,b). Wall thickness and 
CSA of PAs were smaller in Dusp5 KO versus WT rats at per-
fusion pressures from 10 to 60 mmHg (Figure 3c,d), and there 
were no differences in the wall-to-lumen ratios between two 
strains at perfusion pressures from 5 to 60 mmHg (Figure 3e).

3.4  |  Effects of knockout of Dusp5 on 
vascular characteristics of renal IAs

As presented in Figure 4, vascular characteristics of renal IAs 
between Dusp5 KO versus WT rats were compared. ID0Ca 
(38.29 ± 3.2 μm) and OD0Ca (66.45 ± 3.8 μm) of IAs were 
smaller in Dusp5 KO rats at 5 mmHg intraluminal pressure 
than WT (59.98 ± 5.5 μm and 102.44 ± 6.8 μm, respectively). 
These differences remained at perfusion pressure from 60 to 
180 mmHg. The wall thickness and CSA of IAs were smaller 
in Dusp5 KO rats at perfusion pressures from 5 to 180 mmHg 
(Figure 4a,d). However, there were no differences in the 
wall-to-lumen ratios of IAs in both strains (Figure 4e).

3.5  |  Effects of knockout of Dusp5 on the 
myogenic tone of cerebral PAs and renal IAs

The myogenic tone of cerebral PAs and renal IAs isolated 
from Dusp5 KO versus WT rats is presented in Figure 4. 
Dusp5 KO rats exhibited a higher active tone in PAs at perfu-
sion pressures from 10 to 40 mmHg (Figure 5a) and in IAs 
at intraluminal pressures from 60 to 180 mmHg (Figure 5b).

3.6  |  Effects of knockout of Dusp5 on 
vascular distensibility and incremental 
distensibility of cerebral PAs and renal IAs

Dusp5 KO rats exhibited better distensibility in PAs at perfu-
sion pressures from 10 to 60 mmHg (Figure 6a), and greater 
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incremental distensibility in PAs at perfusion pressures from 
10 to 30 mmHg (Figure 6b). Similarly, Dusp5 KO rats exhib-
ited better distensibility and incremental distensibility in IAs 
at perfusion pressures from 120 to 180 mmHg (Figure 6c) 
and from 120 to 180 mmHg (Figure 6d).

3.7  |  Effects of knockout of Dusp5 on elastic 
modulus and vascular stiffness of cerebral 
PAs and renal IAs

The stress–strain relationships or the elastic modulus curves 
of PAs between Dusp5 KO (R2 = 0.95 ± 0.008, n = 6) versus 
WT (R2 = 0.98 ± 0.005, n = 6) rats were compared (Figure 
7a). The β value was significantly smaller in PAs of Dusp5 
KO (4.76  ±  0.43) than in WT (10.07  ±  1.9) rats (Figure 
7b). Similarly, by comparison of an elastic modulus curve 
of IAs (Figure 7c) between Dusp5 KO (R2 = 0.98 ± 0.008, 
n = 8) versus WT (R2 = 0.99 ± 0.004, n = 8) rats, we found 
that the β value was significantly smaller in IAs isolated 
from Dusp5 KO (8.48 ± 0.088) than WT (13.50 ± 1.54) rats 
(Figure 7d).

3.8  |  Effects of knockout of Dusp5 on VSMC 
contractile capability

The effects of knockout of Dusp5 on VSMC contractile capa-
bility are presented in Figure 8. The VSMCs isolated from the 
vasculature of Dusp5 KO rats exhibited a stronger contractile 
capability, and the gel size after 120 min of stimulation was 

maximally reduced by 26.6 ± 0.4% versus19.4 ± 0.3% com-
pared with cells isolated from WT rats.

4  |   DISCUSSION

DUSP5 is a nuclear protein, and it dephosphorylates the 
threonine/tyrosine residues of ERK1/2 to affect numerous 
cellular functions, which contributes to the pathogenesis 
in many diseases (Lake, Correa, & Muller, 2016; Mandl, 
Slack, & Keyse, 2005; Seternes, Kidger, & Keyse, 2019; 
Zhang et al., 2019). We previously reported that the my-
ogenic response and autoregulation of cerebral and renal 
blood flow (CBF and RBF) are enhanced in Dusp5 KO 
rats (Fan et al., 2014; Zhang et al., 2019). In this study, 
we compared the passive mechanical properties of intrac-
erebral PAs and renal IAs isolated from Dusp5 KO and 
WT rats. The results from this study are as follows: (1) 
there was no difference in body weights, kidney and brain 
weights, plasma glucose, and HbA1C levels between Dusp5 
KO and WT rats. (2) The expression of pERK is higher in 
the nucleus of primary vascular smooth muscle cells iso-
lated from Dusp5 KO rats. (3) Inner and outer diameters 
of PAs and IAs were smaller in Dusp5 KO versus WT rats. 
However, the wall-to-lumen ratios of these vessels were not 
significantly different. (4) Dusp5 KO rats exhibited higher 
myogenic tones in both PAs and IAs. (5) The incremental 
distensibility of PAs and IAs were greater in Dusp5 KO 
than WT rats. (6) PAs and IAs isolated from Dusp5 KO rats 
displayed greater compliance and less stiffness indicating 
by higher distensibility and incremental distensibility and 

F I G U R E  1   Effects of Knockout of Dual-specificity protein phosphatase 5 (Dusp5) on body weights, brain and kidney weights, plasma 
glucose and HbA1C levels. (a) Comparison of body weights in 3-week-old male and female Dusp5 KO versus WT rats. (b) Comparison of body 
weights in 9- to 12-week-old male Dusp5 KO versus WT rats. (c) Comparison of brain weights in 9- to 12-week-old male Dusp5 KO versus 
WT rats. (d) Comparison of kidney weights in 9- to 12-week-old male Dusp5 KO versus WT rats. (e) Comparison of plasma glucose levels in 
9- to 12-week-old male Dusp5 KO versus WT rats. (f) Comparison of HbA1C levels in 9- to 12-week-old male Dusp5 KO versus WT rats. Mean 
values ± SEM are presented. Numbers indicate the number of animals studied per group
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lower β values. (7) VSMC of Dusp5 KO rats exhibited a 
stronger contractile capability.

Arterioles are high resistance vessels in vascular beds. 
The most significant changes in blood pressure and blood 
flow occur at the transition of arterioles to capillaries indi-
cating these arterioles play a major role in blood flow au-
toregulation (Martinez-Lemus, 2012). The vascular smooth 
muscle cells (VSMCs) in the tunica media of the arteriolar 
wall are essential for the myogenic response to regulate blood 
flow (Fan et al., 2017). In the tunica intima layer, endothelial 
cells participate in the control of vascular permeability and 
reactivity by releasing vasoactive factors. Collagen in the in-
tima adventitia and media layers and elastin in the intima and 
media contribute to the regulation of flexibility and stiffness 
of the vasculature (Martinez-Lemus, 2012). In the brain, the 
large extracranial vessels (internal carotid and vertebral) and 
intracranial pial vessels provide  ~50% of cerebral vascular 
resistance as determined using a direct measurement of the 
pressure gradient across different segments of the cerebral 
circulation (Faraci & Heistad, 1990; Heistad, Marcus, & 
Abboud, 1978). It has been traditionally thought that small 

pial, penetrating, and parenchymal arterioles account for 
the remainder of autoregulation of CBF and the fine regula-
tion of capillary pressure (Federico et al., 2012; Iadecola & 
Davisson, 2008). In this study, the intracerebral PAs we used 
are the lenticulostriate branches of the MCAs, which provide 
blood supply to the frontoparietal white matter tracts and the 
basal ganglia in rats (Johnson & Cipolla, 2018; Pires et al., 
2016). Embolism of these vessels is the most common cause 
of ischemic stroke in humans (Navarro-Orozco & Sanchez-
Manso, 2019). We also studied the IAs, which are the cor-
responding resistance arterioles in the kidney. Resistance 
along the IAs and Af-arts accounts for the majority of the 
preglomerular pressure drop in the renal circulation and 
plays a major role in RBF autoregulation that protects fragile 
glomerular capillaries from elevations in systemic pressure 
(Imig, Zou, Ortiz de Montellano, Sui, & Roman, 1994).

We found there were no differences in body weights, brain, 
and kidney weights between 12-week-old Dusp5 KO and WT 
control rats. The inner and out diameters, wall thickness, and 
cross-sectional areas of PAs and IAs were smaller in Dusp5 
KO compared with WT rats. This finding is unexpected as 

F I G U R E  2   Effects of knockout of Dual-specificity protein phosphatase 5 (Dusp5) on the expression and localization of ERK and pERK 
in primary VSMCs. (a) Representative images of the expression and localization of total ERK and pERK in primary VSMCs isolated from WT 
and Dusp5 KO rats. (b) Quantitative analysis of fold changes in the mean red fluorescence intensity in VSMC of Dusp5 KO versus WT rats. (c) 
Quantitative analysis of fold changes in the mean green fluorescence intensity in VSMC of Dusp5 KO versus WT rats. (d) Quantitative analysis 
of fold changes in pERK/ERK in VSMC of Dusp5 KO versus WT rats. Primary VSMCs were isolated from three rats of each strain. Experiments 
were repeated three times, and triplicate wells were used at each experiment. * indicates p < .05 from the corresponding value in Dusp5 KO versus 
WT rats
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the activation of the PKC and ERK pathways is thought to 
enhance cell proliferation (Chambard et al., 2007; Gao et al., 
2009). Inhibition of DUSP5 expression in human corneal 
epithelial cells increased ERK1/2 phosphorylation, and cell 
proliferation by 50%–60% (Wang et al., 2010). Dusp5 KO 
mice enhanced ERK activity in eosinophils by upregulation 
of antiapoptotic BCL-XL and prolonged eosinophil lifespan 

(Holmes, Yeh, Yan, Xu, & Chan, 2015). However, there is 
certainly no evidence that loss of DUSP5 alone causes an 
increase in cell proliferation in either skin cancer or in mouse 
embryo fibroblasts in Dusp5 KO mice (Rushworth et al., 
2014). Our previous results also demonstrated that 10-week-
old Dusp5 KO rats had similar inner diameters of Af-art, 
and the sizes of MCAs were not different in 9–12 weeks KO 

F I G U R E  3   Effects of Knockout 
of Dual-specificity protein phosphatase 
5 (Dusp5) on vascular characteristics of 
cerebral PAs. (a) Comparison of ID0Ca 
of PAs of Dusp5 KO versus WT rats. (b) 
Comparison of OD0Ca of PAs of Dusp5 KO 
versus WT rats. (c) Comparison of wall 
thicknesses of PAs of Dusp5 KO versus WT 
rats. (d) Comparison of cross-sectional areas 
(CSA) of PAs of Dusp5 KO versus WT rats. 
(e) Comparison of the wall-to-lumen ratios 
of PAs of Dusp5 KO versus WT rats. All 
rats studied were 9- to 12-week-old males. 
Mean values ± SEM are presented. N = 4–8 
rats per group. * indicates p < .05 from the 
corresponding value in Dusp5 KO versus 
WT rats

F I G U R E  4   Effects of Knockout 
of Dual-specificity protein phosphatase 
5 (Dusp5) on vascular characteristics of 
cerebral IAs. (a) Comparison of ID0Ca 
of IAs of Dusp5 KO versus WT rats. (b) 
Comparison of OD0Ca of IAs of Dusp5 KO 
versus WT rats. (c) Comparison of wall 
thicknesses of IAs of Dusp5 KO versus WT 
rats. (d) Comparison of cross-sectional areas 
(CSA) of IAs of Dusp5 KO versus WT rats. 
(e) Comparison of the wall-to-lumen ratios 
of IAs of Dusp5 KO versus WT rats. All rats 
studied were 9- to 12-week-old males. Mean 
values ± SEM are presented. N = 8–11 
rats per group. * indicates p < .05 from the 
corresponding value in Dusp5 KO versus 
WT rats
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compared with WT controls, interestingly, IAs were smaller 
in the KO rats when they were 24 weeks old (Fan et al., 2014; 
Zhang et al., 2019).

DUSP5 has a half-life of 45 min and can be rapidly de-
graded by the proteasome (Kucharska, Rushworth, Staples, 
Morrice, & Keyse, 2009). In this study, we found that the ex-
pression of pERK is higher in the nucleus of primary VSMC 
isolated from Dusp5 KO rats. In the nucleus, DUSP5 not only 
inactivates ERK1/2 but also anchors ERK1/2, which was re-
ported to paradoxically enhance cytoplasmic ERK activity in 
cancer via reduced ERK-mediated RAF inhibition (Bellou et 
al., 2009; Kidger & Keyse, 2016; Kidger et al., 2017). On the 
other hand, activation of cytoplasmic ERK also facilitates nu-
clear translocation (Kidger et al., 2017; Mebratu & Tesfaigzi, 
2009). Cytoplasmic ERK is anchored by an associated phos-
phatase, MEK, and microtubules (Fukuda, Gotoh, & Nishida, 
1997; Reszka, Seger, Diltz, Krebs, & Fischer, 1995). Nuclear 
ERK activation promotes cell proliferation by enhancing 
cell cycle regulatory protein activities and posttranslational 
modifications to increase prosurvival gene function and re-
duce cell death (Mebratu & Tesfaigzi, 2009). ERK activa-
tion also has been reported to play a role in cell death. For 
example, ERK activation induced by DNA damage agents, 
IFNγ, or Fas causes cell death or apoptosis. However, the 
underlying mechanisms remain poorly understood, and the 
evidence to support this view is less well studied (Mebratu 
& Tesfaigzi, 2009). Nevertheless, ERK1/2 activation can in-
volve both cell proliferation or apoptosis, depending on its 
localization, cell type, and physiological and pathological 
conditions that may involve different sets of ERK effectors 
(Mebratu & Tesfaigzi, 2009). A good example is that the 
expression of BCL-XL has no changes in Dusp5 KO mice, 
using a microarray (Rushworth et al., 2014), although it was 

upregulated in eosinophils in another study (Holmes et al., 
2015). Other mechanisms involved in the role of DUSP5 on 
cell proliferation or apoptosis also cannot be excluded, as this 
protein has tumor activator or suppressor function in differ-
ent types of cancers (Montero-Conde et al., 2013; Pratilas et 
al., 2009; Rushworth et al., 2014; Shin, Park, & Kang, 2013; 
Ueda, Arakawa, & Nakamura, 2003; Wang et al., 2019; Yun 
et al., 2009).

An interesting previous study (Fu, McKnight, Yu, 
Callaway, & Lane, 2006) demonstrated that intrauterine 
growth retardation reduced hepatic DUSP5 and enhanced 
phosphorylation of ERK1/2 and the insulin receptor sub-
strate-1 (IRS-1), which contributes to insulin resistance (Fu 
et al., 2006). We found there was no difference in BW be-
tween Dusp5 KO and WT control rats at 3 and 9–12 weeks 
of age. In addition, plasma glucose and HbA1C levels were 
similar and in the normal ranges in 9–12 weeks old Dusp5 
KO in comparison with WT control rats, suggesting KO of 

F I G U R E  5   Effects of Knockout of Dual-specificity protein 
phosphatase 5 (Dusp5) on the myogenic tone of cerebral PAs and renal 
IAs. (a) Comparison of the myogenic tone of PAs of Dusp5 KO versus 
WT rats. (b) Comparison of the myogenic tone of IAs of Dusp5 KO 
versus WT rats. All rats studied were 9- to 12-week-old males. Mean 
values ± SEM are presented. N = 4–11 rats per group. * indicates 
p < .05 from the corresponding value in Dusp5 KO versus WT rats

F I G U R E  6   Effects of Knockout of Dual-specificity protein 
phosphatase 5 (Dusp5) on vascular distensibility and incremental 
distensibility of cerebral PAs and renal IAs. (a) Comparison of the 
distensibility of PAs of Dusp5 KO versus WT rats. (b) Comparison of 
the incremental distensibility of PAs of Dusp5 KO versus WT rats. (c) 
Comparison of the distensibility of IAs of Dusp5 KO versus WT rats. 
(d) Comparison of the incremental distensibility of IAs of Dusp5 KO 
versus WT rats. All rats studied were 9- to 12-week-old males. Mean 
values ± SEM are presented. N = 4–11 rats per group. * indicates 
p < .05 from the corresponding value in Dusp5 KO versus WT rats
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Dusp5 unlikely induces insulin resistance or hyperglycemia 
in this study.

Alteration of vessel sizes can change the proportion of 
components of the vascular wall, which determine the me-
chanical properties that influence the response of the myo-
genic reactivity and autoregulation. In this study, the size of 
PAs and IA was smaller in Dusp5 KO compared with WT 
rats. This was associated with increased distensibility and 
incremental distensibility in cerebral PAs and renal IAs of 
Dusp5 KO versus WT rats. The elastic modulus curves were 
shifted to the right, and the slopes or β values were smaller 
in the vessels isolated from Dusp5 KO than WT rats. These 
results suggest that arterioles in Dusp5 KO are more compli-
ant and distensible with less stiffness than WT control rats.

It has been reported that Dusp5 is a vascular endotheli-
al-specific gene in zebrafish (Pramanik et al., 2009; Qian 
et al., 2005; Sumanas, Jorniak, & Lin, 2005) and humans 
(Alleboina et al., 2019). DUSP5 is expressed in angioblasts, 
and it plays an essential role in embryonic vascular devel-
opment. Downregulation of this protein promotes endothe-
lial apoptosis in zebrafish (Pramanik et al., 2009) but not 

in humans (Alleboina et al., 2019). In mice, knockdown of 
DUSP5 impaired postischemic angiogenesis in association 
with increased limb necrosis (Alleboina et al., 2019). We 
have reported that DUSP5 is expressed in renal and cerebral 
vasculatures in rats; however, the vascular cell specificity of 
expression of DUSP5 has not been well studied (Fan et al., 
2014; Zhang et al., 2019). Arteriolar intrinsic passive me-
chanical properties influence vascular elasticity and stiffness 
that have major effects on stretch and shear stress-induced NO 
production by vascular endothelial cells (Sriram et al., 2012). 
On the other hand, the myogenic response, as an intrinsic 
property of VSMCs, is modulated by the endothelia under 
different genetic, physiological, and pathological conditions 
by releasing various vasoactive factors (Fan et al., 2016; Fan 
& Roman, 2017). Although we found that VSMC of Dusp5 
KO rats exhibited a stronger contractile capability, which is 
consistent with our previous findings that the myogenic re-
sponse is enhanced in Dusp5 KO rats, the underlying mech-
anisms are still not elucidative with regards to how DUSP5 
enhances myogenic response and blood flow autoregulation 
demonstrated in our previous studies (Fan et al., 2014; Zhang 
et al., 2019). The observations in the current studies provide 
a piece of new information to better understand the potential 
mechanisms.

In summary, this study first time demonstrates that 
DUSP5 contributes to the regulation of passive mechanical 
properties of cerebral and renal arterioles. KO of Dusp5 
did not alter body and organ (brain and kidney) weights and 
did not induce insulin resistance or hyperglycemia. Dusp5 

F I G U R E  7   Effects of Knockout of Dual-specificity protein 
phosphatase 5 (Dusp5) on the elastic modulus and vascular stiffness 
of cerebral PAs and renal IAs. (a) Comparison of the elastic modulus 
(stress–strain relationships) of PAs of Dusp5 KO versus WT rats. (b) 
Comparison of the slopes of the elastic modulus curves (β value) of 
PAs of Dusp5 KO versus WT rats. (c) Comparison of the stress–strain 
relationships of IAs of Dusp5 KO versus WT rats. (d) Comparison of 
the β values of IAs of Dusp5 KO versus WT rats. All rats studied were 
9- to 12-week-old males. Mean values ± SEM are presented. N = 4–11 
rats per group. * indicates p < .05 from the corresponding value in 
Dusp5 KO versus WT rats

F I G U R E  8   Effects of knockout of Dual-specificity protein 
phosphatase 5 (Dusp5) on VSMC contractile capability. Comparison 
of the contractile capability of primary VSMC isolated from the 
vasculature of Dusp5 KO versus WT rats. Representative images after 
120 min stimulation are presented as the insertion. Experiments were 
repeated three times, and triplicate wells were used at each experiment. 
* indicates p < .05 from the corresponding value in Dusp5 KO versus 
WT rats
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KO rats exhibited eutrophic vascular hypotrophy in intra-
cerebral parenchymal arterioles and renal interlobular arte-
rioles. These arterioles of Dusp5 KO rats displayed higher 
myogenic tones, greater distensibility and compliance, and 
less stiffness compared with arterioles of WT control rats. 
These results provide new insights into role of DUSP5 in 
vascular development, cancer, stroke, and other cardiovas-
cular diseases.
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