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Abstract

Background: Individuals genetically susceptible to malignant hyperthermia (MH) exhibit hypermetabolic reactions when

exposed to volatile anaesthetics. Mitochondrial dysfunction has previously been associated with the MH-susceptible

(MHS) phenotype in animal models, but evidence of this in human MH is limited.

Methods: We used high resolution respirometry to compare oxygen consumption rates (oxygen flux) between

permeabilised humanMHS and MH-negative (MHN) skeletal muscle fibres with or without prior exposure to halothane. A

substrate-uncoupler-inhibitor titration protocol was used to measure the following components of the electron transport

chain under conditions of oxidative phosphorylation (OXPHOS) or after uncoupling the electron transport system (ETS):

complex I (CI), complex II (CII), CIþCII and, as a measure of mitochondrial mass, complex IV (CIV).

Results: Baseline comparisons without halothane exposure showed significantly increased mitochondrial mass (CIV,

P¼0.021) but lower flux control ratios in CIþCII(OXPHOS) and CII(ETS) of MHS mitochondria compared with MHN (P¼0.033

and 0.005, respectively) showing that human MHS mitochondria have a functional deficiency. Exposure to halothane

triggered a hypermetabolic response in MHS mitochondria, significantly increasing mass-specific oxygen flux in CI(OX-

PHOS), CIþCII(OXPHOS), CIþCII(ETS), and CII(ETS) (P¼0.001e0.012), while the rates in MHN samples were unaltered by halo-

thane exposure.

Conclusions: We present evidence of mitochondrial dysfunction in human MHS skeletal muscle both at baseline and

after halothane exposure.
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Editor’s key points

� The effect of malignant hyperthermia susceptibility

(MHS) on skeletal muscle mitochondrial function in

humans is uncertain.

� We compared oxygen consumption using high resolu-

tion respirometry in MHS and normal human skeletal

muscle fibres.

� Muscle from MHS individuals had increased mito-

chondrial mass but reduced oxidative capacity

compared with normal individuals.

� Impaired mitochondrial function in human MHS skel-

etal muscle may result from chronic elevation of

myoplasmic Ca2þ.
Malignant hyperthermia (MH) is a hypermetabolic reaction

triggered by potent inhalation anaesthetics in susceptible in-

dividuals.1 Direct consequences of the hypermetabolic state

are increased carbon dioxide production, increased oxygen

consumption, metabolic acidosis, and hyperthermia, with

reflex sympathetic stimulation.2 Ultimately, skeletal muscle

adenosine triphosphate (ATP) production fails to keep up with

energy requirements leading to muscle rigidity and rhabdo-

myolysis.2 Variants in the RYR1 gene that encodes the skeletal

muscle Ca2þ release channel (ryanodine receptor, RyR1)3 or

the CACNA1S gene that encodes the sarcolemmal slow

voltage-gated Ca2þ channel that acts as the voltage sensor for

excitation-contraction (EC) coupling (dihydropyridine recep-

tor)4,5 are associated with MH in 76% of UK MH families.6 Both

proteins work in concert to regulate Ca2þ concentrations in

skeletal muscle at rest and during EC coupling.7

Before the discovery of genetic linkage between RYR1

and MH susceptibility,8,9 several researchers postulated an

important role for mitochondria in the development of an MH

reaction. Recent findings in transgenic mice with RYR1 muta-

tion knock-in has rekindled interest in such a role for

mitochondria.10e12 There is also the implication that mito-

chondrial dysfunction may explain why some MH-susceptible

(MHS) individuals experience myopathic traits such as muscle

weakness and exercise intolerance.13

Some of the earliest observations in MH mitochondria

were conducted on the MH porcine model, which showed

halothane-induced inhibition of complex I (CI).14,15 Research

on RYR1 mutation knock-in mouse models has found mito-

chondrial abnormalities with various degrees of severity

depending on the RyR1 mutation. Notable observations

include lower oxidative phosphorylation (OXPHOS), increased

oxidative stress, and increased reactive oxygen species (ROS)

production.10e12 Structural mitochondrial deformity, an indi-

cation of damage, including a loss of cristae organisation and

mitochondrial swelling, has been observed in multiple reports

using electron microscopy. This suggests there may be meta-

bolic dysfunction and altered OXPHOS in muscles from both

MHS mice10,16 and humans.17,18

In contrast to animal models, research on human MH

mitochondrial function is lacking. Despite the structural

abnormalities seen in MHS humans,17,18 evidence for func-

tional defects is conflicting. Some reports suggest normal

OXPHOS and respiratory control in mitochondria of MHS

humans,19 whilst others have claimed impaired OXPHOS and

ATP production after bouts of training in MHS individuals.20

The discrepancies may be explained by variation in sample

type, methodology, or both. We investigated whether
mitochondrial dysfunction is present in ex vivo skeletalmuscle

from MHS humans under basal conditions and after exposure

to the MH trigger agent halothane.
Methods

Patients

Patients considered for inclusion in this study were those

attending for investigation of their susceptibility to MH. The

reason for investigationwasa clinical suspicionof increased risk

either because of an adverse reaction to anaesthesia consistent

withMH,orbecausea familymemberwasknowntobeMHS.The

majority of index case patients had been found not to harbour a

pathogenic variant (www.emhg.org) in RYR1 and CACNA1S

before attending for further investigation, which involved an

open muscle biopsy and subsequent in vitro contracture testing

(IVCT). Family members were either from families where no

pathogenicvarianthadbeenfoundorwhohadbeenfoundnot to

carry a familial variant. Patients gave written informed consent

to the study that was approved by Leeds (East) Research Ethics

Committee (Leeds, UK, reference 10/H1306/70).

Patients were diagnosed using the IVCT as either MHS or

MH negative (MHN) according to the protocol of the European

MHGroup.21 The laboratory classification ofMHS is subdivided

into MHShc (samples respond abnormally to both halothane

and caffeine challenges), MHSh (samples respond abnormally

to halothane but normally to caffeine challenge), or MHSc

(samples respond abnormally to caffeine but normally to

halothane challenge).
Muscle samples

Diagnosticmuscle biopsies and IVCTwere conducted according

to the protocol of the European MH Group,21 and prepared by a

protocol adapted from that described.22,23 In brief, six muscle

fascicles (typical dimensions 25�4�3 mm) were excised from

the vastus medialis under femoral nerve block and immediately

placed in oxygenated Krebs’ solution (NaCl 118.1 mM, KCl 3.4

mM, MgSO4 0.8 mM, KH2PO4 1.2 mM, glucose 11.1 mM, NaHCO3

25.0mM,CaCl2 2.5mM,pH7.4) at roomtemperatureand takento

the MH laboratory. There, samples were kept at room temper-

ature in Krebs solution, which was gassed continuously with

carbogen (O2 95%, CO2 5%) until IVCT. This study required both a

muscle fascicle that had not been used for the diagnostic chal-

lenge tests (baseline) and a fascicle that had been used in the

static halothane test (halothane-exposed). At the end of the

halothane test, the halothane-exposed and baseline samples

wereeachplaced into1mlof ice-coldbiopsypreservationbuffer,

BIOPS (CaK2EGTA 2.77 mM, K2EGTA 7.23 mM, Na2ATP 5.77 mM,

MgCl2$6H2O 6.56 mM, taurine 20 mM, Na2phosphocreatine 15

mM, imidazole 20 mM, dithiothreitol 0.5 mM, and MES hydrate

50mM,pH7.1, adjustedwithKOH5Nat0�C). Sampleswere then

placed in a Petri dish with ice-cold BIOPS and separated using

sharp forceps to obtain small muscle fibre bundles containing

~4e5 fibres each. These samples then underwent chemical

permeabilisation in BIOPS containing saponin (50 mgml�1) for 30

min, before being washed with 1 ml respiration medium, Mir05

(EGTA 0.5 mM, MgCl2$6H2O 3 mM, lactobionic acid 60 mM,

taurine 20 mM, KH2PO4 10 mM, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid 20 mM adjusted to pH 7.1 with

KOHat 37�C,D-sucrose 110mM, and 1 g L�1 essentially fatty acid

free bovine serum albumin) to remove residual saponin. The

sample was then taken and blot-dried for 5 s, before being

http://www.emhg.org


Fig. 1. Example high resolution respirometry trace showing the rate of oxygen flux (red line) over time after sequential titration of sub-

strates and inhibitors, expressed as pmol s�1 mg�1. The blue line represents oxygen concentrations within the chamber (nmol ml�1).

Vertical dashed lines represent timepoints where substrates have been added. The horizontal black lines which overlay the red line

plateaus indicate the position of datapoints. ADP, adenosine diphosphate; CI, complex I; CII, complex II; CIV, complex IV; ETS, electron

transport system; FCCP, carbonyl cyanide 4-(trifluoromethoxy)-phenylhydrazone; OXPHOS, oxidative phosphorylation; ROX, residual

oxygen flux; TMPD, N,N,N0,N’-tetramethyl-p-phenylenediamine.
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weighedand loaded into the respirometer chambers (5e10mg in

each chamber) containing Mir05 2 ml. The time between biopsy

collection and assay time was ~90e120 min.

High resolution respirometry

Oxygen consumption over time was measured using Oroboros

respiratory analysers (Oroboros Instruments, Innsbruk,Austria)

at 2 s intervals with polarographic oxygen sensors, and

expressed as mass-specific oxygen flux (pmol s�1 mg�1). The

analyser was calibrated daily in air saturated solution before

experimentation. Assayswere initiated by injecting oxygen into

each chamber to raise the oxygen concentration to >400 nmol

ml�1 before a substrate-uncoupler-inhibitor titration (SUIT)

protocol. Re-oxygenation of the chambers was performed

to maintain oxygen concentration at 200e500 nmol ml�1 to

prevent limitation because of oxygen diffusion.23 Each assay

was performed at 37�C, with chamber stirrers set at 750 rpm.

SUIT protocol

An adapted SUIT protocol was used to investigate the OXPHOS

capacity of individual complexes and respiratory states22,23

(Fig 1). The procedure was initiated with addition of blebbis-

tatin 5 mM to prevent spontaneous contraction of muscle

fibres.24 Glutamate (10 mM), malate (0.5 mM), and pyruvate (5

mM) were then added to facilitate measurements of CI respi-

ration in the absence of adenosine diphosphate (ADP) (LEAK

respiration- electron flow coupled to proton pumping to

compensate for proton leaks). ADP (2.5 mM) is then added to

allow measurement of maximal CI-supported OXPHOS (CI[OX-

PHOS]). At this point, outer mitochondrial membrane integrity

was assessed by the addition of cytochrome c 10 mM. Samples

with increased respiration rates of >10% after addition of cy-

tochrome c, which indicates outer mitochondrial membrane

damage, were excluded from analysis.

Once membrane integrity had been assessed, maximal ac-

tivity of complex II (CII) was stimulated with addition of succi-

nate (10 mM). Oxygen flux at this stage (CIþCII[OXPHOS]) reflects
the combined activities of CI and CII, and is regarded as the

maximum OXPHOS capacity in the coupled state. Next, step-

wise additions of carbonyl cyanide 4-(trifluoromethoxy)-phe-

nylhydrazone (FCCP) (0.5 mM) were made until there was no

further increase in oxygen flux. FCCP uncouples the electron

transport system (ETS) by collapsing the proton gradient be-

tween the intermembrane space and the mitochondrial matrix

providing the maximum ETS capacity (CIþCII[ETS]). After

uncoupling the system, electron flow through CI was inhibited

using rotenone (0.5 mM), providing maximum CII activity alone

(CII[ETS]). Finally, antimycin Awas introduced to inhibit complex

III (CIII). CIII activity contributes to all datapoints aside from the

complex IV (CIV) assay. However, its activity is not measured

directly in this protocol as it obtains electrons downstreamof CI

and CII. Residual oxygen flux present after addition of anti-

mycin A is a result of non-mitochondrial respiration that is

subtracted from each respiratory state reading before analysis.

Complex IV assay

Measurement of mass-specific CIV oxygen flux was used as an

alternative proxy marker for estimations of mitochondrial

content. Ascorbate (2 mM) and N,N,N0,N’-tetramethyl-p-phe-

nylenediamine (0.5mM)were applied at the end of the standard

SUITprotocol.Measurement of CIVfluxwas taken at the peakof

the corresponding trace, and residual chemical backgroundwas

removed from this value by applying sodium azide (10 mM).25

Data handling and analysis

Raw data in the form of oxygen flux permusclemass (pmol s�1

mg�1) includes the confounding effects of both mitochondrial

quality and quantity. Data from samples with and without

halothane exposure were internally normalised to the

common reference state, CIþCII(ETS) (maximum uncoupled

respiration). Normalised oxygen flux per mass is presented as

flux control ratios (FCR) which highlight differences in mito-

chondrial function, as a proportion of the reference state,

which is independent of mitochondrial content.



Table 1 Summary of characteristics of the patients contributing samples for this study. The RYR1 variants are annotated for their likely
pathogenicity using the criteria of Miller and colleaguesl6 as: *unlikely pathogenic; ypotentially pathogenic; zlikely pathogenic; and
¶pathogenic. In vitro contracture testing (IVCT) data for each MHS individual is available in Supplementary Table S1. MHN, malignant
hyperthermia-negative; MHS, malignant hyperthermia-susceptible; MHSh, abnormal response in the in vitro contracture test to
halothane but not caffeine; MHShc, abnormal response in the in vitro contracture test to halothane and caffeine

MHN (n¼36) MHS (n¼23)

MHSh (n¼12) MHShc (n¼11)

Male:female 16:20 5:7 7:4
Age at biopsy (yr) (11e68) (12e64) (12e57)
Individuals with at
least one RYR1 variant

e 8 10

RYR1 variants found e Nucleotide
change

Amino acid
change

Accession
number

Nucleotide
change

Amino acid
change

Accession
number

c.251C>Ty p.Thr84Met rs186983396 c.455C>Ay p.Ala152Asp e

c.4178A>G* p.Lys1393Arg rs137933390 c.1202G>Az p.Arg401His rs193922766
c.5183C>Tz p.Ser1728Phe rs193922781 c.8729C>Ty p.Tyr2910Met e

c.6670C>Ty p.Arg2224Cys rs199870223 c.10357C>Ty p.Arg3453Cys rs1482429489
c.6785G>Ay p.Gly2262Asp e c.11132C>Tz p.Thr3711Met rs375915752
c.7879G>Az p.Val2627Met e c.11958C>Gz p.Asp3986Glu rs193922842
c.12860C>Ty p.Ala4287Val e c.12700G>Cz p.Val4234Leu rs193922852
c.14210G>Ac p.Arg4737Gln rs193922868 c.7879G>Az p.Val2627Met e

c.4293G>A p.Thr1431¼ rs727504130 c.1021G>A¶ p.Gly341Arg rs121918592
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Oxygen flux recorded from each sample trace was

exported from proprietary software (DatLab5, Oroboros In-

struments) into Microsoft Excel (Microsoft Inc, Redmond,

Washington, USA) before analysis using IBM (Armonk, NY,

USA) SPSS statistics version 21. Pairwise comparisons were

performed using a combination of Wilcoxon signed-rank
Fig. 2. High resolution respirometry of permeabilised vastus medialis bio

median, inter-quartile range (IQR) and min-max range for each pheno

nificant pairwise comparisons (P<0.05) are labelled with an asterisk (re

complex IV; ETS, electron transport system; MHN, malignant hyperther

oxidative phosphorylation.
tests to assess the effects of halothane exposure and

ManneWhitney U-tests to assess median differences be-

tween baseline controls. Further analysis of MHS subgroups

used the KruskaleWallis test and post hoc Dunn’s procedure

to identify differences between patients classified as MHN,

MHSh, and MHShc. Data were summarised as boxplots using
psies fromMHN (n¼ 36) and MHS (n¼23) individuals. Boxplots show

type in control and halothane-exposed samples. Statistically sig-

fer to Table 2 for exact P-values). CI, complex I; CII, complex II; CIV,

mia-negative; MHS, malignant hyperthermia-susceptible; OXPHOS,



Table 2 Summary of statistical comparisons for each data set, outlining P-values for each pairwise comparison between and within
phenotype for the mass-specific oxygen flux (pmol s�1 mg�1) and flux control ratio (FCR) readings. The P-values for FCR differences
between MHS subgroups are also included with post hoc statistics for each comparison. P-values reaching statistical significance are
presented in bold font. ETS, electron transport system; MHN, malignant hyperthermia-negative; MHS, malignant hyperthermia-
susceptible; MHSh, abnormal response in the in vitro contracture test to halothane but not caffeine; MHShc, abnormal response in
the in vitro contracture test to halothane and caffeine; OXPHOS, oxidative phosphorylation

Respiratory state Oxygen consumption rate (pmol s¡1 mg¡1)

MHN MHS MHN vs MHS

Control vs halothane-exposure (P-value) Control comparisons (P-value)

Leak 0.944 0.429 0.732
CI(OXPHOS) 0.593 0.012 0.113
CIþCII(OXPHOS) 0.789 0.005 0.071
CIþCII(ETS) 0.157 0.003 0.050
CII(ETS) 0.057 0.001 0.376
CIV(MAX) 0.718 0.101 0.021

Respiratory state Flux control ratio (FCR)
MHN MHS MHN vs MHS
Control vs halothane-exposure (P-value) Control comparisons (P-value)

LEAK 0.753 0.362 0.074
CI(OXPHOS) 0.480 0.007 0.534
CIþCII(OXPHOS) 0.470 0.003 0.033
CIþCII(ETS)
CII(ETS) 0.041 0.001 0.005
CIV(MAX) 0.307 0.052 0.913

Respiratory state FCR differences (halothane-exposed - control)
Kruskal-Wallis (P-value) Post hoc (P-value)

MHN vs MHSh MHN vs MHShc MHSh vs MHShc

LEAK 0.349
CI(OXPHOS) 0.209
CIþCII(OXPHOS) 0.043 1.000 0.036 0.390
CIþCII(ETS) 0.086
CII(ETS) 0.263
CIV(MAX) 0.532
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GraphPad Prism 8 (GraphPad Software Inc, San Diego, CA,

USA). There are no published data on the magnitude of

changes in OXPHOS variables that are associated with hu-

man pathology. Preliminary data from a transgenic mouse

model of MH suggested that there was a standardised mean

difference of 0.86 in baseline CIþCII(ETS) between MHS and

MHN mice. Such a difference would be detected with a

sample size of 12 in each group with a<0.05 and b<0.2. We

sought to identify changes with a standardised difference in

means of >0.75, as this is generally accepted as a relevant

effect size in biological systems. On the basis that more

people tested by the MH Unit prove to be MHN rather than

MHS, we planned to include samples from 23 MHS and at

least 35 MHN, in order to achieve a<0.05 and b<0.2. These
numbers of samples enable detection of paired (with and

without halothane exposure) standardised mean differences

of 0.6 and 0.5 for MHS and MHN samples, respectively.
Results

Patient characteristics

A summary of patient characteristics is presented in Table 1.

Eighteen of the 23 MHS group were subsequently found to

carry at least one variant in the RYR1 gene and these variants
are also listed in Table 1. None of the patients had clinical

or histopathological features suggestive of a mitochondrial

myopathy. We included 59 individuals from 52 families: the

maximum number from any family was two individuals.
Mass-specific oxygen flux comparisons

Oxygen flux per milligram of muscle was compared between

MHN and MHS samples, with or without exposure to halo-

thane (Fig 2). Comparisons of samples without halothane

exposure showed no differences between the two phenotypes

aside from CIV(MAX), where MHS samples had a significantly

greater oxygen flux compared with MHN (P¼0.021), suggesting

higher mitochondrial content in MHS samples. Pairwise

comparisons showed that oxygen flux was significantly

elevated in MHS samples after halothane exposure for CI(OX-

PHOS), CIþCII(OXPHOS), CIþCII(ETS), and CII(ETS) (Table 2). The rates

in MHN samples were unaltered by halothane exposure.
Flux control ratio (normalised oxygen flux)

Mass-specific oxygen flux was normalised to a common

reference state (control CIþCII[ETS]) to generate FCR to remove

the confounding effects of mitochondrial content differences

between samples (Fig 3). Comparisons of FCR at baseline



Fig. 3. Boxplot comparison of flux control ratios (FCR) from MHN (n¼36) and MHS (n¼23) control and halothane-exposed samples. FCR are

generated by internally normalising oxygen flux per muscle mass to the non-halothane-exposed control CIþCII(ETS) (indicated by the

horizontal dashed line). Boxplots show median, inter-quartile range (IQR) and min-max range for each phenotype in control and

halothane-exposed samples. Statistically significant pairwise comparisons (P<0.05) are labelled with an asterisk (refer to Table 2 for exact

P-values). CI, complex I; CII, complex II; CIV, complex IV; ETS, electron transport system; MHN, malignant hyperthermia-negative; MHS,

malignant hyperthermia-susceptible; OXPHOS, oxidative phosphorylation.
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revealed that CIþCII(OXPHOS) and CII(ETS) were significantly

lower in MHS samples compared with MHN (P¼0.033 and

0.005, respectively, Table 2), suggesting functional deficiency.

Normalised CIV(MAX) showed no significant differences

between MHS and MHN controls, indicating similar functional

capacity of CIV. FCR comparisons between control and

halothane-exposed samples support the findings seen in the

mass-specific dataset, with statistically significant findings in

several of the same respiratory states (Table 2). However, one

exception was found in MHN CII(ETS) which increased after

halothane-exposure (P¼0.041).

Flux control ratio responses within the subdivided
MHS phenotypes

FCR were used for further analysis within the MHS phenotype,

comparing the magnitude of change with and without expo-

sure to halothane between the MHSh and MHShc phenotypes

(Fig 4); there were no patients in this sample categorised as

MHSc. Results from the KruskaleWallis test showed that

CIþCII(OXPHOS) responses differed significantly between MH

phenotypes after halothane exposure (Table 2). Post hoc anal-

ysis showed that these differences in response between MHN

and MHS groups were largely attributable to responses of the

MHShc subgroup, as there were no significant differences in

response to halothane exposure between the MHN group and

the MHSh subgroup.
Discussion

Baseline comparisons using mass-specific flux showed higher

CIV(MAX) in MHS compared with MHN muscle, which indicates

a greatermass ofmitochondria inMHSmuscle permilligramof

tissue. Alternative mitochondrial markers such as citrate syn-

thase and mtDNA were considered for this study, but the CIV

assaywas chosen as it can be performed during the experiment

and allows measurements on the same exact sample, avoiding

issues with degradation. To normalise for differences in mito-

chondrial mass, we compared FCR data which showed that

there were functional deficits in MHS muscle as well. The

CIþCII(OXPHOS) and CII(ETS) FCR were significantly lower in MHS

samples compared with MHN, which implies that there is

uncoupling of mitochondria in MHS muscle in addition to CII

deficiency, both of which would likely result in inefficient ATP

production. The uncoupling of MHS mitochondria is perhaps a

side-effect of the swelling and structural abnormalities seen in

previous human studies,18 or a consequence of chronically

elevated myoplasmic Ca2þconcentration in MHS muscle (see

below). As no significant differences in CI(OXPHOS) were found,

CII deficiency seems to be the primary cause for the reduced

maximum OXPHOS capacity of MHS muscle as defined by

CIþCII(OXPHOS) FCR. This is of great importance, as a lower

OXPHOS capacity suggests that the ETS inMHSmitochondria is

less tightly coupled, and therefore less efficient at producing

ATP than in MHN mitochondria. CII, also known as succinate



Fig. 4. Boxplot comparison showing the change flux control ratios (FCR) (halothane-exposed control) for each respiratory state. MHN

samples (n¼36) were plotted with MHS samples (n¼23), further split into MHSh (n¼12) and MHShc (n¼11) subgroups. Boxplots showmedian,

inter-quartile range (IQR) and min-max response range for each phenotype. Comparisons labelled with an asterisk show statistically

significant post hoc pairwise comparisons (refer to Table 2 for exact P-values). CI, complex I; CII, complex II; CIV, complex IV; ETS, electron

transport system; MHN, malignant hyperthermia-negative; MHS, malignant hyperthermia-susceptible; MHSh, abnormal response in the

in vitro contracture test to halothane but not caffeine; MHShc, abnormal response in the in vitro contracture test to halothane and caffeine;

OXPHOS, oxidative phosphorylation.
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dehydrogenase, is the only component of the ETS that is

encoded entirely by nuclear genes and has roles in both

OXPHOS and the Krebs cycle, indirectly affecting glycolysis.26

CII deficiency has not previously been linked to MH suscepti-

bility and its deficiency may mean that the glycolytic function

of MHS muscle is also impaired, a potential area for further

research. Collectively these findings also suggest a potential

compensation mechanism, in which MHS muscle upregulates

mitochondrial number to counteract deficiencies in mito-

chondrial function, hence the similar baseline oxygen flux per

unit of muscle mass.

The proposed concept of mitochondrial deficiency in MHS

muscle is consistent with that seen in other studies,11,15,20 but

some findings are conflicting. For example, Giulivi and col-

leagues11 found a decrease in mitochondrial content, reduced

oxygen uptake using malate-glutamate and succinate, and CI,

CIII, and CIV deficiency in RyR1 R163C knock-in mice when

compared with wild-type. In contrast, we showed evidence of

human MHS muscle having higher mitochondrial content,

deficiency in succinate-facilitated oxygen flux, with activity

deficits in CII only. These discrepancies may be a result of

species differences, but they could also be explained by
differences in methodology. Giulivi and colleagues11 used

isolated mitochondria in the assessment of mitochondrial

content and protein complex function, whereas we used

permeabilised muscle fibres. Permeabilised muscle allows

interplay between the mitochondria, sarcoplasmic reticulum,

and RyR1, which we believe is crucial to accurately assess the

biological effects ofMH. Furthermore, the oxygen uptake assay

in the mouse study was conducted at 22�C, whereas we used

37�C, as the assay temperature significantly impacts OXPHOS

capacity.27

One hypothesis for the mitochondrial dysfunction in MHS

muscle observed here is the result of chronic elevation in

cytosolic Ca2þ, as has been demonstrated in human28 and

porcine29 MH muscle, and knock-in mouse models.11,12,30 Ca2þ

increases mitochondrial activity which can stimulate higher

rates of ROS production through CI, CII, and CIII of the electron

transport chain.31 Increased ROS production has been observed

in MH RYR1 knock-in mice11 and it is possible that this may

translate into human MHS muscle. Increased ROS production,

which can cause DNA damage and structural damage to

organelles, could explain the mitochondrial swelling seen in

previous ultrastructural studies.10,16,18 Ca2þ is also a positive
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regulator of the mitochondrial permeability transition pore

(MPTP) of the inner mitochondrial membrane.32 Opening of

the MPTP decreases the proton gradient across the inner

mitochondrial membrane, which is associated with uncou-

pling of the electron transport chain from OXPHOS.33

Increased activity of several mitochondrial respiratory

states is involved in the hypermetabolic response in MHS

mitochondria after exposure to halothane. This could simply

be a response driven by conversion of myoplasmic adenosine

triphosphate (ATP) to ADP, but Dı́az-Vegas and colleagues34

have recently demonstrated a more direct link between skel-

etal muscle mitochondrial stimulation and activation of RyR1.

This may be the result of sarcoplasmic reticulum Ca2þ efflux

from activated RyR1 in MHS muscle and uptake by mitochon-

dria. Increased intramitochondrial Ca2þ stimulates dehydro-

genase enzymes, which in turn increases NADH (reduced form

of nicotinamide adenine dinucleotide) and ATP production.35,36

The rhabdomyolysis and cell death that occur in a fulminant

MH reaction may partly be caused by the failure of skeletal

muscle mitochondria to maintain ATP production to accom-

modate the Ca2þ-stimulated state, along with apoptotic

mechanisms activated by increased intramitochondrial Ca2þ.
The FCR of MHN CII(ETS) also increased after exposure to halo-

thane, suggesting a non-RyR1-mediated component of this

effect of halothane. However, the clinical relevance of this

phenomenon is uncertain, as it occurs in an artificially

uncoupled non-physiological state.

A recent study of Canadian MHS patients found that those

who responded abnormally to halothane, but not caffeine, in

the caffeine-halothane contracture test, had a higher index of

Ca2þ-related changes in cultured skeletal muscle cells than

patients who responded abnormally to halothane and

caffeine.37 We compared the magnitude of FCR changes in

MHSh and MHShc fibres and found a significantly greater effect

of halothane exposure on (CIþCII[OXPHOS]) in MHShc muscle,

which is what we expected, although it is at odds with what

might have been anticipated from the work of Figueroa and

colleagues.37 This potential discrepancy might be explained by

the use of cultured myotubes by Figueroa and colleagues,37

whereas we studied adult muscle fibres.

Another unexpected observation was the lack of change in

CI(OXPHOS) after halothane treatment. CI activity was reduced

by halothane in MH pigs,11,12 but research in other models has

suggested that this effect is independent of the MH trait.

Porcine heart mitochondria have shown reversible dose-

dependent inhibition of CI (NADH oxidoreductase) after

exposure to isoflurane, sevoflurane, or halothane; the latter

was the most potent agent.38 Research using the CI mutant

gas-1 Caenorhabditis elegans model has also shown evidence of

decreased CI function and increased sensitivity to potent

inhalation anaesthetics.39,40 This was not observed in our MHS

or MHNmuscle andmay be because of the inhibitory effects of

halothane on CI being both acute and reversible. Such changes

would not be detected using our protocol, because of the time

delay between halothane exposure and measurement of

mitochondrial function (~90e120 min). In addition, previous

studies with halothane treatment have used isolated mito-

chondria taken out of the normal cellular environment.11,12

The time delay between halothane exposure and mea-

surement of mitochondrial function might also have reduced

the magnitude of change in other components of the electron

transport chain, and could have obscured other acute and

reversible changes. It is also possible that permeabilisation of

the muscle fibres, which is necessary for the SUIT protocol,
might have limited the responses to halothane exposure. A

further potential confounding factor in our study was that the

halothane-exposed samples were maintained at approximate

physiological length and tension, and were electrically stim-

ulated during the halothane contracture test, whereas the

baseline samples were not. While we think that the differ-

ences observed between our halothane-exposed and baseline

samples are a result of the halothane exposure rather than

other interventions, we were unable to demonstrate this

because of a limited supply of human muscle tissue. We plan

to address this in future studies usingmuscle tissue from RYR1

knock-in mouse models.

In conclusion, we observed impaired mitochondrial

function in permeabilised human MHS skeletal muscle which

we hypothesise results from chronic elevation of cytoplasmic

Ca2þ in MHS muscle that causes mitochondrial uncoupling

and structural damage through increased ROS production.

Exposure to halothane 2 vol% significantly increased OXPHOS

and ETS capacity inMHSmuscle, confirming a hypermetabolic

response to halothane in MHS mitochondria with functional

deficiency at baseline.
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