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Abstract
Many biologists are interested in teaching computing skills or using
computing in the classroom, despite not being formally trained in these
skills themselves. Thus biologists may find themselves researching how to
teach these skills, and therefore many individuals are individually
attempting to discover resources and methods to do so. Recent years have
seen an expansion of new technologies to assist in delivering course
content interactively. Educational research provides insights into how
learners absorb and process information during interactive learning. In this
review, we discuss the value of teaching foundational computing skills to
biologists, and strategies and tools to do so. Additionally, we review the
literature on teaching practices to support the development of these skills.
We pay special attention to meeting the needs of diverse learners, and
consider how different ways of delivering course content can be leveraged
to provide a more inclusive classroom experience. Our goal is to enable
biologists to teach computational skills and use computing in the classroom
successfully.
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Introduction
Biology departments are increasingly offering or considering 
course work that incorporates hands-on computation (Wilson 
Sayres et al., 2018). There are different rationales for courses 
that include computation. Perhaps the most obvious rationale is 
to teach computational biology, bioinformatics, and/or skills in 
working with large datasets. Bioinformatic skills are increasingly 
a core component of biology and biology education, and support 
students’ job and/or graduate school preparation (Wilson Sayres 
et al., 2018). The vast majority of researchers in biology either 
use large datasets or could do so with sufficient training, sug-
gesting that general training in effective use of large datasets 
is essential for students as well (Barone et al., 2017; Loman & 
Watson, 2013). Thus, in such courses, instructors teach particu-
lar skills or tools that are an integral part of the field. An alternate 
motivation is to incorporate more data and analysis into course 
work. Integrating data into courses provides more opportunity 
for students to experience the research process, and the ability 
to incorporate active learning activities where students recog-
nize biological theories by drawing conclusions from their own 
results (Kjelvik & Schultheis, 2019). Another rationale for teach-
ing computational skills is to increase data literacy (Gibson & 
Mourad, 2018), which, in addition to enhancing learners’ prepa-
ration for future careers, also better prepares learners to think 
critically about societal issues relevant to science and policy 
(Cook et al., 2014).

However, there are significant barriers to teaching hands-on com-
putation in biology classrooms (Williams et al., 2017). While 
many biologists use computation in their research, relatively 
few have explicit training in this area. Fewer still have training 
in how to teach computation (Williams et al., 2017). Importantly, 
few biologists are housed in a department with the existing exper-
tise or infrastructure for teaching computation (Williams et al., 
2017); thus, there is often less familiarity with options for teaching 
computing or recent best practices. Cummings & Temple (2010) 
describe the challenges in teaching bioinformatics as “infrastruc-
ture and logistics; instructor knowledge of bioinformatics and 
continuing education; and the breadth of bioinformatics, and 
the diversity of students and educational objectives.” Williams 
et al. (2017) similarly cites faculty training, infrastructure, and 
student interest and preparation. Here our goal is to address 
issues of infrastructure and logistics, and make recommenda-
tions for faculty practice. We suggest that those seeking training 
consider programs such as Software and Data Carpentry work-
shops to address the issue of faculty training. This article explains 
options available for instructors to teach computational course 
content (collectively referred to here as computing platforms), 
discusses how to choose the best computing platform for a 
course, and describes effective strategies for teaching coding and 
data analysis.

An important consideration is that whichever technology an 
educator uses to deliver their content supports the educator’s 
learning objectives and enhances students’ ability to learn. Every 
course has a unique set of learning objectives, and every group 
of learners poses a unique set of challenges. Such learning objec-
tives related to computing may range from engaging students in 

the value of basic coding skills to building advanced skills and 
the ability to self-teach and work independently. An example of 
the former might include a freshman introductory biology lab 
focusing on data analysis, where students focus on the results 
from the data analysis. In contrast, an upper-division course on 
research methods may focus more on preparing students for 
independent data analysis by emphasizing self-sufficiency in 
coding, and software management and installation. Addition-
ally, the selected platform needs to support the type of work the 
students are doing. In the first example, students might need to 
learn to make appropriate plots to visualize biological data; thus, 
the platform students work with needs to have the capacity to 
display plots. On the other hand, if a course objective is for stu-
dents to learn to manage genome-scale data on a remote server, 
a platform using a command-line interface to access a computing 
cluster may be more appropriate.

Much as a biology laboratory course requires specific labora-
tory equipment, teaching computation requires learners to be 
able to access specific software and functions. This may range 
from one or a few pieces of software that can be downloaded 
from the internet to installation of a computing language and 
development environment. For simplicity, the interfaces used by 
learners and the instructor should be uniform, as different versions 
of software could have different interfaces or commands. Learn-
ers also need a way to compute outside of class — for example, 
to do the homework outside class hours. Finally, the computing 
platform should allow students to focus on the coursework and 
instruction. The learning platform must not interfere with students’ 
focus on the learning objectives.

Another consideration is the consistency and scaffolding in 
selecting tools and/or the larger platform. Gibson & Mourad 
(2018) cites the need for “coordinated, sequential development 
of data literacy across the biology curriculum”, which suggests 
the value of a platform and tools on which students can scaffold 
their skills, rather than each course choosing its own tool. For 
example, students would likely find it challenging to use R in one 
class, Python in another (Wu & Anderson, 1990), and a genom-
ics platform such as Galaxy in another. Furthermore, switching 
languages and platforms (i.e. learning a new skill set) can detract 
from time spent on other educational activities when the goal is 
not to explicitly teach the language or platform.

Every choice of computing platform comes with costs and ben-
efits. In this article, we will discuss tools and techniques to 
facilitate teaching computation in courses with some degree of 
programming or data analysis. We explain different comput-
ing platforms with a special eye towards serving diverse sets 
of learners, in terms of their motivations, life experiences, and 
access to technology. In particular, we will focus on program-
ming languages that are common in biology: R and Python. Lastly, 
we review effective pedagogical techniques for helping learners 
thrive in a computational classroom.

Choice of computing language
One of the first choices an instructor needs to make when they 
plan coursework is what computing language to use. In biology, 
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R and Python are common languages. Bash, a type of UNIX 
command-line language, is commonly used to run software and 
automate tasks. There are multiple considerations to take into 
account for this choice, including consistency, current status of 
research tools, and comfort. Consistency refers to consistency 
of the language’s use throughout the curriculum. Switching lan-
guages can be associated with learning loss in novices (Wu & 
Anderson, 1990). Therefore, in order to deepen and strengthen 
learners’ command of languages, integrating the same language 
consistently throughout the curriculum may be helpful. For 
example, if an instructor is integrating a computational com-
ponent into a genetics lab, they might check with a colleague 
teaching biostatistics or bioinformatics to see what language 
they are using.

The current status of research tools is also worth considering. 
If the goal of a course is for learners to understand both biology 
and computation, the instructor will want to choose a language 
with active development of tools for research in that field. For 
example, many genomics and phylogenetics tools are written in 
Python. On the other hand, more ecological and comparative biol-
ogy tools are written in R. Therefore, the choice of language will 
inform the subset of tools available to the instructor and 
the learners.

Finally, instructors should consider their own comfort. Teaching 
requires fluent and comfortable discussion of concepts and tools. 
Instructor knowledge must factor in to this. Additionally, com-
munity resources exist for some languages. For example, QUBES 
is a National Science Foundation-sponsored (NSF) project that 
publishes lessons and sponsors instructor mentoring groups 
in various scientific disciplines. An instructor may feel more 
empowered to teach well if there is a strong sense of community 
in their language, with pathways to ask for help and access 
resources.

It is also worth noting that not all tasks that are computational 
necessitate the addition of programming into the curriculum. 
For example, tools such as the NSF-sponsored Galaxy project 
allow instructors to help learners run bioinformatics and genom-
ics software via a point-and-click internet interface. If the goal 
of a course is to demonstrate answering a particular question, 
but not to dig too deep into the methodology of how that is done, 
this type of interface may be sufficient. Teaching with these 
resources is beyond the scope of this article, as the Galaxy web-
site provides extensive resources for teaching, and trainers provide 
regular workshops on this tool.

The R language allows inexperienced learners to immediately 
work with rectangular (i.e. spreadsheet-style) data in a way 
that is engaging. For example, a learner can load data and plot 
results within an hour of first opening RStudio. This engagement 
is important for learners who are more interested in effectively 
working with data than learning to code. We suggest that the R 
language immediately supports coding-to-learn with minimal 
learning-to-code. In particular, the tidyverse set of packages pro-
vided by RStudio provides convenient, well-supported, and intui-
tive functions for plotting and manipulating data. Bioconductor 

(Huber et al., 2015) has a wide variety of packages related to 
genomic data, as well as tutorials for this use, while other pack-
ages such as ape (Paradis & Schliep, 2018) provide resources for 
specific tasks such as reading and viewing phylogenies, and many 
other packages are available with easy-to-follow vignettes.

Python is a general purpose programming language used in 
a wide variety of industries and can be adapted to many pur-
poses. For example, the popular data science library Pandas 
(McKinney, 2010) can be used for teaching foundational data 
skills. Python also has a variety of resources for teaching work 
with non-spreadsheet data. BioPython is a library for working 
with general sequence datasets at a variety of scales (Cock et al., 
2009). More specialized libraries, such as Poretools (Loman & 
Quinlan, 2014) (for Nanopore data) or Dendropy (Sukumaran & 
Holder, 2010) and ETE3 (Huerta-Cepas et al., 2016) (for phy-
logenetic trees), are also available for work in subdisciplines of 
biology and bioinformatics.

Depending on the aims of the class, it may be necessary to 
choose a supporting language, as well. For example, in con-
trast to a coding-to-learn course in which biology students prac-
tice drawing conclusions from data, a course on genomics might 
require students to interact with large datasets on a remote server. 
Many such servers require a UNIX command line to access. 
While this article will focus on R and Python, some instructors 
may find that they need additional languages to support student 
learning, particularly in advanced disciplines. Furthermore, 
while we suggest focusing on a single language for pedagogi-
cal reasons, and highlight R and Python, our goals in choos-
ing a language are (1) to select one that is widely used with 
available tools, and (2) has straightforward syntax for novices 
(Stefik & Siebert, 2013). We support the philosophy taken by 
the Software Carpentry organization of using any language 
that meets these goals and provides a platform for learning the 
fundamental process of automating data analysis.

Local computing platforms
Local installs on personal computers
Perhaps the most basic computing platform setup is to have learn-
ers install languages and software locally on their own com-
puters. Local installs may work best in small classes that focus 
on the basics of coding, where the goal is for learners with no 
prior experience to leave the course self-sufficient to do com-
putational work. R is easily downloaded and installed from the 
R-Project website. RStudio provides a commonly-used inte-
grated development environment (IDE) that allows management 
of additional packages and visualization of data and figures. The 
Anaconda installation of Python provides the programming lan-
guage, as well as the Jupyter notebook environment for simul-
taneously viewing code and output, and the ability to run code 
in blocks. The Anaconda installation also provides the conda 
package manager for installation of additional packages.

Advantages of local installs. Local installs allow learners to 
immediately be able to apply their new knowledge of code out-
side the class without additional support. For learners who 
are already familiar with their own computers and operating 
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systems, having students use local installs can bypass some of 
the learning curve associated with learning a completely dif-
ferent platform; this also applies for instructors, who often have 
limited time to devote to learning a new platform exclusively for 
the purpose of teaching a course.

If the software used in class does not require a paid license or 
subscription, learners will continue to have access to the spe-
cific tools used in class after the course ends. Teaching learn-
ers with tools that they know they will be able to take away with 
them and apply in the future increases learner motivation to 
learn these tools, and increases the chance that they will actually 
use them in future work (Kember et al., 2008).

Local installs are a solution in particular for smaller institu-
tions that do not have access to remote computing platforms. In 
some cases, though setting up a computing platform may be 
theoretically possible, it may not be feasible within the con-
straints of resources, time, and IT personnel. Local installs offer 
an alternative system that does not typically require extensive 
coordination with IT personnel at an institution.

Challenges of local installs and how to overcome them. While 
using local installs can minimize time spent learning new plat-
forms, it may also extend the initial time spent setting up 
learners’ computers for the course – namely, with language 
and software installation. The feasibility of using local installs 
may thus be limited in many cases by class size. This up-front 
time can be minimized by having learners complete as much 
installation as possible before the course begins using detailed 
instructions or videos available on the software developers’ 
websites or provided by the instructor. For example, Data Car-
pentry provides installation instructions as part of its workshops 
and the University of British Columbia provides installation 
information to support its Data Science courses. However, some 
guidance may be necessary either during class or individually. 
In addition, troubleshooting installs on various platforms can be 
challenging, especially with a larger class working on a wider 
variety of computers. In some cases, software may not be avail-
able for a particular platform (e.g. RStudio on Chromebooks). 
Further, if learners have previously installed a particular lan-
guage, IDE, or package, they may have a different version than 
that used in class, which may complicate analyses later. This 
issue would present less of a problem in classes that primarily 
cover the foundations of coding, and/or with learners who have 
little to no prior experience.

In classes that have learners do analytical work requiring sub-
stantial computational power, learners may not have comput-
ers that are able to do that work. Some learners may not have 
computers at all. For these reasons, local installs may not be the 
best option for a required course (i.e., if a learner must take the 
course regardless of whether or not they have a computer they 
can bring to class) or for a course where a substantial amount 
of time is spent on computationally intensive work. For elec-
tive courses, the instructor may choose to list a computer as 
required material for the course and make that information avail-
able to students during the class registration period. However, 

this requirement limits the learners who are able to take the class 
to those who have a computer to bring. With small classes, it may 
be possible to provide a computer to a learner who does not have 
their own, and the instructor should also ensure that the learner has 
access to a computer outside the classroom with necessary soft-
ware for homework. An alternative solution may be to hold the 
class in a computer lab, but installation of software in computer 
labs may require IT support, depending on the institution.

Single-board computers (SBCs)
Single-board computers (SBCs) are minimalist, complete comput-
ers built on a single circuit board. There are a number of organi-
zations in the single-board computer market, but they were first 
popularized by the Raspberry Pi Foundation. The most basic 
SBC models cost as little as $10 and offer WiFi, Bluetooth, 
and quite high-performance computing. Generally, a Linux dis-
tribution, such as Raspbian, is installed on a microSD card and 
run on these machines.

An SBC is not immediately useful on its own, because it does not 
have a monitor or input devices. However, these machines can 
be used (1) as a server, by logging in “remotely” from another 
machine via WiFi or wired connection — for example, using 
secure shell (SSH) protocol — or (2) as a standard Linux PC, by 
booting into the desktop environment and using attached input 
and output devices (e.g., monitor, keyboard, and mouse). Having 
learners use SBCs shares some similarities to using local installs, 
in the sense that the learners can run software installed on their 
own local machine. However, SBCs would ensure that all learn-
ers are using the same computing environment and have the 
same capabilities. Furthermore, SBCs can be used together with 
all the other computing platforms we discuss here.

Advantages of SBCs. Teaching with SBCs can be particu-
larly effective at an institution with limited IT support. Even in 
a classroom without reliable internet, the instructor can set up 
an SBC as a local network for sharing code and data among the 
learners. Thus, they can also be used in teaching environments 
not traditionally thought of as computing-friendly, such as in 
the field.

SBCs can be particularly good tools for teaching learners how 
to use remote Linux servers and HPC resources. Remote com-
puting can be an abstract concept for students with limited com-
putational background. Showing students how to “remotely” 
login from another computer to their SBC they have in-hand 
can make the idea of remote computing much more tangible. 
Furthermore, SBCs offer a way of teaching high-performance 
computing when such resources are not available. Even insti-
tutions with HPC facilities often do not support the use of these 
resources for teaching. On a very modest budget, an instructor 
can set up a shared, “mini” computing cluster to teach funda-
mental principles of HPC, such parallelization, message passing, 
and scalability.

One particularly exciting pedagogical opportunity presented 
by SBCs is the integration of tech and computation to cre-
ate biology curricula needed by students in the 21st century 
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(see Box 1). Imagine a scenario where all learners entering a 
program would receive an SBC along with some basic train-
ing on how to use it. Because SBCs allow direct access to the 
computing board and associated headers and ports, they are 
extremely modular, and can be coupled with many inexpen-
sive accessories for collecting data. For example, for as lit-
tle as $40, one can purchase an add-on board that includes a 
variety of sensors, including a gyroscope, accelerometer, mag-
netometer, temperature, barometric pressure, and humidity. 
Learners using these devices could collect observational or 
experimental data in the lab of their introductory biology class-
room. Then, in a lecture or discussion session, they could learn 
to use basic scripting to process, visualize, “clean,” and ana-
lyze those data. If an undergraduate or graduate curriculum was 
designed for the students to continue using their SBC, data, and 
scripts throughout their coursework, this could be a power-
ful approach to training the next-generation of computationally 
competent biologists. The development of such a curriculum 
goes far beyond the scope of what a typical teacher needs from 
a computing platform. Nonetheless, this aspirational idea is worth 
highlighting when discussing SBCs, because they can be used 
jointly with all the other computing platforms discussed in this 
paper.

Box 1. Diversity and Inclusion Callout Box 1

The low cost of high-performance, single-board computers 
(SBCs) can make the classroom more equitable. With a cost 
as low as $10 per computer, it requires minimal investment 
from learners, or, more ideally, increases the likelihood that an 
institution or funding agency can cover this cost. Using SBCs 
also ensures that all learners experience the same computing 
environment and capabilities. Furthermore, the low cost can 
allow the learners to keep the computer after the course is over. 
This can enable life-long learners across all socioeconomic 
backgrounds.

Disadvantages of SBCs. The initial setup of an SBC requires 
time and effort to install the Linux distribution on the microSD 
card. If the primary goal of the course is to use technology 
to teach biology, this work should be done by the instruc-
tor prior to the class. If the class is large, this would most likely 
require IT support to pre-install the operating system on many 
microSD cards. However, if any of the learning objectives 
of the course involve a better understanding of operating sys-
tems or computer hardware, turning the initial setup into an 
active-learning exercise done at the beginning of the class could 
be a very informative learning experience for the students.

Even after the initial setup, SBCs are not immediately use-
ful on their own. Learners require either another computer to 
login to the SBC via SSH, or peripherals (e.g., monitor, key-
board, and mouse) to use the SBC as a PC. By the time these 
peripherals are factored in, the total cost could become similar 
to an entry level laptop. However, the learners can benefit from 
the modularity of the SBC system. The peripherals can be 
re-used, and the students could keep the SBC itself. This is not 
possible with laptops.

When not used as a PC (i.e., without peripherals), using an 
SBC can be quite unintuitive for learners not familiar with 
the Linux command line. For example, it would be counter- 
productive to take the time necessary out of an introductory biol-
ogy class to teach learners to become proficient in using an SBC 
from the command line. While this weakness can be overcome 
by using the SBC as a PC, this option does require additional 
investment and logistics to provide the learners access to 
keyboards, mice, and monitor.

Cloud-based computing platforms
A number of platforms for serving course materials via the 
internet have become available. Because these technologies 
share many similarities, we will first discuss these computing 
platforms generally, then discuss teaching with R (such as with 
RStudio server, per RStudio Team (2015)) and Python (such as 
with JupyterHub, per Kluyver et al. (2016)) in the cloud.

Advantages of cloud-based computing platforms
Cloud-based systems typically provide a web interface to a cen-
tralized version of an IDE. This allows the instructor to set up a 
uniform instance for all learners, avoiding time spent sorting 
out problems, such as learners having different versions of lan-
guages or software installed. Learners can then focus on learning 
biology and/or working with data, rather than on managing 
technical details.

Cloud-based computing platforms also ensure that learners are 
not limited by their hardware or software. The instructor sets up 
the class software on a server, rather than the learners install-
ing software on their own personal machines, thereby avoid-
ing problems such as learners not having computers powerful 
enough to run exercises, or computers without the ability to do 
language installs (such as NetBooks). This can be especially 
important for serving students who have difficulty purchasing 
a personal laptop to bring to class (see Box 2).

Box 2. Diversity and Inclusion Callout Box 2

A local RStudio Server or JupyterHub reduces barriers to the 
use of R or Python and support underprivileged students by 
removing the requirement to have a laptop (a Chromebook or 
tablet is sufficient) and minimizes the frustration associated 
with installation and different operating systems. Students can 
access the server from any location via a web browser using any 
machine while experiencing a consistent interface and access to 
their code and data.

Many cloud-based computing platforms are agnostic to the type 
of machine on which they are run. For example, JupyterHub 
and RStudio Server can be deployed on any machine with Unix 
or Linux supported (RStudio Team, 2019). This machine can be 
owned by an instructor, a high-performance cluster (HPC) com-
puter operated by a university, or cloud computing resources 
rented by the instructor. The main considerations for choosing 
what type of machine to run a cloud-based computing platform 
are memory, storage, and access. For courses with low-memory 
tasks, such as data processing on small datasets, a single 
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machine may be sufficient, even with large numbers of users. 
For high-memory tasks (such as genome assembly), or tasks 
that with long runtimes (such as phylogenetic estimation), cloud 
compute resources that can be resized from week to week 
may be more suitable. For example, platforms such as Digital 
Ocean and Amazon Web Services allow users to pay for more 
memory only when needed. The server can be resized between 
class periods to allow more memory to be available to learn-
ers. This flexibility can allow an instructor to run a course on the 
resources they have available to them, based on their available 
infrastructure and funds.

Many faculty will require IT support to set up the server, espe-
cially if the server is used by a large population. However, in 
our experience once setup is complete, maintenance requires 
minimal time and having IT handle upgrades and additional 
users relieves faculty of some work. The size of the server 
required for even large numbers of students to do analyses can 
be quite minimal (e.g. just 4 cores for hundreds of students), 
provided they are conducting analyses of relatively small datasets 
(e.g. hundreds of samples).

Disadvantages of cloud-based computing platforms
While the cloud-based computing platforms are a flexible 
tool for teaching, there are some downsides. Because students 
typically interact with the server via a web-based login, if uni-
versity resources are to be used, instructional technology (IT) 
staff will typically want to be involved. Some universities do 
not allow public-facing servers to be operated by non-IT staff, 
which can limit instructors from using computers they have on 
hand to serve their coursework. Likewise, due to security con-
cerns, it may not be possible to operate a server on a university 
HPC. In this case, the instructor will likely have to turn to cloud 
compute providers. Many of these providers are affordable 
for small classes or low-memory tasks, but costs will scale with 
users, storage, and memory requirements.

These technologies do interact with the internet. Therefore, 
when problems arise in the classroom, the instructor must dis-
tinguish between problems with the server itself, with a learner’s 
computer, and with other classroom technology, such as wire-
less internet. While internet-based technologies can increase 
for equity and inclusion by allowing learners to interact with 
the course materials no matter how old their computer is, or 
if learners have unreliable computer access, they increase the 
complexity of diagnosing performance problems. Unstable inter-
net connections can cause many, if not all, members of the class 
to lose connection to the materials during class. Learners with 
individual computer problems, such as malfunctioning wireless 
cards, may need to borrow a computer to access materials. If the 
instructor is teaching without IT support, they may need to halt 
class and fix problems if the server itself is malfunctioning.

Additionally, because a server facilitates learners focusing on 
the data and analyses, rather than installation and troubleshoot-
ing, learners may leave class without the ability to work inde-
pendently outside the classroom. They have not learned how 
to install the programming language or IDE, and these are 

not installed on their personal computer. Additionally, they 
do not have or know how to install supporting packages. If the 
goal is for students to be equipped for independent work, the 
instructor should be sure to introduce these skills explicitly during 
the semester.

RStudio server
RStudio Server (RStudio Team, 2019) provides a web interface 
to a centralized version of the RStudio IDE for working with R 
code. By using RStudio learners are able to simultaneously view 
their script, environment variables, file structure, plots, installed 
packages, etc. The Server format allows the administrator 
to maintain a consistent version of R, RStudio, and installed pack-
ages. This approach allows beginning coders to focus on data 
and results, rather than worrying about installation and versions. 
It allows an instructor to be sure that learners can focus on their 
code without being limited by their hardware or software.

Some advantages of RStudio Server are that learners’ data and 
code are stored (and backed up) on the server. Instructors can 
also access a student’s code from anywhere to help students 
solve problems remotely. RStudio Server is free for teaching 
purposes upon submission of a syllabus to the RStudio Com-
pany. Additionally, for smaller scale teaching an instructor may 
use RStudio Cloud, which provides a free ready-to-go 
web-based version of RStudio.

JupyterHub
Project Jupyter is a non-profit organization that creates open-
source tools for computation. One of their most famous prod-
ucts is the Jupyter Notebook, which allows researchers to 
create interactive code documents. These documents can have 
text, images, and code cells that run and render output for inspec-
tion. The Jupyter Notebook was originally developed as the 
iPython notebook, but has since expanded to include language 
support for other popular languages such as R and Julia. A Jupy-
terHub is a server on which an instructor can deliver lessons 
via Jupyer Notebooks to a full classroom of students using 
a standardized server environment. In most cases, the server 
will be accessed via the internet. The first and foremost rea-
son to use a JupyterHub is that you want to teach with 
the Jupyter ecosystem of tools. The Jupyter Notebook is 
commonly used in education in the sciences. It allows the 
instructor to develop a set of instructional materials that include 
text, code, and images. In this way, detailed notes can be pro-
vided from the instructor to the learner, and the learner can aug-
ment these lessons with their own notes, annotations, and code. 
Though originally invented for use with Python, Jupyter Note-
books are compatible with a number of languages. Multiple 
languages can even be used in one notebook, making them 
ideal for use with multi-language pipelines. The JupyterHub 
also has a command-line terminal and the Git version control 
system installed, for more advanced courses.

Jupyter supports the R language. However, the interface for 
R in Jupyter is different than RStudio, a dominant way to inter-
act with R. Likewise, the JuptyerHub does not support other 
popular integrated development environments (IDEs), such 
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as Python’s Spyder. While there is a text editor for preparing 
scripts, and a command line to run scripts, the JupyterHub is 
really designed to serve Jupyter Notebooks, and the interface 
caters to this technology.

HPC and cloud
RStudio Server and JupyterHub will typically require that 
instances are hosted somewhere. This refers to having the com-
pute platform installed in a central location, at which it can 
be accessed by all students. It may be possible for an instructor 
to host their course platform on a computer or server they per-
sonally own. However, in the experience of the authors, many 
universities prohibit faculty from hosting servers on-campus that 
will be available off-campus due to security concerns with allow-
ing off-campus computers to access on-campus resources. This 
means that you may be able to host a server via the intranet, but 
if students go home for the weekend, or live off-campus, they’ll 
need to come back on to campus to do their homework.

These limitations cause many instructors to look for alternative 
ways to provide their course platforms to students. One com-
mon way is by working with a local high-performance cluster 
compute facility. A high-performance cluster computer is a set of 
computers that are networked. This allows researchers to harness 
the power of several computers at once. These facilities often 
also service educators. A benefit to serving course content via 
high-performance cluster computing is that these resources are 
often free for educators at the university where the computer 
resides. Because these services are often in-house, the admin-
istrators of them are able to handle any specialized security con-
cerns with the course platform. National level high-performance 
cluster computers, such as CIPRES (Miller et al., 2010), Jet-
Stream (Stewart et al., 2015; Towns et al., 2014) and CyVerse 
(Goff et al., 2011; Merchant et al., 2016) also offer resources 
for US institutions. For campuses with limitations on HPC 
use, IT may be able to set up an independent virtual machine 
on other existing university servers.

However, not every university has a high-performance clus-
ter computer that is set up to host coursework. In this case, an 
instructor may want to consider a cloud-based solution. The 
concept of a cloud-based solution is similar to using high- 
performance cluster computing. An educator can rent one or 
more computers to serve their coursework. Cloud comput-
ing can take several forms. In some cases, the instructor explic-
itly rents computers in sizes that are appropriate for their course. 
These types of services often charge by the number of comput-
ers, the size of the hard drive rented, the amount of memory on 
the computer, and the amount of time for which they will run. 
Examples of this type of service include Digital Ocean, Cloud 
Flare, Google Cloud, and Amazon Web Services. However, it 
is important to notet that if you are signing a contract for cloud 
services, it is prudent to check with your IT, legal, and purchas-
ing departments. Departments may have rules in place for stu-
dent privacy and data security, as well as for contract bids 
between providers.

Recently, educational cloud service providers have entered the 
market. Examples of these services include RStudio Cloud 
and Python Anywhere. These types of products are oriented 
towards providing an environment that is oriented towards a 
specific language or course platform. For example, RStudio 
Cloud hosts RStudio instances, and Python Anywhere hosts 
a variety of Python environments, including Jupyter notebooks. 
Like an regular cloud provider, these services typically charge 
based on the size of the amount of memory and storage capac-
ity of the computer needed. Being oriented towards educa-
tion, some of these providers also offer accounts for free, with 
paid accounts available for users who need more memory or 
computer power.

Bridging the gap between local and cloud-based 
approaches
Container software, such as Docker, Singularity, or Podman, 
offer a way to teach with the simplicity of local installs while 
utilizing the consistency of cloud-based computing platforms. 
Containers allow the instructor to create a standard comput-
ing environment that each student can work in on their own 
computer. Instead of having to install multiple tools that will be 
used in the course, the students would only have to install the 
container software (e.g., Docker, which is cross-platform), and 
then they can download and run the environment created by the 
instructor. The functionality is very similar to a virtual machine, 
but lighter-weight and more efficient. Containers can be eas-
ily updated and distributed with cloud-based services like 
DockerHub. This allows the instructor to update the students’ 
computing environment in real-time. Of course, this still has 
the same disadvantages discussed above of having students run 
analyses on their own computer.

Teaching methods
Designing an effective biology course that incorporates comput-
ing requires more than choosing the best computing platform 
for your needs. Skills-based courses such as coding necessi-
tate a unique approach to teaching that can differ in some ways 
from more commonly used pedagogy in content-based courses. 
For many learners, a biology course that involves hands-on 
computing may be their first classroom experience that heavily 
involves learning increasingly complex skills that build off of 
each other, rather than primarily learning content. And simi-
larly, instructors whose research and teaching expertise is in a 
field that is not strictly computational — which likely includes 
most instructors of biology — may benefit from guidance on 
best practices for delivering content effectively and addressing 
the unique challenges that arise. As a skills-based discipline, 
computation necessarily requires some level of active in-class 
interaction from learners (with the instructor or peers, or with 
the material itself). Thoughtful implementation of appro-
priate active learning strategies has been shown to increase 
both mastery of content and development of general skills 
such as critical thinking and collaboration (Faust & Paulson, 
1998). Below, we describe several strategies for teaching cod-
ing, and address challenges that instructors may face in teaching 
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a course that is perhaps more similar methodologically to 
math and foreign language than to other biology courses. We 
acknowledge that each section summarizes and simplifies a 
significant body of literature and encourage readers to pursue 
a deeper understanding of pedagogy elsewhere.

Example-based learning
Example-based learning has a long history in teaching cod-
ing, and consists of the instructor providing examples of how 
to solve a given problem using code. Sometimes, these exam-
ples are static and provided in a textbook or on slides. Other 
forms of example-based learning require the learners to actively 
engage with the code. An especially effective way to teach 
computational biology is to combine multiple forms of example- 
based learning (Renkl, 2014a). For example, an instructor 
might use all three methods detailed below: first show learners  
some written examples, perhaps in pre-reading for a class, 
then use live coding during class and have the learners  
follow along, and subsequently have learners complete a series of 
examples with increasing amounts of code that learners 
need to fill in during in-class problem sets or in homework 
assignments.

Written examples. Written examples are often a good start-
ing point to introduce learners to the concepts and structure of 
solutions. Written tutorials allow learners to go at their own 
pace. This ensures learners take the time they need. However, 
learners frequently skim over static written examples or skip 
formative assessment questions, confident that they under-
stand what the code is doing. Students may need to be required 
to critically evaluate the code to truly ensuring their understand-
ing. For this reason, written examples are most effective when 
integrated with other example-based learning methods 
(Renkl, 2014a).

Live coding. Live coding is a form of example-based learn-
ing in which learners watch the instructor solve problems and 
in most cases the learners follow along. The act of typing along 
forces learners to actively enter code, which is a hands-on ver-
sion of a worked example. This means the instructor must pro-
ceed at a reasonable pace that learners can follow. The instructor 
can stop and ask learners challenge questions as forma-
tive assessment to ensure that learners apply their knowledge 
immediately and question their own understanding. The instruc-
tor can also set up a problem, and pause to have learners figure 
out the rest of the exercise. This live coding approach has been 
popularized by Data Carpentry and similar coding workshops. 
Live coding can help teach aspects of programming that are 
not easily taught by viewing static code, such as incremental 
coding (writing a few lines and testing them) and debugging. 
From the perspective of the learners, live coding is generally pref-
erable to viewing static code, especially when learners are able 
to code along with instructors (Raj et al., 2018).

Disadvantages of live coding include that everyone goes at 
the same pace. This may be too fast for some and too slow for  
others. One possibility to alleviate these disadvantages is to flip 
the classroom and provide learners with pre-recorded live-coding 

experiences. The learners then come to class where they 
complete an exercise or a series of faded examples.

Faded examples. Faded examples are a form of example-based 
learning that can be more effective than static worked exam-
ples (Schwonke et al., 2009). Faded examples include sets 
of worked examples, beginning with a complete example. 
With each subsequent example, key problem solving steps are 
removed and learners must insert the steps themselves (Renkl, 
2014b). Faded examples have been demonstrated to require 
less learning time with potentially better learning outcomes 
(Schwonke et al., 2009).

In the context of teaching computation to biologists, faded  
examples are particularly facilitated by servers. For example, a 
Jupyter notebook containing faded examples may be made avail-
able to learners on the server. If learners successfully complete 
the code they will produce an expected outcome, thus allowing 
 for the learner to self-correct their work. Fillable Jupyter 
notebooks using the faded examples technique force learners 
to engage with the material and actively problem-solve. Fill-
able notebooks are particularly useful because they run the code 
and allow the learner to immediately discover if they produced 
the right answer. This type of immediate feedback allows the 
learner to work towards the correct answer, rather than turning in 
work that they believe to be correct and receiving a low grade on 
something they put time and effort into. An important 
component is providing learners with a solution set after they 
have had the opportunity to solve the faded examples so that they 
can see where they went wrong if they are unsuccessful.

Focusing on coding as problem-solving
One of the main skills underlying learning to code is learn-
ing how to solve problems. Writing code can be viewed as a 
method of communicating to the computer the precise steps of 
the analysis. In fact, code serves as a written record of the ana-
lytical steps, and is one that is instantly reproducible. When the 
learning outcomes are not necessarily tied to learners having full 
mastery of a specific language’s syntax, shorthand notation can 
be used to outline the steps the learner would take to get to the 
end result, removing the added layer of correct syntax and high-
lighting the importance of the problem-solving elements. This 
method, called pseudocode, can help learners logically scaf-
fold their thought process, and therefore their code, regard-
less of which language they will be coding in. Learners can be 
required to write the solution to their problem in pseudocode to 
demonstrate their thought process, and then use that pseudoc-
ode to write their code (e.g., Olsen, 2005). Courses may rely on 
pseudocode during timed exams to relieve exam stress. Note, 
however, that if learners are expected to interpret or elabo-
rate on pseudocode — especially in an exam setting — that the 
meaning behind each pseudocode term is clearly and 
unambiguously defined (Cutts et al., 2014).

Cooperative learning
Working in groups or pairs can result in numerous positive  
outcomes in the biological sciences, including enhancing  
scientific thinking and attitudes about biology, aiding in the 
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instruction and evaluation of course material, providing a bet-
ter understanding of practical skills and their applicability in 
real-world environments, improving reading, writing, and social 
skills, and supporting learning for a broader array of learn-
ers (reviewed in Lord, 2001). In the context of teaching compu-
tational biology, group projects and other forms of cooperative 
learning have frequently been used to facilitate example-based 
learning (e.g., Emery & Morgan, 2017; Fuselier et al., 2011; 
Korcsmaros et al., 2013). One creative cooperative learn-
ing teaching tool for computational biology is pairing learners 
up and having one student be the ‘driver’, who types in the code, 
and one be the ‘navigator’, who has to tell the driver what to 
type. This exercise forces learners to think carefully about the 
process of creating code. Even if learners are not expected to 
work through examples or produce a project in pairs or groups, 
cooperative learning can still be implemented by facilitat-
ing discussion and collaboration among learners. This can be 
done in class (e.g., through think-pair-share exercises, in which 
learners are encouraged to think about a problem individually, 
then discuss in pairs or small groups) or outside of class through 
discussion forums. For instance, learners could be encouraged 
or required to participate in discussions on the course website 
(e.g., Blackboard/Moodle) or a Slack workspace created for the 
class, or to do peer review of other learners’ projects. Learning 
from each other can be a powerful way to get learners engaged 
with the course work, and can solidify their understanding 
by having them teach each other (Treisman, 1992).

However, as most students and instructors know, group work 
can create problems and strife. Interpersonal issues within pairs 
or groups can hinder the learning process. Sometimes groups 
or pairs are unbalanced with regard to prior knowledge, speed 
of learning, or effort contributed to the project. Additionally, 
group size or composition can lead to an entire group struggling 
to succeed (e.g., Compeau, 2019). Therefore, although group 
projects are frequently used in computational biology and can 
be a useful tool, relying only on group-based projects for critical 
assessments in a course may not be the best solution.

Other challenges and tools
Incorporating computational biology into the classroom comes 
with additional challenges that may not be present in other 
biology courses. Many learners will have some prior biologi-
cal knowledge but have no experience with computer coding. 
This creates a situation where learners have many ques-
tions but often feel out of their comfort zone, or are simply 
uninterested in the computational components of the course mate-
rial. These factors combine result in a number of different chal-
lenges for instructors to help learners successfully navigate 
the computational side of a biology course.

Demonstrating value. The unfamiliarity of coding can some-
times lead learners to push back against the idea of learning to 
code. In our experience, demonstrating how coding can be a use-
ful tool for doing the same analysis multiple times (e.g., gener-
ate the same type of plot for different datasets) helps learners 
see the value in learning to code. This demonstration is espe-
cially powerful when the learners are enabled to discover the 

utility of coding on their own. For example, an instructor could 
provide students with a large dataset and encourage the learners 
to try basic analyses (e.g., producing summary statistics or 
basic plots) in both R and Excel. Particularly when learners 
have not opted into learning computational skills — for exam-
ple, when computational skills are incorporated into required 
biology classes — showing learners the value of saving future 
time and effort is very important.

Teaching how to ask for help. Not all learners will automati-
cally ask for help (see Box 3). As instructors, we need to encour-
age learners to seek our help when they are struggling. One 
method we have found successful is to provide learners with 
rewards for asking for help, such as an automatic extension on 
deadlines if learners attend office hours. Having knowledge-
able teaching assistants or support staff to circulate the class-
room and check on learner progress during in-class exercises is 
also helpful (see Box 3 for further notes on asking for help). In 
these cases, instructing the teaching support staff to first approach 
learners who do not have their hands raised will provide help to 
a larger proportion of the class, especially many learners who 
need the most help. To help learners signal that they need help, 
instructors can use a system that does not force students to 
stand out by raising their hands. For instance, Data Carpentry 
uses post-it notes to discreetly signal to instructors when learn-
ers need assistance. Incorporating live coding into lectures is 
another way to normalize asking for help; while live cod-
ing, instructors can demonstrate that errors are a natural 
part of coding, how to effectively search for solutions to 
problems, and how to look up syntax details.

Box 3. Diversity and Inclusion Callout Box 3

Asking for help is critical for learners to be able to overcome 
confusion, solidify their skills, and deepen their knowledge and 
understanding. However, cultural differences exist that may 
prevent learners from seeking help, even when they need it 
most. Universities in particular have the unspoken expectation 
that undergraduates will seek help when they need it, but 
people from some backgrounds will not necessarily know this, 
or may feel uncomfortable approaching their teachers, who 
are in positions of authority (Jack, 2016). Different cultures 
may perceive asking questions in class in different ways; some 
cultures view questions as a way to gain recognition, whereas 
others view questions as a demonstration of ignorance. The 
latter group are less likely to ask questions in class and thus 
do not receive either needed help or engagement with the 
instructor.

Large class sizes. For instructors who are looking to incor-
porate computational biology into large classes, such as in an 
introductory biology course, the prospect of testing and grad-
ing code turned in as assignments may be daunting. We have 
found that relying on knowledgeable TAs, support staff, and 
demonstrators is the best way to ensure that all learners receive 
the help that they need. Placing learners in pairs or small 
working groups (see the section on Cooperative Learning 
above) can also provide learners with support and feedback that 
will facilitate their learning, without placing the entire burden 
on instructors and TAs. Additionally, relying on IT support to 
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help manage the computing platforms can reduce the work-
load for the instructors. Furthermore, using assignments that 
can be automatically graded (e.g., mimir classroom) will help 
reduce the time teachers must spend grading.

Plagiarism. Writing code is more similar to math than to writ-
ing, as there is a correct answer (or perhaps several correct 
answers), and it can be difficult to detect whether learners  
arrived at that answer independently or through copy-
ing someone else’s solution. Plagiarism can be exacerbated 
by the common phenomenon of searching for solutions to 
a given problem online and copying or adapting posted solu-
tions without attributing proper credit (Gaspar & Langevin, 
2007). Some of the programs that grade code include plagia-
rism detection components (Pears et al., 2007), which can help 
instructors identify when plagiarism has occurred. One approach 
to ensure learners understand code is to require commented 
explanation of each component of their code, and ensure these 
comments are different for each learner. Requiring unique 
comments from learners has the advantage that it allows 
learners to be able to search for the functions and arguments to 
functions that are needed to implement their analytical work, 
which is common practice when writing code. Another approach 
is to allow learners to work on assessments as a group, but 
have each learners write out their own pseudocode explana-
tions of the code. Instructors are encouraged to discuss issues 
surrounding intellectual property and plagiarism and reinforce the 
importance of citing sources.

Conclusions
Computing is increasingly being incorporated into coursework 
at all levels in biology. Computing is both a key skill for learners 

and supports additional learning by enabling the incorpora-
tion of data and analysis into classrooms. Instructors have a 
range of choices to deliver computational lessons. From the 
computing platform to how the instructor delivers the lesson, 
every aspect of a computational classroom can shape learners’ 
knowledge and confidence. In this paper, we have outlined the 
costs and benefits of several popular computing platforms. 
Given the variety of options, instructors should be able to find 
a platform that best fits their course learning objectives, avail-
able resources, class size, and learner backgrounds. One impor-
tant consideration in this decision is how the platform of choice 
affects learner access to course content. Many of these computing 
platforms can support inclusion in the classroom (and thus, 
ultimately, in fields and careers that incorporate computa-
tion) by providing access to the same technologies to all 
learners. We have also discussed several teaching strategies 
for computational biology and other courses with computa-
tion, with the goal of improving student engagement, learning, 
and retention.
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computational biology course. These include choice of programming language, choice of computing
platform, and best practices for teaching computational materials. This review will serve as a good
overview of the field at the present time for newcomers. 
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In the introduction, where the rationale for teaching computation in biology classes is explained. I suggest
adding an additional rationale: to give students the tools, skills and motivation to create analyses that are
reproducible and transparent, regardless of the size of the data set ("it's worth it even for small data sets).

I agree that Software and Data Carpentry workshops are great places to start to get computational skills,
however to learn the skills to teach computation to others, faculty will need additional training. For
example the Software and Data Carpentry Instructor training courses (perhaps this is what you were
referring to?). Another resource that is aligned with this is " " by Greg Wilson.Teaching Tech Together

In the "Choice of computing language" section, the two paragraphs comparing R and Python could be
improved. For example, both R and Python now have easy to use tools for working with rectangular data,
but that is not made clear in the Python paragraph. The authors do write that "Pandas can be used for
teaching foundational data skills", but someone unfamiliar with Pandas will not likely make the leap that
manipulating rectangular data is what is meant here. Essentially, for simple, rectangular data tasks, that
do not involve complex statistics, both R and Python are excellent language choices. And one should pick
the one that their colleagues and collaborators use. However, when analysis tasks get more specific, then
one might have to use the language where the package exists with specific tools they need. 

In the first paragraph of the "Cloud-based computing platforms" section, I think it is important to
communicate that R (and other languages) can be used with Jupyter. This is stated later, but R readers
might skip the Jupyter section later on if this is not communicated earlier. Also, I would remove the
sentence "Jupyter supports the R language. However, the interface for R in Jupyter is different than
RStudio, a dominant way to interact with R". Jupyter is getting better and better at working with R, and
thus if only a notebook is needed, there is no reason not to use Jupyter with R. However, if your code
project is more complex and needs/benefits from a real IDE, then of course RStudio should be used (and
the same argument goes for Python).

Page 14 of 16

F1000Research 2019, 8:1854 Last updated: 20 JAN 2020

https://doi.org/10.5256/f1000research.22961.r56230
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2667-376X
https://teachtogether.tech/


 

In the "Teaching methods" section attribution is given to Data Carpentry for popularizing the live coding
approach of teaching coding. However, Software Carpentry proceeded this. This also happens again later
in the manuscript when the post-it note system is discussed. In earlier parts of this manuscript, Software
Carpentry is referred to alone. Perhaps it would be better to refer to these two organizations together
consistently throughout the manuscript as the "Software and Data Carpentry organizations" (or something
like that). 

There are several other great coding exercise strategies that would be great to point out in this article
(Parson's problems, tracing (execution and values), minimal fix, refactoring, etc). These are described
quite well in " " by Greg Wilson.Teaching Tech Together

One last addition I might add to the platform and/or teaching method section is the potential for the use of
autograding and/or automated feedback using tests in computational biology. When giving students a
computing challenge, tests can also be provided to see if the student's code creates an object or function
with the desired properties or functionality. In Jupyter notebooks, these tests can be paired with tools
such as nbgrader or   for autograding. This is being used in several undergraduate Data ScienceOK
courses at several universities (e.g., Berkley & the University of British Columbia, etc).
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