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Abstract

Secretagogin (SCGN) is a recently discovered calcium-binding protein belonging to

the group of EF-hand calcium-binding proteins. SCGN immunostaining has been

described in various regions of the human, rat and mouse brain. In these studies, it has

been reported that, in general, the patterns of SCGN staining differ between rodents

and human brains. These differences have been interpreted as uncovering phylogenetic

differences in SCGN expression. Nevertheless, an important aspect that is not usually

taken into account is that different methods are used for obtaining and processing brain

tissue coming from humans and experimental animals. This is a critical issue since it has

been shown that post-mortem time delay and the method of fixation (i.e., perfused

vs. nonperfused brains) may influence the results of the immunostaining. Thus, it is not

clear whether differences found in comparative studies with the human brain are simply

due to technical factors or species-specific differences. In the present study, we analyzed

the pattern of SCGN immunostaining in the adult human hippocampal formation (DG,

CA1, CA2, CA3, subiculum, presubiculum, and parasubiculum) as well as in the entorhinal

and perirhinal cortices. This pattern of immunostaining was compared with rat and

mouse that were fixed either by perfusion or immersion and with different post-mortem

time delays (up to 5 hr) to mimic the way the human brain tissue is usually processed.

We found a number of clear similarities and differences in the pattern of labeling among

the human, rat, and mouse in these brain regions as well as between the different brain

regions examined within each species. These differences were not due to the fixation.
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1 | INTRODUCTION

Secretagogin (SCGN) is a recently discovered calcium-binding protein

belonging to the group of EF-hand Ca2+-binding proteins (Archer &

Wagner, 2000). As reported by Wagner et al. (2000), sequence analysis

shows that SCGN has six Ca2+-binding loops with typical EF-hand

tandem repeats and has marked homology to the Ca2+-binding proteins

calbindin D-28k and calretinin, which also have six EF-hand motifs.
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However, the distribution in the brain of calbindin D-28k-, calretinin-,

and SCGN-immunoreactive (-ir) neurons and neuropil immunostaining

is different (e.g., Arellano, Munoz, Ballesteros-Yanez, Sola, & DeFelipe,

2004; Barinka et al., 2012; Cho et al., 2011; Miettinen, Pitkanen, &

Miettinen, 1997; Seress et al., 1993; Wouterlood, van Denderen, van

Haeften, & Witter, 2000). SCGN has been less intensively studied

(particularly in the human brain) than the other calcium-binding pro-

teins, but it has been described in various regions of the human, rat,

and mouse brain (e.g., Gartner et al., 2001; Kosaka & Kosaka, 2013;

Mulder, Bjorling, et al., 2009; Mulder et al., 2010; Mulder, Zilberter,

et al., 2009; Wagner et al., 2000).

These studies reported that, in general, the patterns of SCGN-

immunoreactivity differ between rodents and human brains, although

few detailed comparative studies have been carried out. It seems that

SCGN labeling identifies certain neuronal subtypes and might be used

as a marker to delineate particular brain structures, as well as to identify

hierarchical organizing principles. Therefore, the study of SCGN-

immunoreactivity in the brain is of great interest. For example, in a recent

study in the mouse brainstem, few SCGN-ir cells were found, whereas

numerous SCGN-ir neurons were observed in the rat brainstem

(Kosaka & Kosaka, 2018). Another study reported that a subpopulation

of parvalbumin immunoreactive interneurons coexpressed SCGN in the

dorsal striatum of rats, but not in mice (Garas et al., 2016). Furthermore,

it has been shown that SCGN is expressed by cholinergic neurons in

embryonic basal forebrain and neuroblasts in the rostral migratory

stream in gray mouse lemurs, but not in mice. There are also differences

in SCGN immunostaining during development in the granule cell layer of

the dentate gyrus (DG) and pyramidal cell layer of CA1–CA3 fields

between gray mouse lemurs and mice (Mulder et al., 2010; Mulder,

Zilberter, et al., 2009). These differences have been interpreted by Mul-

der et al. as uncovering phylogenetic differences in SCGN expression.

More recently, it has also been reported that SCGN is expressed by

developing neocortical GABAergic neurons in humans but not in mice

(Raju, Spatazza, Stanco, Sorrells, & Kelley, 2017). In the human brain,

SCGN immunostaining has been described in both cerebellar basket and

stellate cells and in neurons of temporal, frontal, hippocampal, and hypo-

thalamic regions (Gartner et al., 2001). In addition, Attems et al. (2007)

reported that SCGN-immunoreactivity in the human hippocampus was

restricted to a subset of pyramidal neurons in subiculum, CA1, CA2,

CA3, and CA4 and that these cells were mostly unaffected by tau pathol-

ogy in patients with Alzheimer's disease (Attems et al., 2008).

Nevertheless, an important aspect that is not usually taken into

account is that different methods are used for obtaining and

processing brain tissue coming from humans and experimental ani-

mals. Indeed, it has been shown that post-mortem time (PT) delay and

the method of fixation (i.e., perfused vs. nonperfused brains) may

influence the results of the immunostaining (e.g., see Gonzalez-Riano

et al., 2017; Lavenex, Lavenex, Bennett, & Amaral, 2009). Thus, it is

not clear whether differences found in comparative studies with the

human brain are simply due to technical factors or species-specific dif-

ferences. In the present study, we analyzed the pattern of SCGN

immunostaining in the adult human hippocampal formation compared

with rat and mouse that were fixed either by perfusion or immersion

and with different PT delays (up to 5 hr) to mimic the way that the

human brain tissue is usually processed. We focused on the character-

ization of the pattern of SCGN-immunoreativity in different hippo-

campal fields (DG, CA1, CA2, CA3, subiculum, presubiculum, and

parasubiculum) as well as in the entorhinal (EC) and perirhinal (PRC)

cortices of the three species. We found a number of clear similarities

and differences in the pattern of labeling among the human, rat, and

mouse in these brain regions as well as between the different brain

regions examined within each species. These differences were not

due to the fixation.

2 | MATERIALS AND METHODS

2.1 | Humans

Human brain tissue was obtained at autopsy from the Unidad

Asociada Neuromax—Laboratorio de Neuroanatomía Humana,

Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete,

and the Laboratorio Cajal de Circuitos Corticales UPM-CSIC, Madrid,

Spain. The tissue was obtained following national laws and interna-

tional ethical and technical guidelines on the use of human samples

for biomedical research purposes. In this study, we used samples of

human brain tissue from 3 control human brains (subjects with no

recorded neurological or psychiatric alterations): 2 males, aged

45 (AB1) and 53 (AB3) and 1 female, aged 53 (AB2). The PT between

death and brain fixation varied between 1.5 and 4 hr (AB1: 1.5 hr;

AB3: 3.5 hr; and AB2: 4 hr PT). Tissue from human brain AB1 and

AB2 has been used in a previous study (Anton-Fernandez, Aparicio-

Torres, Tapia, DeFelipe, & Munoz, 2017). The cause of death was

pleural mesothelioma (case AB1), septic shock of pulmonary origin

(case AB2), and metastatic bladder carcinoma (case AB3). Upon

removal, the brains (AB2, AB3) were immediately fixed in cold 4%

paraformaldehyde (PFA) in 0.1 mol/L, pH 7.4 phosphate buffer (PB),

and sectioned into 1.5 cm-thick coronal slabs. The hippocampus was

cut into 1 cm blocks and post-fixed in the same fixative for 24–48 hr

at 4�C. Case AB1 was perfused through both internal carotid arteries

<1 hr after death with a saline solution followed by 4% PFA in PB. The

brain was then removed and post-fixed as described above. The tissue

blocks were then cryoprotected in 25% sucrose in PB and stored at

−20�C in a solution of glycerol, ethylene glycol and PB. Serial hippo-

campal sections (50 μm) of each case were obtained using a vibratome

(Leica VT2100S St. Louis, MO), and processed for histochemical and

immunohistochemical experiments. The sections immediately adjacent

to those stained immunohistochemically were Nissl-stained in order

to identify the hippocampal fields and the laminar boundaries.

2.2 | Animals

This study was performed in 2-month-old male C57BL/6 J mice and

3-month-old male Wistar albino male rats (Charles River Laboratories,

Wilmington, MA). Animals were kept in a 12:12-hr light/dark cycle

and received food and water ad libitum. All experimental protocols

involving the use of animals were performed in accordance with
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recommendations for the proper care and use of laboratory animals,

and under the authorization of the regulations and policies governing

the care and use of laboratory animals (EU directive no. 86/609 and

Council of Europe Convention ETS1 23, EU decree 2001-486 and

Statement of Compliance with Standards for Use of Laboratory Ani-

mals by Foreign Institutions no. A5388-01, National Institutes of

Health [USA]). Special care was taken to minimize animal suffering

and to reduce the number of animals used to the minimum required

for this study.

In order to perform comparative studies between human and

rodent species in the present study, we analyzed SCGN-ir in two

groups: one group of mice (n = 4) and another of rats (n = 6). All ani-

mals were anesthetized with a pentobarbital lethal injection

(40 mg/kg BW, Vetoquinol, Madrid, Spain) and transcardially perfused

with a saline solution followed by 4% PFA in PB. The brains were

removed from the skull and post-fixed by immersion in the same fixa-

tive for 20 hr at 4�C.

Furthermore, we tested the possible effects of 2 and 5 hr PT on

SCGN immunostaining in two groups of rats and two of mice. Rats

and mice were sacrificed with the same pentobarbital lethal injection

as described above. Thereafter, their brains were removed at 2 and

5 hr PT (n = 2 rats and n = 2 mice, for each time point) as described in

our previous study (Gonzalez-Riano et al., 2017), and fixed in PB-

buffered 4% PFA overnight (20 hr) at 4�C.

After rinsing in PB, the brain tissue from the six groups of animals

was cut into 50-μm-thick, coronal slices using a vibratome (Leica

VT2100S, St. Louis, MO). The brain tissue was processed as described

above and then processed for immunohistochemistry.

2.3 | Immunohistochemistry

The rabbit anti-SCGN antibody (RRID:AB_1079874) used in the pre-

sent study was obtained from Sigma-Aldrich (see below). This anti-

body was raised against recombinant human SCGN and has been

described, characterized and tested in detail for its specificity by

Mulder et al. (Mulder, Zilberter, et al., 2009, Mulder, Bjorling, et al.,

2009, Mulder et al., 2010, see also Ellis et al., 2019). Using immuno-

histochemical techniques with this antibody, SCGN has been detected

in the brain of various mammalian species including rat (Mulder,

Bjorling, et al., 2009), mouse and mouse lemur (Mulder et al., 2010;

Mulder, Zilberter, et al., 2009), ferret (Ellis et al., 2019), and

human (Raju et al., 2017). This anti-SCGN antibody has also been

characterized by performing western blot analysis, yielding a single

protein band of ~32 kDa in BRIN-BD11 insulinoma cell lysates

(Sanagavarapu, Weiffert, Ni Mhurchu, O'Connell, & Linse, 2016), rat

brain homogenates (Mulder, Bjorling, et al., 2009), extracts of different

brain areas from mouse brain (Mulder et al., 2010; Mulder, Zilberter,

et al., 2009), and ferret whole brain lysates (Ellis et al., 2019). The

rabbit anti-NeuN antibody (RRID:AB_10807945) employed in the

present study was obtained from Millipore (see below). It was charac-

terized by the manufacturer by performing immunohistochemistry

techniques in human (cerebellum and cerebral cortex) and mouse

(hippocampus) brain tissue sections, as well as western blot analyses

in mouse and rat brain tissue lysates, observing 2–3 bands in the

46–48 kDa range. Immunohistochemical experiments were carried

out in free-floating sections under moderate shaking. The endogenous

peroxidase activity was quenched in a solution of 1.66% hydrogen

peroxide in 50% ethanol in PB for 30 min at room temperature. After

several washes in 0.1 M phosphate buffer (pH 7.4) containing 0.3%

TritonX-100 (washing buffer), sections were incubated overnight at

4�C with one of the following primary antibodies: anti-NeuN (ABN78,

rabbit polyclonal, Millipore, Billerica, MA; diluted 1:2000) or anti-

SCGN (rabbit polyclonal Sigma-Aldrich Cat# HPA [Human Protein

Atlas Number] 006641, RRID:AB_1079874, St Louis, MO; diluted

1:1000). Primary antibodies were diluted in washing buffer containing

3% normal goat serum. After incubation with the primary antibody,

sections were then rinsed in buffer and incubated for 2 hr at room

temperature with biotinylated goat anti-rabbit immunoglobulin G

(BA1000, Vector laboratories, Burlingame, CA) diluted 1:250 in wash-

ing buffer. After several washes in buffer, sections were incubated for

1 hr at room temperature with avidin–biotin peroxidase complex

(ImmunoPure ABC, Pierce, Rockford, IL; diluted 1:125). Peroxidase

activity was revealed with 0.01% hydrogen peroxide, using 3,30-

diaminobenzidine (Sigma, St Louis. MO; 0.05%). Finally, sections were

mounted, dehydrated and coverslipped with DEPEX (VWR, Rannor,

PA). In addition, other sections were chosen for counterstaining with

toluidine blue (Merck, Darmstadt, Germany) with the purpose of iden-

tifying hippocampal fields and layers, as well as other brain areas.

Observations were made with a digital microscope (BX51, Olympus).

Immunostaining was absent when the primary antibody was omitted.

All the experimental groups were assayed in parallel.

3 | RESULTS

Since small changes visualized using immunohistochemical techniques

are typically found from experiment to experiment, even using sec-

tions from the same brains, subtle changes are difficult to interpret.

Thus, we were only looking for large, obvious differences between

species or in different experimental conditions. Therefore, we ana-

lyzed qualitatively the pattern of immunostaining for SCGN in the dif-

ferent subdivisions of the head and body portions of the human

hippocampus (Figures 1–5) (DG, CA1, CA2, CA3, subiculum,

presubiculum, and parasubiculum) as well as in the EC and PRC corti-

ces, according to the indications of the atlas of Mai, Majtanik, and

Paxinos (2016). In rats and mice, we examined these regions from

Bregma −2.04 to −6.60 (rat atlas; Paxinos & Watson, 2007) and from

Bregma −0.94 to −3.88 (mouse atlas, Paxinos & Franklin, 2001),

respectively, (Figures 6–10). In order to separate the different fields

of the hippocampal formation and the boundaries between them, we

used an antibody for NeuN, which specifically recognizes a soluble,

nuclear, neural vertebrate DNA-binding protein that is present in the

vast majority of mature neurons in both the central and peripheral

nervous systems of several vertebrate species, including humans

(Mullen, Buck, & Smith, 1992; Sarnat, Nochlin, & Born, 1998; Wolf

et al., 1996).
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F IGURE 1 Coronal sections of the human hippocampus at the level of the hippocampal body (a–d) and the hippocampal head (e, f ).
Low-power photographs from sections immunostained for anti-NeuN (a, c, e) and anti-SCGN (b, d, f ) from cases AB1 (a, b, e, f ) and AB3
(c, d). Note the similar pattern of SCGN immunostaining in the human cases as well as in the different levels of the hippocampus (body and
head). The labeled neuropil showed two types of staining (see also Figure 2): a dense brownish diffuse staining (Type I neuropil staining)
(solid arrows ), and a light diffuse staining (Type II neuropil staining) (open arrows). The area indicated by a rectangle in (d) is shown at a
higher magnification in Figure (3d). alv, alveus; CA1–CA3, hippocampal CA fields; DG, dentate gyrus; EC, entorhinal cortex; f, fimbria; gl,
granular layer; ml, molecular layer; Pas, parasubiculum; pl, polymorphic layer; PRC, perirhinal cortex; PrS, presubiculum; slm, stratum
lacunosum moleculare; sp, stratum piramidale; sr, stratum radiatum; Sub, subiculum; so, stratum oriens. Scale bar shown in (f ) indicates
1,460 μm in (a–d), 1,600 μm in (e), and 1,720 μm in (f ) [Color figure can be viewed at wileyonlinelibrary.com]
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3.1 | SCGN immunostaining patterns in the
hippocampal formation

The pattern of SCGN immunostaining in the human, rat, and mouse

hippocampus showed numerous similarities and also clear differences

between each of these species. Interestingly, some patterns of immu-

nostaining showed a higher degree of similarity between humans and

rats, whereas others had a greater degree of similarity between

humans and mice.

In general, the neuropil was either labeled or not labeled. The

labeled neuropil showed two types of staining: a dense brownish

diffuse staining (Type I neuropil staining), in which no individual

neuronal processes are distinguished (Figures 1b,d and 2b), and a

light diffuse staining (Type II neuropil staining), in which scattered

stained neuronal processes are observed (Figures 1b,d and 2b). We

also found two main types of labeling of neurons and their proxi-

mal processes: a dark brown (Golgi-like) staining (Type I neuronal

staining) (Figure 2b,c) and a light brownish staining (Type II neuro-

nal staining) (Figure 2b). Regarding the morphology of the SCGN-ir

cells, when the dendrites were clearly labeled (Type I neuronal

staining), it was observed that the vast majority showed a non-

pyramidal morphology (interneurons) in all species. Light labeled

cells were difficult to classify as pyramidal or nonpyramidal cells,

but they were considered pyramidal when their soma was a trian-

gular shape with a vertically oriented apical dendrite emerging

from it. In regions with pattern I neuropil staining, labeled neurons

were absent or only occasionally found (Figure 2a). Unless other-

wise specified, we will use “SCGN-ir cells” to refer to both Types I

and II neurons. What follows is a description of the SCGN staining

in the human, rat, and mouse.

3.1.1 | Pattern of SCGN immunostaining in the
human hippocampal formation

The hippocampus, together with the EC and PRC, parahippocampal

cortex, and HC, forms the medial temporal lobe system, considered

pivotal to memory (Eichenbaum & Lipton, 2008; Squire & Zola-

Morgan, 1991). In the head and body of the human hippocampus,

the fields with SCGN immunostaining were observed in the neuro-

pil of the pyramidal cell layer and strata oriens and radiatum of

CA1, CA2, and CA3, although these three fields exhibited differ-

ences in SCGN immunostaining intensity. As shown in Figures 1–4,

CA1 and CA2 show Type I neuropil staining, whereas CA3 and DG

display Type II neuropil staining. There is a clear decrease in SCGN

immunostaining in stratum lacunosum moleculare and alveus of

CA1–CA3 and in the outer two thirds of the molecular layer of the

DG. Furthermore, we observed a clear decrease in the staining of

the neuropil in strata pyramidale and radiatum of CA, close to the

subiculum.

The subiculum is the major output structure of the hippocampus

proper, which receives a large and robust projection from CA1 and in

turn sends its major projection to EC (Amaral, Dolorfo, & Alvarez-

Royo, 1991; O'Mara, 2006; O'Mara, Commins, Anderson, & Gigg,

2001). The subiculum has three layers with a deep, polymorphic layer;

a pyramidal cell layer containing the principal cells; and a molecular

layer, which is continuous with the stratum lacunosum moleculare of

field CA1 (Ding, 2013). As shown in Figures 1–4, the subiculum

showed a clear decrease in staining of the neuropil, and an increase in

the number of SCGN-ir cells (Figure 3d). Furthermore, we also

observed this pattern of staining in presubiculum and parasubiculum.

The CA1/subicular border is marked by a rather abrupt narrowing of

F IGURE 2 Photomicrographs from case AB3 illustrating the different patterns of SCGN immunostaining in the neuropil and neurons of
the human hippocampus (a–c). (a) Shows Type I neuropil staining (dense brownish diffuse staining: no individual neuronal processes are

distinguished. (b) Shows the three possible staining patterns of the neuropil; Type I neuropil staining in the inner third of the molecular
layer (ml); Type II immunostaining (light diffuse staining in which scattered stained neuronal processes are observed) in the polymorphic
layer (pl); and no labeling of the neuropil in the granular layer (gl) and outer upper molecular layer (ml). Some Type I (N I) and II (N II) SCGN-
ir neurons are indicated (arrows). (c) Illustrates a lack of staining of the neuropil while several Type I (N I) SCGN-ir neurons are observed
(arrows). Note the nonpyramidal cell morphology of the labeled cells in the subiculum (sub). CA1, CA1 field of the hippocampus; DG,
dentate gyrus; gl, granular layer; ml, molecular layer; pl, polymorphic layer; Sub, subiculum. Scale bar shown in (c) indicates 90 μm in all
panels [Color figure can be viewed at wileyonlinelibrary.com]
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the neuropil immunostaining of the CA1 pyramidal cell layer. In the

subiculum, SCGN-ir cells were found in all layers but they were

more abundant in the deep polymorphic layer. In the presubiculum,

SCGN-ir cells were more numerous in Layers II–III, whereas—in the

parasubiculum—SCGN-ir cells were localized in deep layers, mostly

Layer V (Figure 4c,d).

F IGURE 3 Photomicrographs
from case AB3 illustrating the
differences in the pattern of
SCGN staining in the DG, CA1–
CA3 (a–c), subiculum and
presubiculum (d). Rectangles in
(a) indicate the areas of
magnification in (b) and (c). Note
a clear decrease in SCGN
immunostaining of neuropil in the
alveus (alv) and in the stratum
lacunosum moleculare of CA1
and granular layer (gl) of the
DG. By contrast, there is an
intense neuropil staining in the
pyramidal cell layer in CA1, CA2,
and CA3 (a–c), and in the inner
third of molecular layer (ml) and
polymorphic layer of the DG (c).
CA1 shows very few
immunostained neurons, whereas
some stained neurons (arrows)
are present in CA2, CA3, and DG
(a–c). (d) Higher magnification of
the area indicated by a rectangle

in Figure 1d to show the sharp
decrease in staining of the
neuropil of CA1 close to the
subiculum. There is also a virtual
lack of immunostaining in the
neuropil of the subiculum and
presubiculum. alv, alveus; CA1,
CA1 field of the hippocampus;
CA2, CA2 field of the
hippocampus; CA3, CA3 field of
the hippocampus; DG, dentate
gyrus; gl, granular layer; ml,
molecular layer; pl, polymorphic
layer; PrS, presubiculum; slm,
stratum lacunosum moleculare;
sp, stratum piramidale; sr, stratum
radiatum; Sub, subiculum; so,
stratum oriens. Scale bar shown
in (d) indicates 240 μm in (a),
70 μm in (b) and (c), and 340 μm
in (d) [Color figure can be viewed
at wileyonlinelibrary.com]
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The EC is the main interface between the hippocampus and neocortex

(Insausti, Amaral, &Cowan, 1987), which projects to theDGand hippocam-

pal fields CA3 and CA1 via the perforant pathway (Kerr, Agster, Furtak, &

Burwell, 2007). In the EC, most SCGN-ir cells were located in Layer II, while

in Layer V these neurons were scarce (Figure 5a,d). In the PRC, which

includes Brodmann's areas 35 (A35) and 36 (A36), SCGN-ir cells were

located mainly in Layers II–III of A35 (Figure 5b,e) as well as in deep layers,

whereas A36 showed scattered cells throughout all layers, although fewer

immunoreactive cellswere found in deep layers (Figure 5c,f).

3.1.2 | Pattern of SCGN immunostaining in the rat
hippocampal formation

This study was carried out in the brain of animals that were either per-

fused or fixed by immersion after different PT delays. In hippocampus,

the pattern of immunostaining in the rat hippocampal formation

showed notable differences in comparison to humans. Furthermore,

we found clear differences in the pattern of immunostaining between

dorsal and ventral hippocampal regions. In the dorsal zone, the label-

ing of neurons and neuropil was found mainly in the strata lacunosum

moleculare, radiatum, pyramidale, and oriens of CA1, which extended

to the fasciola cinerea (Figures 6a,c,d and 7a). We observed—

especially in the border of CA1 and the fasciola cinerea—a relatively

large number of cell bodies and fibers in the neuropil (Figure 6a), and

a decrease in labeling of the neuropil and somata, in stratum pyr-

amidale of CA2 and CA3 (Figure 7c), and in the granular and polymor-

phic layers of the DG (Figure 7a). In the granular layer of DG, there

were few or no Type II SCGN-ir cells in the subgranular zone

(Figures 6a,c and 7a). Curiously, in the temporal extreme, the DG had

relativity more SCGN-ir cells in the inner third of the molecular layer,

F IGURE 4 (a, b) Low-power photographs of sections stained for SCGN (a) and NeuN (b) from case AB3 and higher magnification of SCGN
immunostaining of cells in the subiculum, presubiculum, and parasubiculum. Rectangles in (a) indicate the areas of magnification in (c, d) and in Figure 5.
(c, d) Higher magnification photomicrographs showing Type II SCGN cells in Layers II–III of the presubiculum (c) and in layer V of the parasubiculum (d).
Note the differences in the distribution of Type II SCGN-ir cells between the layers, with them being more abundant in Layers II–III in presubiculum
(c) and in Layer V in parasubiculum (d). A35, area 35; A36, area 36; EC, entorhinal cortex; Pas, parasubiculum; PRC, perirhinal cortex; PrS, presubiculum;
Sub, subiculum. Scale bar shown in (d) indicates 2,300 μm in (a) and (b), 100 μm in (c) and (d) [Color figure can be viewed at wileyonlinelibrary.com]
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similar to human brain (Figure 6e). The hilus exhibited intense labeling

in the neuropil and a relatively large number of SCGN-ir cells in the

polymorphic layer of the DG. Moreover, there were fewer labeled

somata in the stratum pyramidale of CA1, relative to the dorsal zone

(Figure 6e). Another difference that could be observed along the

dorso-ventral axis was neuropil staining of strata pyramidale,

radiatum, and lacunosum moleculare of CA1, which waned gradually

and faded out in the ventral part of the hippocampus (Figure 6e).

In the subiculum, pre- and parasubiculum, the SCGN immuno-

staining was observed mainly in cell bodies. The pyramidal cell layer of

the subiculum contains deep aspects (adjacent to the alveus) and

superficial aspects (adjacent to the molecular layer of the subiculum)

(Drexel, Preidt, Kirchmair, & Sperk, 2011). We observed that the dor-

sal and ventral zones of the subiculum had different distribution pat-

terns (Figures 6e and 8a,c,d). At the ventral subiculum (VS), a relatively

large number of SCGN-ir cells were observed next to the border with

the alveus (deep layer). However in the dorsal zone, the stained cells

were scattered through the subiculum, and the superficial pyramidal

layer had mostly Type-I SCGN-ir somata. The presubiculum only had

SCGN immunostaining in the neuropil and the parasubiculum in

somata (Figure 8e).

In rodents, the EC has two main classical subdivisions, namely the

lateral and medial entorhinal area (LEA and MEA, respectively), with

three subdivisions having been described for LEA and two for MEA

(Insausti, Herrero, & Witter, 1997; van Groen, 2001). In the present

work, the observations have been focused on the LEA. In this sub-

dicision of the EC, SCGN-ir cells were mainly located in deep Layers

V–VI (Figure 9c,d). In the PRC (comprising area 35 and area 36)

exhibited SCGN-ir somata mainly in Layers III and V, although they

were observed in other layers (Figure 9f).

Although in the present study we have focused on the hippo-

campal formation, as well as the EC and PRC, we observed in the

rat and mouse an intense immunostaining for SCGN in other brain

areas such as the superior colliculus (SC), the peripeduncular

nucleus (PP) (Figure 6e), and the basolateral amygdaloid nucleus

(BLP) (Figure 9a). These other brain regions were not examined in

the human brain.

3.1.3 | Pattern of SCGN immunostaining in the
mouse hippocampal formation

The pattern of SCGN located in the mouse hippocampus was also dif-

ferent compared to rat and human, although some similarities were

shared between mouse and each of the other two species. Appar-

ently, the mouse hippocampus does not show differences between

the dorsal and ventral zones as pronounced as in the rat hippocampus,

although our observations revealed a decrease in the intensity of

labeling in all the layers of ventral hippocampus (Figure 6b,d,f).

F IGURE 5 Higher magnification
of the areas indicated by a rectangle
in Figure 4a. (a–c) SCGN-ir cells in the
upper layers of the entorhinal cortex
(EC) (a); perirhinal cortex-area
35 (PRC-A35) (b); and perirhinal
cortex-area 36 (PRC-A36) (c). (d–f)
Labeled neurons in deep layers of EC,
PRC-A35, and PRC-A36. Note the
nonpyramidal cell morphology of the
labeled cells. Scale bar shown in (f)
indicates 90 μm in all panels [Color
figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 6 Coronal sections of the rat and mouse brain (from perfused brains). Low-magnification photomicrographs showing
differences in the general pattern of SCGN immunostaining of sections from the rat (a, c, e) and mouse (b, d, f ) brains. alv, alveus; AHi,
amygdalohippocampal area, posteromedial part; APir, amygdalopiriform transition area; BLP, basolateral amygdaloid nucleus, posterior part;
CA1, CA1 field of the hippocampus; CA2, CA2 field of the hippocampus; CA3, CA3 field of the hippocampus; DG, dentate gyrus; DS, dorsal
subiculum; EC, entorhinal cortex; FC, fasciola cinerea; gl, granular layer; ml, molecular layer; Pas, parasubiculum; pl, polymorphic layer; PP,
peripeduncular nucleus; PRC, perirhinal cortex; PrS, presubiculum; SC, superior colliculus; SG, suprageniculate thalamic nucleus; slm,
stratum lacunosum moleculare; so, stratum oriens; sp, stratum piramidale; sr, stratum radiatum; VS, ventral subiculum. Scale bar shown in (f )
indicates 490 μm in (a–d) and 670 μm in (e) [Color figure can be viewed at wileyonlinelibrary.com]
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In the dorsal hippocampus, the fasciola cinerea exhibited an intense

labeling in neuropil and somata (Figure 6b,d). Furthermore, it could be

observed clearly that—as was the case in human hippocampus—the

pyramidal cell layer of CA1 did not display cellular immunostaining, or it

was weak in this layer. A similar pattern was seen in CA3, where the

labeling was more intense in the neuropil, especially in mossy fibers. On

the other hand, intense staining was observed in somata located in the

pyramidal cell layer of CA2 and also in the neuropil consistently immu-

nostained for SCGN (Figure 6b,d), which allowed the boundaries of

CA2 to be displayed clearly (Figures 6b,d and 7d). Interestingly, this

staining faded out in the ventral zone of the hippocampus. By contrast,

this pattern of staining in CA2 was not present in the rat hippocampus

(Figures 6a,c and 7c,d). The SCGN labeling in the neuropil was also

detected in the stratum oriens of CA1 that exhibited strong SCGN

staining, as well as in the strata radiatum and lacunosum moleculare,

and it decreased along the dorso-ventral axis, eventually disappearing

(Figure 6f). The DG displayed a darkly stained granular cell layer,

particularly close to the boundary with the molecular layer. This

pattern of immunostaining was different from that observed in the

rat and human hippocampi (Figure 6b). The molecular cell layer was

intensely immunostained in the neuropil and some scattered

SCGN-ir somata were found (Figure 7b).

At ventral levels of the hippocampus, the pattern of labeling

showed a decrease in the immunoreactivity—although the distribution

was quite similar to the dorsal hippocampus (Figure 6f), especially in

the molecular and polymorphic layers and stratum oriens. The granular

layer exhibited a decrease of SCGN-ir cells compared to the septal

pole. At this level, the pattern of labeling was the opposite to that

found in rat ventral hippocampus (Figure 6e,f).

The subiculum, unlike the human hippocampus, displayed very

few labeled cell bodies at dorsal and ventral levels (Figures 6f and 8b,

f–h), although some SCGN-ir cells were found in the subiculum, and

these cells were more numerous at the ventral portion of the hippo-

campus (Figures 6f and 8b,f). The presubiculum and parasubiculum

had no Type I SCGN-ir cells, although in the presubiculum a few

weakly immunostained Type II SCGN-ir cells were observed and the

neuropil was also stained (Figure 8b,g–h).

Likewise, in the EC and PRC, scarce and very weakly immuno-

stained SCGN-ir cells were detected throughout the cortical layers,

showing a pronounced difference with respect to the human and rat

F IGURE 7 Differential pattern of SCGN immunostaining in rat (a, c) and mouse (b, d) hippocampal field (from perfused brains). Note that in
the rat there are SCGN-ir cells located in the stratum pyramidale in CA1 (a) and CA2 (c) (arrows). In the mouse (b, d), there are no immunostained
neurons in the stratum pyramidale of CA1 (b) but these are present in CA2 (d) (arrow). Furthermore, there is a virtual lack of immunostaining in
the DG of the rat (a) in contrast to the mouse (b), where the neuropil is stained as well as the granule cells (arrows). alv, alveus; CA1, CA1 field of
the hippocampus; CA2, CA2 field of the hippocampus; CA3, CA3 field of the hippocampus; DG, dentate gyrus; gl, granular layer; ml, molecular
layer; pl, polymorphic layer; slm, stratum lacunosum moleculare; so, stratum oriens; sp, stratum piramidale; sr, stratum radiatum. Scale bar shown
in (d) indicates 100 μm in (a, c, and d) and 70 μm in (b) [Color figure can be viewed at wileyonlinelibrary.com]

532 TAPIA-GONZÁLEZ ET AL.

http://wileyonlinelibrary.com


cortex (Figure 9b,e,g). It should be noted that some SCGN-ir somata

were labeled intensely, chiefly in Layers V and VI of the somato-

sensorial and auditory cortices.

In other brain regions, strong immunoreactivity against SCGN was

visualized; for example in the SC, the PP, the BLP, and the post-

eromedial part of the amygdalohippocampal area (AHi) (Figure 6f),

F IGURE 8 Legend on next page.
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F IGURE 8 Differential distribution of SCGN immunostaining in the rat andmouse subicular complex (from perfused brains). (a, b) Low-magnification
photomicrographs showing SCGN immunostaining of sections from subicular complex and neocortex of the perfused brains of rat (a) andmouse (b). The
areas indicated by rectangles in (a) and (b) indicate the areas ofmagnification in (c–h). In (c), note the presence of scattered Types I and II SCGN-ir cells in the
deep and superficial pyramidal layers of the dorsal subiculum,whereas—in the ventral subiculum—mostly SCGN-ir cells are detected, especially close to the
boundarywith the alveus (d). As shown in (e), the parasubiculumdisplays Types I and II SCGN-ir cells, whereas—in the presubiculum—there is labeling of the
neuropil with fewor no Type II SCGN-ir cells. Note that in the brain ofmouse (b), there is an intense staining of neuropil in the subiculum, presubiculum, and
parasubiculum (f–h) and fewType II SCGN-ir cells located in subiculum, especially at the ventral portion of the hippocampus (f). alv, alveus; CA1, CA1 field
of the hippocampus; DS, dorsal subiculum; EC, entorhinal cortex; ml, molecular layer of the dentate gyrus; mlS, molecular layer of the subiculum; Pas,
parasubiculum; pl, polymorphic layer; PRC, perirhinal cortex; PrS, presubiculum; SC, superior colliculus; Sub, subiculum; VS, ventral subiculum. Scale bar
shown in (h) indicates 580 μm in (a), 460 μm in (b), 110 μm in (c–h) [Color figure can be viewed atwileyonlinelibrary.com]

F IGURE 9 Differential distribution of SCGN immunostaining in rat and mouse brain (from perfused brains). (a, b) Low-magnification
photomicrographs showing SCGN immunostaining of sections to illustrate the differential pattern of immunostaining at the level of the entorhinal
and perirhinal cortices in the rat (a) and mouse (b). The areas indicated by rectangles in (a) and (b) indicate the areas of magnification in (c–g). Note
that in the rat EC (c, d), SCGN-ir cells are present in all layers but they are mainly located in Layers V–VI. However, in the EC of the mouse (e),
SCGN-ir cells are virtually absent. In PRC A35-A36 of the rat (f), there are SCGN-ir cells located in all layers. However, in the PRC A35-A36 of the
mouse (g), very few SCGN-ir cells were present. BLP, basolateral amygdaloid nucleus, posterior part; EC, entorhinal cortex; LaDL, lateral amygdaloid
nucleus, dorsolateral part; LaVM, lateral amygdaloid nucleus, ventromedial part; PRC, perirhinal cortex. Scale bar shown in (g) indicates 720 μm in (a),
570 μm in (b), and 90 μm in (c–g) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 10 Comparison of the patterns of SCGN-immunoreactivity in the hippocampus of the rat and mouse from brains fixed by perfusion
or by immersion. (a–d) Low-magnification photomicrographs showing the distribution patterns of SCGN-immunoreactivity in sections through the
CA1 and DG of rat brain fixed by perfusion (a and c) or by immersion after 5 hr PT (b, d). (e–h) Low-magnification photomicrographs showing the
distribution patterns of SCGN immunostaining in sections through CA1 and DG of mouse brain fixed by perfusion (e, g) or by immersion after
5 hr PT (f, h). Note the similar pattern of immunostaining obtained for the two experimental conditions (perfused vs. fixed by immersion after 5 hr
PT). alv, alveus; CA1, CA1 field of the hippocampus; CA2, CA2 field of the hippocampus; CA3, CA3 field of the hippocampus; DG, dentate gyrus;
gl, granular layer; ml, molecular layer; pl, polymorphic layer; slm, stratum lacunosum moleculare; so, stratum oriens; sp, stratum piramidale; sr,
stratum radiatum. Scale bar shown in (h) indicates 90 μm in all panels [Color figure can be viewed at wileyonlinelibrary.com]
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where, curiously, an intense neuropil staining was observed, especially

in the border between VS and the posteromedial part of the

amygdalohippocampal area (Figure 6f). This was not found in rat brain

(Figure 6e).

3.1.4 | Pattern of SCGN immunostaining in rodent
brains fixed by immersion after different post-mortem
delays

We tested the possible effects of fixation by immersion after 2 and

5 hr PT delays on the immunostaining for SCGN in rat and mouse

brains, as described in our previous study (Gonzalez-Riano et al.,

2017). As shown in Figure 10, in general, the pattern of immuno-

staining was similar in brains fixed by perfusion or by immersion after

up to 5 hr PT delay, in both rats (Figure 10a–d) and mice (Figure 10 e–

h). The only apparent difference was a general decrease in the inten-

sity of the labeling of Type II cells.

4 | DISCUSSION

In the present study, we have demonstrated clear differences and sim-

ilarities in the pattern of SCGN immunostaining among the human,

rat, and mouse hippocampal formation (DG, CA1, CA2, CA3, sub-

iculum, presubiculum, and parasubiculum) as well as in the EC and

PRC. We also found obvious differences and similarities between the

different brain regions examined within each species (Tables 1–3 and

Figure 11). None of these features were due to methodological fac-

tors, since the general pattern of immunostaining was similar in brains

fixed by perfusion or by immersion after up to 5 hr PT delay, that is,

similar to the way in which human brain tissue is obtained and

processed. Importantly, the present results also indicate that PT

delays of up to 5 hr do not affect the general pattern of SCGN label-

ing. Furthermore, some patterns were different between the human

and either rat or mouse as well as between the two nonhuman species

themselves. For example, the pyramidal cell layer of human CA1 (both

at the level of the hippocampal body and the hippocampal head)

shows an intense neuropil staining but very few SCGN-ir cells. How-

ever, regarding rat and mouse, the pyramidal cell layer of CA1 in the

dorsal hippocampus showed immunostaining of both neuropil and

neurons in the rat, while in the mouse the neuropil was stained but

very few SCGN-ir cells were found. Furthermore, in rodents, there

was a clear difference in the staining between the dorsal and ventral

hippocampal formation, with a notable decrease in immunostaining in

the ventral region. Another interesting example is regarding the

human PrS and Pas which showed numerous SCGN-ir cells, whereas

no or rarely labeled cells were found in the PrS of rat and mouse.

However, SCGN-ir cells were observed in Pas of rat, but not in mouse.

Finally, in the human and rat EC and PRC, there were intensely sta-

ined SCGN-ir cells (Type I cells), although the distribution patterns dif-

fered throughout the cortical layers. In the mouse EC and PRC, only

occasional and weakly labeled SCGN-ir cells were observed. Regard-

ing the morphology of the SCGN-ir cells, when the dendrites were

well labeled, it was observed that the vast majority showed a non-

pyramidal morphology (indicating interneurons) in all species. Light

labeled cells were hard to classify as pyramidal or nonpyramidal cells,

but they were considered pyramidal when their soma had a triangular

shape and a vertically oriented apical dendrite emerging from it

(e.g., in CA2 of the mouse and CA1 of the rat). The pattern of immu-

nostaining that we observed in the human hippocampus is different to

that observed by Attems et al. (2007). These authors examined the

human hippocampus and EC and reported that both cellular and neu-

ropil immunoreactivity were restricted to the subiculum and hippo-

campus and that, at the cellular level, only pyramidal cells in CA1–CA4

or the hilar region of the DG were stained. However, there are impor-

tant methodological differences between our study and that of

Attems and colleagues. They used human brain tissue with a PT inter-

val that ranged from 6 to 18 hr; the brain tissue was fixed in 7.5%

formaldehyde; they used paraffin-embedded tissue; and before immu-

nostaining, they incubated the sections in citrate-buffer in a micro-

wave oven (3 min, 630 W and 30 min, 240 W) (antigen retrieval).

However, in our study we used human brain tissue with a PT interval

ranging from 1.5 to 4 hr; the brain tissue was fixed in 4% PFA; and

the brain tissue was directly cut using a vibratome and processed for

immunohistochemical experiments without antigen retrieval; that is,

similar to the way in which tissue is usually processed in experimental

animals.

In the human hippocampus, evidence of a possible functional seg-

regation into the anterior and posterior zones has been reported

(Strange, Witter, Lein, & Moser, 2014). Briefly, in humans, memory

TABLE 1 Summary of the pattern of SCGN-immunoreactivity in
the human hippocampus, subiculum, pre- and parasubiculum, EC,
and PRC

Human brain area
Labeling type

Neuropil Neurons

Hippocampus

CA1 Type I: so, sp, sr

Type II: alv

No or occasional labeling

CA2 Type I: so, sp, sr, slm

Type II: alv

Type II: so, sp

CA3 Type I: so, sp, sr, slm

Type II: alv

Types I and II: so, sp

DG Type II: ml

(inner third), pl

Type II: pl

Subiculum No labeling Types I and II: ml, sp, pl

Presubiculum No labeling Types I and II: Layers II–III

Parasubiculum No labeling Types I and II: Layer V

EC No labeling Types I and II: Layers II, V

PRC-A35 No labeling Types I and II: Layers II, V

PRC-A36 No labeling Types I and II: Layers II, III, V

Abbreviations: alv, alveus; CA1, CA2 and CA3 fields of the hippocampus;

DG, dentate gyrus; EC, entorhinal cortex; ml, molecular layer;

pl,polymorphic layer; PRC-A35, perirhinal cortex-area 35; PRC-A36,

perirhinal cortex-area 36; slm, stratum lacunosum moleculare; so, stratum

oriens; sp,stratum piramidale; sr, stratum radiatum.
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systems present a double dissociation between semantic processing

in the anterior hippocampus and nonsemantic processing in the poste-

rior hippocampus (Chua, Schacter, Rand-Giovannetti, & Sperling,

2007; Giovanello, Schnyer, & Verfaellie, 2009; Strange et al., 2014).

Also, in episodic memory, detailed spatial or autobiographical memory

engages the posterior hippocampus (Addis, Moscovitch, Crawley, &

McAndrews, 2004; Hirshhorn, Grady, Rosenbaum, Winocur, &

Moscovitch, 2012). In spatial cognition, some studies have demon-

strated a double dissociation in anterior versus posterior human hip-

pocampal responses (Nadel, Hoscheidt, & Ryan, 2013; Strange,

Fletcher, Henson, Friston, & Dolan, 1999). In the present study, a

similar pattern of SCGN labeling was found at the level of the head

and body of the human hippocampus. Therefore, the similar pattern

of immunostaining along the anterior–posterior axis of the hippocam-

pus seems to be unrelated to the functional differences between the

head and body of the hippocampus.

This is in sharp contrast to the SCGN labeling in rodents, which is

strong in the dorsal hippocampus and gradually decreases to the point

of almost disappearing more ventrally. In the rodent brain, it has been

reported that there is a functional segregation of the hippocampus

into dorsal, intermediate, and ventral zones, where the dorsal hippo-

campus mediates cognitive functions, especially spatial memory,

TABLE 2 Summary of the pattern of SCGN-immunoreactivity in
the rat hippocampus, subiculum, pre- and parasubiculum, EC, PRC,
and other brain areas

Rat brain area
Labeling type

Neuropil Neurons

Dorsal hippocampus

CA1 Type II: so,

sp, sr, slm, fc

Types I and II: so, sp

CA2 No labeling Types I and II: so, sp

CA3 No labeling No or occasional

labeling: so, sp

DG No labeling Types I and II: gl, pl

Dorsal subiculum Type II Types I and II: deep/

superficial pcl

Ventral hippocampus

CA1 No labeling Types I and II: so, sp

DG Type II: ml

(inner third), pl

Types I and II: pl

Ventral subiculum Type II Types I and II: deep pcl

Presubiculum Type II No or occasional labeling

Parasubiculum Type II Type II

EC Type II Types I and II: Layers V, VI

PRC-A35 Type II Types I and II: Layers III, V

PRC-A36 Type II Types I and II: Layers III, V

LaDL/ LaVM Type I Types I and II

BLP Type II No or occasional labeling

APir Type II No or occasional labeling

AHi No labeling No labeling

SC Type II Types I and II

SG Type II Types I and II

PP Type II Types I and II

Abbreviations: AHi, amygdalohippocampal area,posteromedial part; APir,

amygdalopiriform transition area; BLP, basolateral amygdaloid nucleus,

posterior part; CA1, CA2 and CA3 fields of the hippocampus; DG, dentate

gyrus; EC, entorhinal cortex; fc, fasciola cinerea; LaDL, lateral amygdaloid

nucleus, dorsolateral part; LaVM, lateral amygdaloid nucleus; gl, granular

layer; ml, molecular layer; pcl, pyramidal cell layer; pl, polymorphic layer;

PRC-A35, perirhinal cortex-area 35; PRC-A36, perirhinal cortex-area 36;

PP, peripeduncular nucleus; SC, superior colliculus; SG, suprageniculate

thalamic nucleus; slm, stratum lacunosum moleculare; so, stratum oriens;

sp, stratum piramidale; sr, stratum radiatum.

TABLE 3 Summary of the pattern of SCGN-immunoreactivity in
the mouse hippocampus, subiculum, pre- and parasubiculum, EC, PRC,
and other brain areas

Mouse brain area
Labeling type

Neuropil Neurons

Dorsal hippocampus

CA1 Type II: fc, so, sr, slm No or occasional

labeling

CA2 Type II: fc, so, sr, slm Type II: sp

CA3 Type II: fc, so, sr, slm No or occasional

labeling

DG Type I: pl, ml Types I and II: gl

Dorsal subiculum Type II Type II: deep/

superficial pcl

Ventral hippocampus

CA1 Type II No or occasional

labeling

DG Type I: pl, ml No labeling

Ventral subiculum Type II Types I and II

Presubiculum Type I Type II

Parasubiculum Type I No or occasional

labeling

EC Type I No labeling

PRC-A35 Type I No labeling

PRC-A36 Type I No labeling

BLP Type I No labeling

APir Type I No labeling

AHi Type I No or occasional

labeling

SC Type II Types I and II

SG Type II No labeling

PP Type II No labeling

Abbreviations: AHi, amygdalohippocampal area,posteromedial part; APir,

amygdalopiriform transition area; BLP, basolateral amygdaloid nucleus,

posterior part; CA1, CA2 and CA3 fields of the hippocampus; DG, dentate

gyrus; EC, entorhinal cortex; fc, fasciola cinerea; gl, granular layer; ml,

molecular layer; pcl, pyramidal cell layer; pl: polymorphic layer; PRC-A35,

perirhinal cortex-area 35; PRC-A36, perirhinal cortex-area 36; PP:

peripeduncular nucleus; SC, superior colliculus; SG, suprageniculate

thalamic nucleus; slm, stratum lacunosum moleculare; so, stratum oriens;

sp, stratum piramidale; sr, stratum radiatum.
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whereas the ventral hippocampus is involved in emotional responses

(Fanselow & Dong, 2010). The ventral hippocampus seems to have a

preferential role in the regulation of emotional behavior in rodents

(LeDoux, 2000), and behavioral deficits correlate with the loss of hip-

pocampal hilar neurons after kainate treatment mainly in the ventral

pole of the DG (Maia et al., 2014). Since SCGN labeling is intense in

F IGURE 11 Graphical
representations derived from human,
rat, and mouse coronal sections,
illustrating the pattern of SCGN
immunostaining in neuropil and
somata, through hippocampal
formation (CA1, CA2, CA3, DG,
subiculum, presubiculum, and
parasubiculum), entorhinal (EC), and
perirhinal (PRC) cortices. The areas
labeled in dark gray, light gray, or
white indicate Types I, II neuropil
staining or no staining in neuropil,
respectively. The circles in dark and
light gray indicate Types I and II
neuronal staining, respectively. The
presence of occasional
immunostained Type I or II somata
are not represented in the schemes.
alv, alveus; CA1, CA2, and CA3 fields
of the hippocampus; DG, dentate
gyrus; DHc, dorsal hippocampus; DS,
dorsal subiculum; EC, entorhinal
cortex; gl, granular layer; Hc,
hippocampus; ml, molecular layer;

Pas, parasubiculum; Pcl, pyramidal
cell layer; pl, polymorphic layer; PRC-
A35, perirhinal cortex-area 35; PRC-
A36, perirhinal cortex-area 36; PrS,
presubiculum; slm, stratum
lacunosum moleculare; so, stratum
oriens; sp, stratum piramidale; sr,
stratum radiatum; Sub, subiculum;
VHc, ventral hippocampus; VS, entral
subiculum. Asterisks in VHc indicate
that only CA1 is represented in the
ventral hippocampus, since virtually
no labeling or occasional stained cells
were found in CA2, CA3, and
DG. See text for further details
[Color figure can be viewed at
wileyonlinelibrary.com]
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the dorsal hippocampus and almost disappears ventrally in rodents, it

is tempting to speculate that this differential pattern is related to the

functional segregation of the hippocampal formation. However, there

are also other studies showing similarities and differences in neuronal

composition between the dorsal and ventral hippocampus. For exam-

ple, parvalbumin-ir neurons show no dorso-ventral difference in any

subdivisions of the hippocampus, whereas the density of neurons

immunostained for calretinin, nitric oxide synthase, and somatostatin

is significantly larger in ventral levels than at dorsal levels of the hip-

pocampus (Nomura et al., 1997a, 1997b).

In general, Ca2+-binding proteins in the brain play important roles

in the initiation and maintenance of long-term potentiation—and

hence in learning and memory (Molinari et al., 1996; Schurmans et al.,

1997). Although the Ca2+-binding protein content does not define the

main functional role of the cells, it seems that SCGN could play differ-

ent roles in the modulation of cellular firing properties and the timing

of the neurotransmitter released by eliminating intracellular Ca2+ from

the cytosol (Rogstam et al., 2007). SCGN has also been related to an

increase in neurite length and complexity by promoting calcium-

dependent exocytosis of plasmalemmal precursor vesicles in growth

cones in diverse neuronal subtypes (Raju et al., 2017). Finally, SCGN

may also play a role in the regulation of the release factors related to

the survival or development of new neurons in the olfactory bulb and

DG (Mulder, Zilberter, et al., 2009). However, the possible significance

of the dorso-ventral differences in SCGN in rodents but not in the

anterior–posterior axis in humans is difficult to determine. First, there

are multiple neural systems involved in the different functional attri-

butes of the hippocampal formation and second, these systems may

differ between the three species regarding cytoarchitectonic and neu-

rochemical characteristics as well as in terms of the patterns of

connectivity.

4.1 | Evaluation of post-mortem delay and fixation in
rodents

The PT delay and the method of fixation are important factors to be

taken into account when interpreting immunocytochemical staining.

For example, previous studies in the mouse hippocampus in our labo-

ratory described changes in immunoreactivity depending on both the

PT delay and on whether parvalbumin or calbindin D-28k was used

(Gonzalez-Riano et al., 2017). Since the goal in the present study was

to compare between human, rat, and mouse, we investigated the pos-

sible effects of these technical factors in the mouse and rat to deter-

mine whether the possible differences in immunostaining between

these species were simply methodological. We have not found appar-

ent differences in the general pattern of SCGN staining in the mouse

or rat, up to 5 hr of PT. Nevertheless, we observed a decreased inten-

sity of the SCGN immunostaining at 2 hr PT, with this decrease

becoming more evident at 5 hr PT in both species. In rat hippocampus,

there was a decrease in the type II SCGN-somata (lightly labeled cells)

in CA1 and CA2 and in the subgranular zone of the DG. In mouse

brain there was a decrease in the labeling of type II SCGN-somata in

the granular cell layer of DG. Therefore, the differences between the

pattern of SCGN immunostaining in the hippocampal formation found

in the present study between the human and rodents are not due to

the fixation.
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