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Abstract
Pyropia haitanensis (Bangiales, Rhodophyta), a major economically important marine 
crop, is also considered as an ideal research model of Rhodophyta to address several 
major biological questions such as sexual reproduction and adaptation to intertidal 
abiotic stresses. However, comparative genomic analysis to decipher the underly-
ing molecular mechanisms is hindered by the lack of high‐quality genome informa-
tion. Therefore, we integrated sequencing data from Illumina short‐read sequencing, 
PacBio single‐molecule sequencing and BioNano optical genome mapping. The as-
sembled genome was approximately 53.3 Mb with an average GC% of 67.9%. The 
contig N50 and scaffold N50 were 510.3 kb and 5.8 Mb, respectively. Additionally, 
10 superscaffolds representing 80.9% of the total assembly (42.7 Mb) were anchored 
and orientated to the 5 linkage groups based on markers and genetic distance; this 
outcome is consistent with the karyotype of five chromosomes (n = 5) based on cy-
tological observation in P. haitanensis. Approximately 9.6% and 14.6% of the genomic 
region were interspersed repeat and tandem repeat elements, respectively. Based 
on full‐length transcriptome data generated by PacBio, 10,903 protein‐coding genes 
were identified. The construction of a genome‐wide phylogenetic tree demonstrated 
that the divergence time of P. haitanensis and Porphyra umbilicalis was ~204.4 Ma. 
Interspecies comparison revealed that 493 gene families were expanded and that 
449 were contracted in the P. haitanensis genome compared with those in the Po. um‐
bilicalis genome. The genome identified is of great value for further research on the 
genome evolution of red algae and genetic adaptation to intertidal stresses.
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1  | INTRODUC TION

Red algae (Rhodophyta) are an ancient eukaryotic group that ex-
tended back to 1.6–1.0  billion years ago according to the obser-
vation of the cellular and subcellular structures of multicellular 
rhodophytes Rafatazmia and Ramathallus in fossils using synchro-
tron radiation X‐ray tomographic microscopy (Bengtson, Sallstedt, 
Belivanova, & Whitehouse, 2017). Red algae comprise a monophy-
letic lineage of ~7,200 photosynthetic species, which belong to 
the Archaeplastida (Plantae) derived from primary endosymbiosis 
(Yoon, Müller, Sheath, Ott, & Bhattacharya, 2006). The secondary 
and tertiary endosymbiosis of red algae have given rise to the most 
abundant, species‐rich and ecologically significant groups of algae 
and other eukaryotes present on Earth today, such as cryptophytes, 
haptophytes, apicomplexans, stramenopiles and dinoflagellates 
(Archibald, 2012; Hoek, Mann, Jahns, & Jahns, 1995; Reyes‐Prieto, 
Weber, & Bhattacharya, 2007). Genomic studies on red algae will 
provide valuable information on the evolution of oxygenic photosyn-
thesis. Unfortunately, only a limited number of whole‐genome data 
sets for red algae have been reported, including those for the hot‐
spring alga Cyanidioschyzon merolae, the mesophilic alga Porphyridium 
purpureum, the extremophilic alga Galdieria sulphuraria, as well as 
the multicellular red seaweeds Chondrus crispus, Gracilariopsis chorda 
and Porphyra umbilicalis (Bhattacharya et al., 2013; Brawley et al., 
2017; Collén et al., 2013; Lee et al., 2018; Nozaki et al., 2007). The 
genomic information of Pyropia haitanensis would help to reveal the 
adaptation mechanisms of intertidal seaweeds and help to recon-
struct the evolutionary history of red algae.

In Rhodophyta, several species of the genus Pyropia (previously 
named Porphyra, and commonly called “nori”) are well known for 
their economic value in the seaweed industry, such as P. haitanensis, 
P. yezoensis and P. tenera (Sutherland et al., 2011). According to the 
FAO's statistics, nori production in the year 2016 was ~1.8 million 
tons in fresh weight with a commercial value over 1.5 billion USD 
(http://www.fao.org/fishe​ry/facts​heets/​en). Pyropia haitanensis is a 
native species distributed along the coastline of south China. This 
species is cultivated at a large scale with the highest annual produc-
tion among all the nori species. The current total annual harvest of 
P. haitanensis is ~88,000 tons (dry weight), which accounts for ap-
proximately 75% and more than 50% of the total nori production in 
China and the world, respectively (Guo et al., 2018). With the aid of 
a high‐quality genome of P. haitanensis, modern molecular genetic 
techniques such as QTL mapping and GWAS will be used to identify 
the key loci of the important economic traits such as productivity, 
taste and colour, which undoubtedly will enhance the efficiency of 
molecular breeding of this economically important marine crop.

Pyropia haitanensis naturally inhabits a niche in the upper re-
gion of the intertidal zone (Sahoo, Tang, & Yarish, 2002). Routine 
tidal turning periodically exposes it to the air, and it inevitably ex-
periences the drastic changes in environmental factors such as os-
motic pressure, temperature, light and UV radiation (Blouin, Brodie, 
Grossman, Xu, & Brawley, 2011). P. haitanensis can survive even after 
losing 85%–95% of its cellular water (Wang, Mao, Kong, Cao, & Sun, 

2015). The thriving nature of P. haitanensis suggested that long‐term 
evolutionary selection has made this species highly adaptable to the 
combined harsh stresses of the intertidal region. Thereby, this spe-
cies is considered a model of intertidal red seaweed for physiology 
and genetic research on stress tolerance. Due to its distinctive evo-
lutionary position in the red algal clade, P. haitanensis might harbour 
different genetic mechanisms of stress tolerance from those of high 
plants, which are probably derived from green algae. The genome in-
formation of P. haitanensis is a valuable source for the identification 
of unique genetic signatures involved in environmental adaptation.

Furthermore, genome sequences of P. haitanensis with relatively 
higher integrity and completeness are unavailable, which has been 
one of the major constraints to improve research on the physiology, 
cytology, genetics and genomics of Pyropia. Currently, the devel-
opment of high‐throughput sequencing technologies for sequenc-
ing DNA, RNA and proteins has reduced sequencing time and cost, 
etc. Hitherto, there are already four generations. Every sequencing 
generation and its relevant sequencing platforms have advantages 
and disadvantages. Thus, it is necessary to assess their limitations 
and applications. Second‐generation sequencing is currently the 
most common because of its higher throughput, but the short‐read 
lengths and amplification biases have become disadvantages (Ari 
& Arikan, 2016). Single‐molecule real‐time (SMRT) is another se-
quencing technology that is currently in use, which can overcome 
the short‐read lengths and biases without any amplification step 
(Roberts, Carneiro, & Schatz, 2013). The appearance of an optical 
map can further place short reads on genomic fragments, even those 
totalling several millions of bases (Neely, Deen, & Hofkens, 2011). 
Hence, in this study, the combined techniques of Illumina short‐read 
sequencing, PacBio single‐molecule sequencing and BioNano op-
tical mapping were used to assemble the genome of P. haitanensis. 
Subsequently, gene prediction, repeat annotation, functional an-
notation, gene family expansion and contraction, and phylogenetic 
relationship were determined according to standard procedures to 
elucidate the gene repertoire of P. haitanensis.

2  | MATERIAL S AND METHODS

2.1 | Sample information

A laboratory‐cultured genetically pure line, Pyropia haitanensis PH40 
(♀), was used in this study to eliminate the interference caused by 
genotypic differences. The original thallus was collected from a nori 
farm in Putian, Fujian Province, China. The material was first identi-
fied by amplification of its 18S rRNA gene as described in a previ-
ous study (Müller, Sheath, Vis, Crease, & Cole, 1998), as well as by 
its morphologies. Single somatic cells were enzymatically isolated 
from the thallus, and the allele homozygous sporophytes (concho-
celis) were obtained after the haploid doubling spontaneously. The 
genetically homogenous gametophytes were then developed from 
the homozygous sporophytes and cultured for DNA and RNA sam-
ple collection. Another strain PH37 (♂) used in this study was also 
harvested from Putian, Fujian Province, China, and purified with 
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the same method mentioned above. The gametophytes were cul-
tured in a light incubator under the following conditions: 20 ± 1°C 
with 50–60  μmol photons·m−2·s−1 illumination during a 12  h:12  h 
light:dark cycle. The culture medium of Provasoli's enriched sea-
water (PES) (Starr, 1987) was refreshed every five days. To remove 
surface bacteria from P.  haitanensis gametophytes, the thalli were 
harvested and mixed with quartz sands. Physical vibration was car-
ried out in a homogenizer (Precellys 24), followed by several rounds 
of washing to remove the polysaccharides and bacteria from the 
surface of gametophytes. Subsequently, the samples were collected 
and immediately frozen in liquid nitrogen for total genomic DNA ex-
traction using the CTAB method (Yang, Wang, Liu, & An, 1999).

2.2 | Libraries construction

Five micrograms and 10 μg of genomic DNA were used to construct 
Illumina TruSeq paired‐end sequencing libraries (500‐bp insert 
sizes) and mate pair libraries (5  kb in size), respectively, according 
to the manufacturer's instructions. Meanwhile, a total of 10 μg of 
DNA was used to construct a 20‐kb library using the PacBio Pacific 
Biosciences SMRT Bell Template Kit 1.0. To further carry out opti-
cal map construction, 2 μg of purified high molecular weight (HMW) 
genomic DNA was isolated and labelled according to standard 
BioNano protocols with the single‐stranded nicking endonuclease 
BspQI. To assist in the genome annotation of P.  haitanensis, total 
RNAs isolated from various stressful conditions (osmotic pressure, 
temperature, illumination, etc.) were equally mixed together to pre-
pare the transcriptome sequencing libraries for SMRT platforms 
following the manufacturer's instructions. For SMRT sequencing, 
full‐length RNA libraries were constructed according to the manu-
facturer's instructions with minor modifications. To avoid overam-
plification of small fragments, we optimized the amplification cycle 
at 14 in a preliminary test. Then, three gel fractions, containing 
fragments >3, 2–3 and 1‐2 kb, were collected and purified using the 
QIAquick Gel Extraction Kit. The extracted products were ampli-
fied using the 5′ Primer IIA and purified using 0.5 × AMPure beads 
(#A63880; Beckman, http://www.beckm​ancou​lter.com) for subse-
quent sequencing.

2.3 | Genome sequencing and assembly

To estimate the genome size of P. haitanensis, the low‐quality reads 
and sequences aligning to the chloroplast (Accession no: KC464603) 
and mitochondrion (NC_017751) genomes of P.  haitanensis were 
removed using the NGS QC Toolkit and Bowtie 2 (parameters: ‐
very‐sensitive; version: 2.0.2) (Langmead, Trapnell, Pop, & Salzberg, 
2009). Different K‐mer frequencies were calculated by Jellyfish and 
genome size (Luo et al., 2012). For genome assembly, subreads from 
PacBio were used to assemble the nuclear genome of P. haitanensis 
using the RS_HGAP_Assembly.3 protocol in smrt analysis v2.3.0 with 
default parameters (Chin et al., 2013). Then, mate pair data sets were 
aligned to the above‐assembled contigs using SSPACE (Boetzer, 
Henkel, Jansen, Butler, & Pirovano, 2010). Meanwhile, PacBio long 

reads were mapped to the scaffold sequences using BLASR, and 
the gaps that resulted from the scaffolds were filled using PBJelly2 
with default parameters (English et al., 2012). Finally, Quiver was run 
again to polish the accurate consensus at the base level.

To improve the assembly, optical maps of the BioNano system 
were further used for scaffolding. A labelled DNA sample was loaded 
onto the Saphyr Chip nanochannel array, and the stretched DNA 
molecules were then imaged with the BioNano Saphyr system. Raw 
image data were converted into bnx files, and AutoDetect (BioNano 
Genomics) software generated basic labelling and DNA length in-
formation. Access (BioNano Genomics) software was used to filter 
and remove <150 Kb low‐quality reads, and then, IrySolve (BioNano 
Genomics) was used to carry out the assembly of BioNano's genome 
maps and the ‘Hybrid Scaffold' between genome maps from BioNano 
and sequence maps. Further gap filling using the reads that not used 
in the last step was achieved by RefAligner (BioNano Genomics). To 
remove the potential contamination of bacterial sequences in the 
current assembly, we applied a postprocessing step. We cut each 
scaffold into 100  bp overlapping 1‐Kb windows and blasted them 
against the NT database using BLASTn. The blast results were fur-
ther analysed using MEGAN to search for bacterial hits. Scaffolds 
that met the following three criteria were considered to be bacterial 
contamination and removed from the final genome: (a) over 60% of 
windows in the scaffold had best hits as bacterial sequences with 
identity >70%; (b) the sequencing depth was <5; and (c) there was 
no cDNA support in these ‘bacterial windows.’ To assess the quality 
of the assembled genome, K‐mer frequency distribution, the full‐
length transcriptome sequencing data map rate and Benchmarking 
Universal Single‐Copy Orthologs (BUSCO) analysis were used.

2.4 | Genetic map construction and 
scaffold anchoring

To construct a genetic map of P. haitanensis, the gametophytic blades 
of PH40 (♀) and PH37 (♂) were selected as parents for crossing ex-
periments. The blades from these two pure lines were cocultured 
in a flask until carposporangia appeared. Then, the fertilized female 
blade was selected and cultured until reproductive cells were re-
leased. Subsequently, the fertilized carpospores were cultured to 
generate heterozygous conchocelis. The heterozygote was then 
confirmed using two SSR markers in our laboratory. After confir-
mation, the heterozygous gametophytes (F1) were then developed 
from the homozygous conchocelis and used to establish double hap-
loid populations (DH). Each individual F1 gametophyte was digested 
into single cells using snail enzymes. Then, a single cell from each 
gametophyte was picked out and cultured to conchocelis. The cul-
tured conditions were the same as those described above. Finally, 
a population with 117 DH strains was established and used for ge-
netic map construction. Genomic DNA from two parents and 117 
offspring were extracted using the CTAB method. DNA quality was 
detected with 0.8% agarose gel electrophoresis and a NanoDrop 
2000 spectrophotometer. Then, 119 2b‐RAD libraries were con-
structed according to the protocols described by Wang et al. (Wang, 

http://www.beckmancoulter.com
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Meyer, McKay, & Matz, 2012). These libraries were sequenced on 
an Illumina HiSeq system to generate single‐end reads with a length 
of 50bp. Subsequently, reads were trimmed to remove sequences 
with adapters, those without restriction sites and those containing 
ambiguous bases and of low‐quality value. Meanwhile, sequence 
reads from putative plastid and mitochondrial origins of P.  haitan‐
ensis were also removed. The remaining reads were analysed using 
the RADtyping program v1.0 with default parameters (Fu et al., 
2013) for genotyping. The markers that could be genotyped in at 
least 80% of offspring were used to calculate the genetic distance 
and draw linkage maps using JoinMap 4.0 at LOD 7.0 (Van Ooijen, 
2006). The linkage group numbers were selected at a LOD threshold 
of more than 4.0. Meanwhile, genetic distances between markers 
and marker sequences were used to anchor scaffolds to the linkage 
groups using the R package.

2.5 | Repeat elements

Repeat elements occupy a major proportion of the nuclear DNA 
in most eukaryotic genomes and have been demonstrated to have 
structural and functional roles (Biscotti, Olmo, & Heslop‐Harrison, 
2015). repeatmodeler (version: 1.0.8) was used to analyse consen-
sus sequences of interspersed repeats in genomes of P. haitanensis 
(Smit & Hubley, 2008). Consensus sequences that were shorter than 
80 bp were discarded (Wicker et al., 2007). The remaining consen-
sus sequences were used as the library in repeatmasker (version: 
open‐4‐0‐7) to predict interspersed repeat elements in the whole 
genome (Chen, 2004). Meanwhile, Tandem Repeats Finder (Benson, 
1999) was used to identify tandem repeat sequences in P. haitanensis 
genome.

2.6 | Gene prediction and functional annotation

After repeats' masking, we used a combination of de novo prediction, 
homology searches and transcript isoform based methods to predict 
gene structures of P. haitanensis. De novo prediction was performed 
using AUGUSTUS (Stanke et al., 2006). For homologous annota-
tion, we queried the P. haitanensis genome scaffolds against a da-
tabase containing protein sequences from five organisms (Chondrus 
crispus, Gracilariopsis chorda, Cyanidioschyzon merolae, Po. umbilicals 
and Porphyridium purpureum). At the same time, transcript isoforms 
of P. haitanensis were mapped to the genome using blast and then 
assembled by PASA (Haas et al., 2008). Finally, EVM was used to 
integrate these gene models from the above methods. To further 
detect the function of the protein‐coding genes in P.  haitanensis, 
the predicted protein sequences were aligned against several public 
databases (NR, InterPro, GO, KOG, KEGG, CAZyme and Conserved 
Domains Database [CDD]).

2.7 | Gene family expansion and contraction

To further examine the genome divergence and conservation among 
red algae, we carried out a phylogenetic analysis based on single‐copy 

orthologous groups using the P.  haitanensis genome and other five 
red algal genomes to build orthologous genes using orthomcl (Li, 
Stoeckert, & Roos, 2003), with Cyanophora paradoxa as the out-
group species. Genome sequences were aligned using the program 
mafft version 5 (Katoh, Kuma, Toh, & Miyata, 2005) and were fur-
ther trimmed using trimAl with the option “automated1” (Capella‐
Gutiérrez, Silla‐Martínez, & Gabaldón, 2009). Maximum likelihood 
(ML) analyses were conducted using raxml‐8.2.4 (Stamatakis, 2014). 
The best model and parameter settings were chosen according to 
the Akaike information criterion using prottest 3.0 (Abascal, Zardoya, 
and Posada 2005). A Bayesian phylogenetic tree was constructed 
using mrbayes 3.2 under the same model (Huelsenbeck & Ronquist, 
2001). Four incrementally heated Metropolis‐coupled Monte Carlo 
Markov chains were run for 10,000,000 generations for the concat-
enated data set, and runs were sampled every 1000th generation. 
Convergence and stationarity of the log‐likelihood and parameter 
values were assessed using tracer v.1.5 (Rambaut, Drummond, Xie, 
Baele, & Suchard, 2018). The initial 10% were discarded as burn‐in. 
A time‐calibrated phylogeny was inferred using a relaxed molecular 
clock method as implemented in beast v.1.8.3 (Drummond, Suchard, 
Xie, & Rambaut, 2012). We set the most recent common ancestor with 
a lognormal prior, an offset of 950 Ma, and a standard deviation of 
25.0 based on the divergence of Florideophyceae and Bangiophyceae 
(Herron, Hackett, Aylward, & Michod, 2009; Yang et al., 2016).

3  | RESULTS AND DISCUSSION

3.1 | Material identification and Genome assembly

The material used in this study was identified as Pyropia haitanen‐
sis according to its morphology, life history, as well as its reproduc-
tive structure, etc (Figure 1). The blade was 15–16 cm in length and 
2–3 cm in width, with a red to brown colour. Additionally, it had an 
umbilicate base, which can help the blade attach to substratum. The 
molecular marker and alignment results also supported identification 
of the specimen as P. haitanensis (Figure S1). Scanning electron mi-
croscopy showed that bacteria had been removed from the surface 
of the algae (Figure S2). And a total of ~22.1 Gb of raw sequence data 
were obtained using the Illumina platform for P. haitanensis. Based 
on calculation of the K‐mer frequency by Jellyfish, the estimated ge-
nome size of P.  haitanensis was approximately 38.5  Mb (Table S1). 
For genome assembly, ~5.0  Gb of subreads from the PacBio RSII 
platform with a mean length of 5.7 kb were used to assemble the 
nuclear genome of P. haitanensis. A 59.7 Mb assembly was produced 
consisting of 1,839 contigs with an N50 of 510.3 kb. Then, the num-
ber of scaffolds built based on ~1.8 Gb of Illumina mate pair sequenc-
ing data was reduced to 1,168 and the length of N50 increased to 
913.7 kb. Scaffolding using PacBio long reads allowed us to improve 
the assembly to 663 scaffolds (totalling 59.2 Mb) with a scaffold N50 
of 912.3 kb. For optical map construction, a total of 93.8 Gb of mo-
lecular data were obtained (Table 1). Combined with optical mapping 
data, we finally yielded a P. haitanensis genome with a size of 53.3 Mb. 
Among the 195 scaffolds, 11 pseudomolecules had lengths larger 



220  |     CAO et al.

than 0.4 Mb and covered 88.4% of the genome region. The contig 
N50 and scaffold N50 were 510.3 kb and 5.8 Mb, respectively, and 
the length of the longest scaffold was 7.6 Mb (Table 2). The average 
GC content of this genome was as high as 67.9%, which is the highest 
among all the published algal genomes. The phenomenon of high GC 
content was also found in the Bangiophyceae species Po. umbilicalis 
(65.8%) (Brawley et al., 2017) and green algae Chlamydomonas rein‐
hardtii (64%) (Merchant et al. 2007). Compared with the assembly 
results of the published macroalgae, including Chondrus crispus (scaf-
fold N50 = 240.0 kb), Po. umbilicalis (scaffold N50 = 202.0 kb) and 
Saccharina japonica (scaffold N50 = 252.0 kb), the assembly of P. hai‐
tanensis genome had the fewest scaffolds and the longest N50 and 
the highest contiguity and coverage (Ye et al., 2015).

3.2 | Anchor scaffolds by genetic maps

The genome sequencing of male and female parents and their off-
spring produced 32,327,297, 35,177,866 and 1,031,682,186 reads, 
respectively. These reads then were mapped to the genome for 
subsequent genotyping. The results showed that 1,367 SNPs were 
shared between the two parents. One hundred and twenty‐nine 
loci that met the linkage requirement were used to construct the 
genetic map. Finally, five linkage groups were constructed using 
these markers, with a number of markers ranging from 9 to 45. The 
length per group ranged from 88.6 cM to 284.0 cM, with an average 
of 171.4 cM. Based on the markers and genetic distance, 10 pseu-
domolecules representing 80.9% of the total assembly (42.7  Mb) 

F I G U R E  1   A workflow for the genome sequencing and genetic map construction [Colour figure can be viewed at wileyonlinelibrary.com]

  Sequencing platforms Library size Data size (Gb) Depth

DNA library Illumina 500 bp 22.1 220

Illumina 5 kb 1.8 47

PacBio 20 kb 6.4 99

 BioNano ~ 93 1,860

RNA library PacBio 1–2 kb 1.5 12

  2–3 kb 1.3 12

  >3 kb 1.5 12

TA B L E  1   Genome and transcriptome 
sequencing information of Pyropia 
haitanensis

www.wileyonlinelibrary.com
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were anchored and orientated to the 5 linkage groups (Figure 2). 
Among them, pseudomolecules 12, 26, 32 and 110 were anchored to 
one chromosome, and pseudomolecule 9 was mapped to one chro-
mosome. Meanwhile, pseudomolecules 13 and 27 and pseudomol-
ecules 80 and 201 were placed on two different chromosomes, 
respectively, based on the markers and their distance. The remaining 
pseudomolecule 140 was anchored to one chromosome. The num-
ber of linkage groups established in this study is consistent with the 
cytological observations (Tseng & Sun, 1989; Yan et al., 2008).

3.3 | Genome evaluation

To assess the quality of the assembled genome, three approaches 
were used. First, the final assembled genome size of this species 
(53.3 Mb) was similar to the size calculated based on the K‐mer fre-
quency distribution (46.5 Mb). Second, we obtained a total of 17,383 
unigenes from the PacBio system. Then, these transcriptome se-
quencing data were mapped to the current assembly by BLAT (Kent, 
2002), and >87.2% of PacBio isoforms could be successfully aligned. 
Third, we performed Benchmarking Universal Single‐Copy Orthologs 
(BUSCO) analysis, and 85.5% of the eukaryotic single‐copy genes 
were detected in the P. haitanensis genome. This number is higher 
than the values in C. crispus (84.5%) and Po. umbilicalis (74.3%) (Figure 
S3). Interestingly, we also noticed that the 'complete' percentage of 
BUSCO in red algae was generally lower than those in other species. 
The reason for this possibly lies in independent evolution after pri-
mary endosymbiosis, leading to great genome diversity in red algae 
(e.g. reduction of the genome contents of the red algae (Qiu, Price, 
Yang, Yoon, & Bhattacharya, 2015)). The relative lack of red algal ge-
nome information in public databases might be another reason.

3.4 | Repeat elements

For the repeat element analysis, the results showed that the repeat 
elements identified in P. haitanensis constituted 24.2% of the whole 
genome, including 14.6% as tandem repeat sequences and 9.6% as 
interspersed repeats. Among the tandem repeats, a total of 26,822 

TA B L E  2   Statistics of the final assembly of Pyropia haitanensis 
genome

  Contig Scaffold  BioNano

Total 
sequences

1,497 230 195

Total bases 57,754,774 50,812,391 53,254,677

Min sequence 
length

504 740 60

Max sequence 
length

2,019,106 3,335,433 7,561,339

Average se-
quence length

38,580.3 220,923.4 273,100.9

N50 length 538,396 1,023,154 5,758,810

N90 length 14,603 143,036 158,429

(G + C)s 69.9% 71.2% 67.8%

F I G U R E  2   Anchor scaffolds from Pyropia haitanensis according 
to genetic maps. The red bar presents the linkage groups generated 
from genetic maps. The blue bar presents the chromosomes 
generated via genome assembly [Colour figure can be viewed at 
wileyonlinelibrary.com]

50
0

40
0

30
0

20
0

10
0

0

LG
1

ch
r1
LG
2

ch
r2
LG
3

ch
r3
LG
4

ch
r4
LG
5

ch
r5

TA B L E  3   Composition of repeat elements in genome of Pyropia haitanensis

Class Order Superfamily Number Length (bp) Percentage (%)

Interspersed repeats LTR Gypsy 413 1,327,093 2.49

  Copia 544 278,151 0.52

  Caulimovirus 83 114,994 0.22

  Other LTR 76 85,379 0.16

DNA CMC‐EnSpm 83 80,307 0.15

  PIF‐Harbinger 331 253,169 0.48

  PiggyBac 228 69,767 0.13

Unknown   10,009 2,874,529 5.40

Tandem repeats Microsatellite   26,822 1,695,878 3.18

Minisatellite   60,360 4,290,390 8.06

Satellite   3,586 1,776,700 3.34
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microsatellites were identified, accounting for 3.2% of the genome. 
In addition, 60,360 (8.1%) minisatellite and 3,586 (3.3%) satellite 
DNAs were identified. LTR elements represented the majority of 

the confirmed interspersed repeats, occupying 3.4% of the genome, 
while the DNA elements comprised 0.8% (Table 3, Figure 3). Among 
LTRs, 1,040 full‐length LTRs were predicted, 544 of which belonged 
to the Copia superfamily, 413 belonged to the Gypsy superfamily 
and 83 belonged to Caulimovirus superfamily. The remaining 76 
LTRs were not full length and occupied 0.2% of the genome. When 
compared with closely related species, we noticed that the Po. umbil‐
icalis genome had a substantial repeat element (43.9%) in its 87.7 Mb 
genome, including 17.7% DNA transposons (15.5 Mb) and 17.0% LTR 
elements (14.9 Mb) (Brawley et al., 2017). Comparison of the repeat 
landscape of the P. haitanensis genome and those in other species in 
red algae (Price et al., 2019) showed that the LTRs can be attributed 
to genome size variation.

3.5 | Gene prediction

After repeats' masking, de novo prediction predicted 11,725 gene 
models for P. haitanensis. Based on the homologous protein database 
established from the five red algae mentioned above, 31,389 protein‐
coding sequences were obtained. At the same time, we predicted 
11,871 gene models using pasa software. Finally, EVM was used to in-
tegrate these gene models from the above methods to obtain a gene 
data set with 10,930 protein‐coding sequences (ORFs), which is com-
parable to the gene repertoire of other sequenced red algae genomes 
(Bhattacharya et al., 2013; Brawley et al., 2017; Collén et al., 2013; 
Lee et al., 2018; Nozaki et al., 2007). These protein‐coding genes in 
P. haitanensis were further employed to analyse their functions using 
several public databases. We identified 7,356 and 10,374 genes that 
showed homology to proteins in the NR and InterPro databases, re-
spectively (Figure S4). A total of 3,147 genes were assigned to GO 

F I G U R E  3   A repeat landscape of the Pyropia haitanensis genome 
showing the expansion and decline of transposable elements 
[Colour figure can be viewed at wileyonlinelibrary.com]
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classifications. Based on KEGG analysis, we could annotate a total of 
1,830 genes (Table S2) and a total of 317 KEGG metabolic pathways 
in the genome of P. haitanensis (Figure S5). Moreover, the CAZyme 
database annotation showed that a total of 303 genes in the P. haitan‐
ensis genome were associated with carbohydrate metabolism‐related 
enzymes (Table S3). In addition, 7,041 genes in P.  haitanensis were 
assigned to CDD 1,295 superfamilies (Table S4).

3.6 | Gene family expansion and contraction

To estimate the gene family expansion and contraction, the genome 
of P. haitanensis combined with five available red algae and an out-
group species was selected to define the orthologous genes. We 
identified 622 single‐copy orthologous genes within P.  haitanensis 
and the other six species, which were used in phylogenetic analyses 
in the following study. Analysis suggested the divergence time of 
P. haitanensis and Po. umbilicals was 204.4 Ma (95% highest posterior 
density (HPD)=164.6–249.7 Ma), indicating that P. haitanensis was a 
more recently diverged lineage in the red algae (Figure 4).

A total of 493 orthologous groups (containing 2,514 genes) har-
boured more P.  haitanensis paralogs than Po.  umbilicals and were 
therefore defined as the expanded gene families. They mainly en-
coded ATP hydrolysis, nucleic acid metabolism, purine metabolism, 
cytoskeleton‐associated proteins, ion‐transporting proteins as 
well as E3 ubiquitin ligase, etc., according to their Pfam annotation 
(Tables S5 and S6). Meanwhile, 294 groups (containing 1,218 genes) 
with fewer P. haitanensis paralogs were defined as contracted gene 
families. These encoded phytochelatin synthase, sucrose trans-
porter, cytochrome c oxidase copper chaperone, etc. Although the 
two closely related species are similar in morphology and physiology, 
the existence of large amounts of expanded and contracted gene 
families among them suggests that different environmental pres-
sures have shaped their specific genetic contents to adapt to their 
individual habitats since they diverged from each other.

3.7 | ROS‐ABA signalling pathway‐related genes in 
P. haitanensis

ROS is an important secondary messenger that is poised at the core 
of signalling pathway in plants maintaining the normal metabolic 
fluxes and different cellular functions and responding to environ-
ment stresses (Quigley et al., 2009). The production of ROS in cell 
originated from NADPH oxidases (NOX) located different organelles 
(cell wall, chloroplast and mitochondria) (Bedard & Krause, 2007). 
The NOX in cell wall is also considered as ROS‐generating respira-
tory burst oxidase (RBOH). In higher plants, RBOH is a family with 
more than ten members (Suzuki et al., 2011). We identified 10 mem-
bers of RBOH in P. haitanensis, 8 in P. umbilicalis, 4 in C. crispus and 
2 in Cyanidioschyzon merolae (Table 4). Compared to single‐cell red 
algae, RBOH in P.  haitanensis endured significant expanding dur-
ing evolution. The numbers of AOX and PTX in P. haitanensis are 2, 
with no significant difference with other red algae species. Under 
the downstream signal pathway activated by ROS, MAPK cascade G
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is highly conserved and can be activated by phosphorylation (Xing, 
Ginty, & Greenberg, 1996). It plays major role in signal transduction 
of diverse stress responses even in combination of many stresses. 
The activation of MAPK cascade firstly is inhibited by MAPK re-
pressor while induced by ROS (Son et al., 2011). The dual‐specific-
ity protein tyrosine phosphatase (DSPTP) is MAPK repressor in ROS 
pathway (Martell, Angelotti, & Ullrich, 1998). Only 1 was identified, 
P. haitanensis; however, 8 and 5 was identified in single‐cell red algae 
species, P. purpureum and C. merolae, respectively. When the MAPK 
cascade was activated，the phosphorylation event can further acti-
vated many downstream factors, including transcript factors (TFs) 
etc. At present, MYB44, HSFA and ERF factors were identified to 
be activated by MAPK and involved in many stress and development 
process. We identified 16 MYB family TFs in P. haitanensis, including 
12 MYB‐like, respectively. Yet, only 1 HSFA was identified in P. hai‐
tanensis. There are no significant differences in the numbers of these 
two‐type TFs in all red algae species studied. It was noting that ERF 
factor did not exist in either specie, which is an important TFs in 
ethylene signalling pathway.

ABA signalling pathway plays important in response to envi-
ronmental stress, especially drought stress (Davies, Kudoyarova, & 
Hartung, 2005). The turning on of this pathway is dependent on the 
ABA receptor binding to ABA. Currently, the ABA receptor widely 
studied including PYR1/PYL/PCAR component. Its binding to ABA 
can inhibit PP2C, further inhibit OST1 kinase and activate MAPK. 
After that, the downstream response factors were activated. In ad-
dition, OST1 can activate the slow anion channel‐associated (SLAC). 
We did not identify the presence of PYR1/PYL/PCAR type receptor 
in either red algae, but identified G protein receptor (GPCR), which is 
another receptor binding to ABA. The number of GPCR in P. haitanen‐
sis is 3. There are 10 PP2C in P. haitanensis, yet only 5 in P. umbilicalis, 
which indicated this gene family endured expanding in P. haitanensis. 
OST1 (1) and SLAC (2) were also identified in different red algae with 
no significant difference in numbers. Numerous reports highlight 
the importance of the ROS‐ABA signalling pathway in responding to 
drought stress in higher plants (Cruz de Carvalho, 2008; Golldack, Li, 
Mohan, & Probst, 2014). These stress factors in the intertidal zones 
make Pyropia highly environmentally tolerant for different stress, in-
cluding osmotic stress, temperature stress and light stress (Hwang, 
Chung, & Oh, 1997). Therefore, we speculated that the expanded 
genes in ROS‐ABA signalling pathway were closely related to the 
ability of environmental adaptation in P. haitanensis.

4  | CONCLUSIONS

In this study, we reported a high‐quality nuclear genome of Pyropia 
haitanensis, a red algal species of great economic, ecological and 
research value. We adopted multiple sequencing techniques to 
achieve an assembly with high contiguity and coverage. The inves-
tigation of genome characteristics and functional features yields 
further insights regarding the phylogenetic diversity of P. haitan‐
ensis. This genome will not only be a fundamental resource for 

deciphering the molecular mechanisms underlying the develop-
mental processes of P. haitanensis and environmental adaptation 
mechanisms of intertidal seaweeds, but also help to reconstruct 
the evolutionary history of red algae.
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