
230  |  	﻿�  Immunological Reviews. 2020;293:230–252.wileyonlinelibrary.com/journal/imr

1  | INTRODUC TION

Infection with Plasmodium falciparum parasites causes the most se‐
vere form of malaria that is responsible for essentially all malaria‐
related deaths. The ability of P.  falciparum‐infected erythrocytes 
(IEs) to adhere efficiently to host vascular receptors sets this para‐
site aside from the other malaria parasites infecting humans, and is 

generally considered an important reason why P. falciparum malaria 
is particularly dangerous.

IE adhesion is called sequestration when the IEs stick to tissue‐
bound receptors, rosetting when they stick to uninfected erythro‐
cytes, and clumping when the IEs stick to each other. It can lead 
to circulatory disturbances, vascular occlusion, and inflammation. 
In all cases, the IEs interact with host receptors via members of 

 

Received: 29 August 2019  |  Revised: 4 September 2019  |  Accepted: 9 September 2019

DOI: 10.1111/imr.12807  

I N V I T E D  R E V I E W

Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in 
its pathogenesis and immunity, and PfEMP1‐based vaccines to 
prevent it

Anja Ramstedt Jensen1  |   Yvonne Adams1  |   Lars Hviid1,2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Immunological Reviews published by John Wiley & Sons Ltd.

This article is part of a series of reviews covering Immunity to Malaria appearing in 
Volume 293 of Immunological Reviews. 

1Centre for Medical Parasitology 
at Department of Immunology and 
Microbiology, Faculty of Health and Medical 
Sciences, University of Copenhagen, 
Copenhagen, Denmark
2Department of Infectious 
Diseases, Rigshospitalet, Copenhagen, 
Denmark

Correspondence
Anja Ramstedt Jensen, Department of 
Immunology and Microbiology, Faculty of 
Health and Medical Sciences, University 
of Copenhagen, Maersk Tower 07‐11, 
Panum Institute, Blegdamsvej 3B, 2200 
Copenhagen N, Denmark.
Email: atrj@sund.ku.dk

Funding information
Augustinus Fonden; The Consultative 
Committee for Developmental Research, 
Grant/Award Number: 17‐02‐KU; 
Independent Research Fund Denmark, 
Grant/Award Number: 4183‐00539 and 
8020‐00034B; Novo Nordisk Fonden, 
Grant/Award Number: NNF16OC0022298; 
Hørslev Fonden; Aase og Ejnar Danielsen 
Fond, Grant/Award Number: 10‐002129; 
Læge Sofus Carl Emil Friis og hustru Olga 
Doris Friiś Legat; Svend Andersen Fonden; 
AP Møller Fonden, Grant/Award Number: 
18‐L‐0040

Abstract
Malaria, a mosquito‐borne infectious disease caused by parasites of the genus 
Plasmodium continues to be a major health problem worldwide. The unicellular 
Plasmodium‐parasites have the unique capacity to infect and replicate within host 
erythrocytes. By expressing variant surface antigens Plasmodium falciparum has 
evolved to avoid protective immune responses; as a result in endemic areas anti‐
malaria immunity develops gradually over many years of multiple and repeated in‐
fections. We are studying the role of Plasmodium falciparum erythrocyte membrane 
protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the 
pathogenicity of severe malaria. The immunopathology of falciparum malaria has 
been linked to cyto‐adhesion of infected erythrocytes to specific host receptors. 
A greater appreciation of the PfEMP1 molecules important for the development of 
protective immunity and immunopathology is a prerequisite for the rational discov‐
ery and development of a safe and protective anti‐disease malaria vaccine. Here we 
review the role of ICAM‐1 and EPCR receptor adhering falciparum‐parasites in the 
development of severe malaria; we discuss our current research to understand the 
factors involved in the pathogenesis of cerebral malaria and the feasibility of devel‐
oping a vaccine targeted specifically to prevent this disease.
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parasite‐encoded antigens displayed on the IE surface. These an‐
tigens belong mainly—if not exclusively—to products of several 
multigene families. Prominent among them—and by far the best 
studied—is Plasmodium falciparum erythrocyte membrane protein 
1 (PfEMP1), encoded by the clonally variant var gene family with 
approximately 60 members per parasite genome. This review fo‐
cuses on PfEMP1, the putative role of this antigen family in the 
development of one of the most severe forms of malaria called ce‐
rebral malaria (CM) and in acquired immunity to CM, and finally on 
the prospect of a PfEMP1‐based vaccine to prevent this often fatal 
complication. Before discussing each of these aspects it is necessary 
to recapitulate briefly the parasite life cycle, as it is important for 
appreciating the sections that follow.

1.1 | The parasite multiplication cycle

Plasmodium falciparum has a complex life cycle that involves two 
hosts (humans and Anopheles spp. mosquitoes), and several de‐
velopmental stages in each host (Figure 1). The human part of the 
multiplication cycle, which is asexual, is initiated when a P.  falcipa‐
rum‐infected female mosquito injects sporozoite‐stage parasites 
into the skin while it is feeding for blood. The extracellular sporo‐
zoites rapidly transit via the peripheral circulation from the skin to 
the liver, where they infect hepatocytes. The liver stage is asymp‐
tomatic and lasts for approximately 1 week, during which time the 
intrahepatic parasite multiplies, resulting in a (pre‐ or extraerythro‐
cytic) schizont that consists of at least 30 000 daughter parasites. 

These, now called (pre‐ or extraerythrocytic) merozoites leave the 
infected hepatocyte and enter the blood circulation. The merozoites 
rapidly infect erythrocytes, an event that marks the beginning of the 
intraerythrocytic multiplication cycle. This part of the life cycle con‐
tinues until the infection is controlled by either immunity or chemo‐
therapy, or until the host dies. Each round of the intraerythrocytic 
cycle lasts approximately 48 hours. During each, the newly invaded 
merozoite rapidly transforms to a trophozoite (the early trophozo‐
ite is often called a ring‐stage parasite, because of the prominent 
vacuole) that undergoes three to five mitotic divisions, resulting in 
a schizont. At the end of the intraerythrocytic cycle, the IE ruptures 
and the released (erythrocytic) merozoites rapidly invade new eryth‐
rocytes. Some of the newly invaded merozoites develop into male 
or female gametocytes rather than continuing the asexual multipli‐
cation cycle. The gametocytes do not divide, but remain inside the 
erythrocyte until taken up by a blood‐feeding mosquito, where sex‐
ual reproduction and further asexual multiplication steps complete 
the parasite life cycle.1-3

2  | THE P.  FALCIPARUM  ERY THROCY TE 
MEMBR ANE PROTEIN 1 ANTIGENS

The expression of PfEMP1 is largely (but not exlusively4) restricted 
to the intraerythrocytic blood stages of the infection, where these 
high‐molecular weight proteins mediate IE adhesion to a variety of 
host receptors. Intracellular PfEMP1 can be detected a few hours 

F I G U R E  1   Life cycle of Plasmodium 
falciparum. Human infection with 
P. falciparum parasites is initiated when an 
infected female Anopheles spp. mosquito 
injects sporozoites during a blood 
meal. Sporozoites transit from the host 
peripheral circulation to the liver, where 
they infect hepatocytes. The liver stage is 
asymptomatic and lasts for approximately 
1 wk. Eventually, the infected liver cells 
rupture to release extracellular merozoites 
into the host circulation. The merozoites 
invade erythrocytes, thereby initiating 
the asexual blood stage of the infection, 
which causes all the clinical symptoms 
of malaria. Once inside the erythrocyte, 
the merozoite undergoes a series of 
divisions (schizogony) over a period of 
48 h, following which daughter merozoites 
are released to infect new erythrocytes. 
Some asexual parasites do not undergo 
schizogony, but develop into sexual 
precursors (gametocytes), which can be 
taken up by mosquitoes during a blood 
meal to complete the life cycle
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after the merozoite has invaded an erythrocyte, whereas IE surface 
expression starts about 16  hours postinvasion.5 The PfEMP1 sur‐
face expression reaches a plateau about 8 hours later, and starts to 
decrease during the final hours of the 48‐hour cycle,6 since export of 
PfEMP1 to the IE surface stops 30‐36 hours postinvasion.7

2.1 | PfEMP1 structure

The members of the PfEMP1 family are high‐molecular weight pro‐
teins (200‐450  kD), encoded by approximately 60 two‐exon var 
genes per haploid P.  falciparum genome.5 The extracellular part of 
PfEMP1, which is encoded by exon I, is composed of cysteine‐rich 
interdomain regions (CIDRs) and 2‐10 Duffy‐binding‐like (DBL) do‐
mains. These DBL and CIDR domains can be divided into seven (α, 
β, γ, δ, ε, ξ, x) and three (α, β, γ) main sequence classes, respectively, 
each with many further subdivisions.8 While exon I is characterized 
by extensive intraclonal (within single genomes) and interclonal (be‐
tween genomes) sequence variation, the short transmembrane do‐
main and the acidic intracellular terminal segment (ATS) are encoded 
by the relatively conserved exon II.8

The PfEMP1 CIDR domains are characterized by conserved cys‐
teine‐rich motifs,9 while the DBL domains are homologous to P. falci‐
parum EBA‐175 adhesive domains and to the Duffy‐binding proteins 
of P. vivax and P. knowlesi.10 The DBL domains are composed of three 
structural subdomains (Figure 2A), which have a mixed helix‐sheet 
structure (S1) or consist of helix bundles (S2 and S3).11 The subdo‐
mains are held together by disulphide bonds between conserved 
cysteine residues,12 whereas the α‐helices of the CIDR and DBL 
domains are connected by flexible and/or ordered loops. The func‐
tional specificity of different PfEMP1 proteins often (but not always) 
depends on these highly variable loops.12-14

Despite the sequence variability, PfEMP1 proteins can be 
grouped according to their chromosomal location, upstream promo‐
tor sequence (ups), and direction of transcription of the var genes en‐
coding them.15 Group A (10 genes in P. falciparum 3D7), Group B (22 
genes), and Group B/A var genes (4 genes) are all found in the sub‐
telomeric regions of chromosomes. Group A genes are transcribed 
toward the telomere, whereas Group B and B/A var genes are tran‐
scribed toward the centromere (Figure 2B). Group C (13 genes in 
P.  falciparum 3D7) and Group B/C var genes (9 genes) are typically 
found in internal regions of chromosome 4, 7, 8 and 12.5,8,15,16 All 
PfEMP1 subfamilies except two (Type 3 and VAR2CSA) have a head 
structure at their N‐terminus that is composed of semiconserved 
DBLα domain and a CIDR domain.5 This is followed by a second and 
more diverse DBL‐CIDR pair in most PfEMP1 proteins belonging to 
Group B, B/C, and C. Group A and B/A PfEMP1 proteins are com‐
posed of a total of 7‐10 extracellular domains, including additional 
DBL domains upstream and/or downstream of the second DBL‐
CIDR pair (Figure 2C).

The combination of DBL and CIDR subtypes in different PfEMP1 
proteins is non‐random, and has led to the identification of 21 do‐
main trains called domain cassettes (DCs).8 The DCs are defined as 
var gene sequences encoding two or more DBL or CIDR domains 

with subclasses that can be predicted from each other, and they 
often predict the receptor specificity of the encoded PfEMP1 
(Figure 2D).17 DC4 (DBLα1.1/1.4‐CIDRα.6‐DBLβ3),18 DC8 (DBLα2‐
CIDRα1.1‐DBLβ12‐DBLγ4/6), and DC13 (DBLα1.7 and CIDRα1.4)8 
are the DCs studied most extensively.

Most PfEMP1 appear to be elongated and are rigid molecules 
with a zigzag shape and a length of about 30  nm,19,20 although 
VAR2CSA‐type PfEMP1 assume a more compact and globular shape 
with a diameter of approximately 20 nm.21,22

2.2 | PfEMP1 function

The primary function of the PfEMP1 proteins is to mediate adhesion 
of IEs to host receptors in the vasculature.17,23 This sequestration 
is vital to the parasites, as it allows mature IEs (misshapen and rigid 
because of the parasites growing inside them) to avoid the spleen 
passage, where they would be filtered and destroyed.24,25 A range 
of vascular surface proteins and carbohydrates can serve as IE adhe‐
sion receptors, including CD36,26 intercellular adhesion molecule 1 
(ICAM‐1),27 endothelial protein C receptor (EPCR),28 oncofetal chon‐
droitin sulphate (CSA),29,30 and ABO blood group antigens.31 The ex‐
pression of IE adhesion receptors varies between different vascular 
beds, and is often regulated by cytokines.32,33

Many different PfEMP1 proteins appear to have specificity for 
the same receptor, and this to some extent corresponds to the struc‐
turally defined PfEMP1 groups and domain subclasses mentioned 
above.8,15,16 Thus, subclasses of DBLβ domains found in Group A, B, 
and C PfEMP1 bind ICAM‐1.14,18,34,35 CIDRα1 domains from Group 
A and B/A PfEMP1 bind EPCR,13,28 whereas Group B and C contain 
CIDRα2‐6 domains that bind CD36 (Figure 2D).36,37 Finally, Group 
E (VAR2CSA‐type) PfEMP1, which appear responsible for IE accu‐
mulation in the placenta, have unique affinity for CSA.30,38,39 It is 
not very surprising that several of these large, multidomain proteins 
contain domains that can simultaneously mediate adhesion to sev‐
eral host receptors.14,35,40,41 Examples include PfEMP1 variants con‐
currently interacting with ICAM‐1 and EPCR,14,41 with ICAM‐1 and 
CD36,35 or variants capable of distinct receptor‐ligand interactions 
with endothelial cells and uninfected erythrocytes.42

2.3 | Clonal antigenic variation controlling 
PfEMP1 expression

Aside from an exception of unresolved biological significance,43 only 
one PfEMP1 variant is expressed on the surface of a given IE at any 
given time,44 but the expressed variant may change from one 48‐h 
cycle to the next. The ability to switch from the expression of one 
PfEMP1 variant to another (called clonal antigenic variation) acts as 
a key to the pathogenicity of P. falciparum parasites and is a major de‐
terminant of the characteristic chronicity of untreated infections.45 
The genetic processes governing clonal antigenic variation in P. fal‐
ciparum parasites are complex, and will not be described here, as 
they have been recently reviewed in detail elsewhere.46 However, 
the switching pattern does not appear to be fixed, but rather seems 
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to follow a loose hierarchy determined by variations in the intrinsic 
switching (on/off) rates of individual var genes.47-50

2.4 | PfEMP1 expression on the infected 
erythrocyte surface

The expression of PfEMP1 on the IE surface is confined to mem‐
brane protrusions called knobs.51 Formation of knobs involves 

multiple host and parasite molecules in addition to PfEMP1, such 
as the parasite‐encoded knob‐associated, histidine‐rich protein 
(KAHRP) which multimerizes into a five‐molecule spiral cone‐like 
structure linked to erythrocyte cytoskeleton spectrin‐ankyrin com‐
plexes (Figure 3).52-54

The nascent PfEMP1 molecules are exported to the IE surface 
via a complex, multistep process that has recently been reviewed in 
detail elsewhere.55 Their ATS domains bind to the cytoskeleton via 

F I G U R E  2   var genes and PfEMP1 structure. (A), Modeled structure of PFD1235w DBLβ. The structure consists of subdomain 1 (S1, 
orange) with mixed helix‐sheet structure and two helix bundles; subdomain 2 (S2 magenta) and subdomain 3 (S3 green).12 The ICAM‐1 
binding site of PFD1235w in S3 is indicated in red.14,18 (B), Group A and B var genes are located in subtelomeric regions of all chromosomes 
but are transcribed in opposite directions, whereas Group C var genes are found in central chromosomal regions. (C), PfEMP1 proteins are 
composed of different subtypes of DBL and CIDR domains. Groups B and C PfEMP1 predominantly have a four‐domain structure, while 
larger PfEMP1 proteins have additional DBL domains following the first or second DBL‐CIDR domains. (D), Plasmodium falciparum genomes 
encode tandem domain cassettes (DC) that are linked to different known adhesion phenotypes as indicated. DC8 is a chimeric gene between 
a group A and a group B var gene. Redrawn and modified from Hviid and Jensen17

(A)

(C)

(D)

(B)



234  |     JENSEN et al.

LyMP (a member of the PHIST [Plasmodium helical interspersed sub‐
telomeric] protein family (Figure 3)).53,56,57 Recent data suggest that 
the exported PfEMP1 molecules are delivered to the IE membrane 
away from the knobs, and then moved laterally and assembled into 
the knobs.54

The knobs appear on the IE surface approximately 16  hours 
postinvasion, peak in density about 20  hours later, followed by a 
slight decrease in density toward the end of the intraerythrocytic 
48‐h cycle.6 Each knob appears to accommodate less than a handful 
of PfEMP1 molecules, which are expressed in a cluster near the tip 
of the knob.58 The reason for the clustered and knob‐confined dis‐
play of PfEMP1 on the IE surface is not fully understood. However, it 
likely includes optimization for adhesion, as the surface knob density 
appears to vary with the PfEMP1 expressed and may be modulated 
by immunity, and because knob‐less IEs generally have reduced 
PfEMP1 expression and do not adhere well.6,59-61 Consistent with 
that, disruption of the gene encoding KAHRP leads to disappearance 
of knobs, decreased PfEMP1 expression, and reduced IE adhesive‐
ness.62-64 Disruption of the gene encoding LyMP causes a similar de‐
crease in IE adhesiveness, although expression of both PfEMP1 and 
knobs remain at wildtype levels.57

Altogether, these findings suggest that the overall IE adhesive‐
ness is the net result of which PfEMP1 is expressed (quality), how 
much of it is expressed (quantity), and how it is expressed (topology). 
This conclusion is supported by studies linking the protective effects 
of haemoglobinopathies such as HbC, HbS, and α‐thalassemia to an 
impaired ability of P. falciparum parasites to adequately remodel the 
erythrocyte cytoskeleton and display PfEMP1 in these aberrant 
erythrocytes.65-68

3  | CEREBR AL MAL ARIA

Cerebral P. falciparum malaria (CM) is defined by the World Health 
Organization (WHO) as deep and unarousable coma that persists 
for more than 1 hour after a seizure, irrespective of anticonvulsant 
medication, in a patient with peripheral P.  falciparum parasitemia 
and without another cause of encephalopathy.69 It is estimated 
that around 1% of children infected with P. falciparum develop CM, 
which has a very high mortality despite treatment, with up to 75% 
of deaths occurring within the first 24 hours postadmission.70-72 CM 
is a leading cause of the estimated >400 000 deaths due to malaria 
each year73 despite the fact that this clinical definition of CM may 
lead to misclassification in as many as one in four cases.74,75

In sub‐Saharan Africa, CM mostly affects children under 5 years 
of age who have only partial acquired immunity to P.  falciparum 
infection. Several studies have shown seasonal and transmission 
intensity‐dependent differences in the frequency of CM,76,77 sug‐
gesting that the level of acquired immunity is an important deter‐
minant of CM susceptibility.78 This is supported by the finding that 
CM is mainly seen among older children and adults in Southeast 
Asia, where malaria transmission is less intense than in sub‐Saharan 
Africa.79

There are significant differences in the pattern of vital organ 
dysfunction between African children and Southeast Asian adults 
with CM.70,80-82 In children, CM coincides with a period of rapid 
brain growth and physiologic changes of the blood‐brain‐barrier 
(BBB) that may account for some of these differences.83 Although 
CM in children generally has lower mortality than in adults under 
otherwise comparable conditions, seizures are more frequent and 
rapid, and CM in children is more often associated with anemia 
and neurocognitive sequelae.83,84 Retinal vessel changes, ring 
hemorrhages, and accumulation of inflammatory cells in the brain 
microvasculature are also more frequent, and hypoglycemia is one 
of the most common concomitant complication in pediatric CM 
cases.83-85

In the following sections, we will focus on CM as it occurs among 
children in Africa because this is the population most affected, and 
also because most of the available knowledge about CM stems from 
studies of African children (Box 1).

3.1 | Subtypes of CM

Retinopathy, characterized by retinal hemorrhages, papilledema, ret‐
inal whitening, and vessel color changes, is the most specific clinical 
diagnostic sign of CM,86-88 because it directly reflects the cerebral 
sequestration of IEs and the pathological processes occurring in the 
brain.88-90 It thus allows distinction between children with coma 
caused by cerebral IE sequestration and those, whose coma has 
other causes but fulfil the abovementioned WHO criteria for CM. 
The number of retinal hemorrhages prior to death correlates with 
the density of hemorrhages in the brain at mortem.91 Retinopathy 
has therefore been suggested to reflect the spectrum of CM sever‐
ity86,92,93 as patients with retinopathy have higher mortality than 
those without.94,95

F I G U R E  3   PfEMP1 presentation on knobs on the IE surface. 
KAHRP form the base of the knob complex. An average of three 
PfEMP1 molecules are located at the tip of each knob.58 KAHRP 
binding to spectrin is necessary for the formation of the spiral 
structure, but KAHRP itself does not appear to be a component 
of the spiral.54 PHIST protein may connect to PfEMP1 and the 
cytoskeleton.56 Redrawn and modified from Cutts et al53
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Pediatric CM can also be divided into two types based on clinical 
and pathological findings. CM1 (25% of cases) is characterized by IE 
sequestration in the cerebral microvasculature, rapid disease pro‐
gression, limited organ pathology, and high splenic parasitemia. CM2 
is characterized by more prolonged illness and parasite proliferation, 
with evidence of vascular brain pathology alongside endothelial dys‐
function, activation of coagulation, ring hemorrhages, fibrin‐platelet 
thrombi, and accumulation of monocytes in addition to sequestered 
IEs.75,82,96 The proportion of retinal capillaries with extraerythro‐
cytic hemozoin predicts CM1 and CM2.75,97

Increased intracranial pressure with brain swelling and perivas‐
cular edema are strongly associated with CM severity.88 This is be‐
cause the increased volume of the swollen brain can cause brainstem 

herniation leading to death by respiratory arrest.98,99 These manifes‐
tations are partly due to breakdown of the blood‐brain barrier.

3.2 | The blood‐brain barrier

The BBB is vital for normal brain function and constitutes a physi‐
ological barrier that separates the brain and the cerebrospinal fluid 
from the rest of the body.100 The BBB acts as a semipermeable cel‐
lular interface that tightly regulates the bidirectional transcellular 
molecular transport (of glucose, amino acids, transferrin, charged 
plasma proteins etc) between the blood and the brain parenchyma 
that is required to maintain cerebral homeostasis.

The BBB components include microvascular endothelial cells 
forming a continuous barrier through tight junctions, a basement 
membrane, pericytes, and astrocytes that are in direct contact with 
neurons and microglia. This composition is critical to minimize local 
inflammation and neuronal damage.101 Brain endothelial cells are 
structurally and functionally different from endothelial cells in other 
organs. In particular, they have intercellular tight and adherens junc‐
tions, which normally impede passive paracellular diffusion of small 
and large molecules and prevent infiltration of blood cells into the 
brain parenchyma.

Disruption of the BBB is common in diseases of the central ner‐
vous system.102 It is also a feature of CM,103 where it is thought to be 
the result of endothelial inflammation in the brain, caused by accu‐
mulation and sequestration of IEs, leukocytes, and platelets.85,104,105 
Focal loss of the endothelial intercellular junctions that are central 
to the maintenance of BBB integrity has been observed in vessels 
containing sequestered IEs.103,104,106-108 The finding of decreased 
transendothelial resistance and changes in the expression of pro‐
teins that make up these junctions in brain endothelial cells exposed 
to IEs in vitro is consistent with these observations.109,110 Numerous 
parasite and host factors that have been implicated in CM pathology 
can affect the permeability of the BBB. These include hemozoin‐in‐
duced matrix metalloproteases (MMP), angiopoietins, sphingosine‐1‐
phosphate, nitric oxide, platelet‐activating factor, several cytokines 
(IL‐1α, IL‐1β, IL‐6, TNFα), and a number of other factors.91,111-117 As 
an example, MMP targets structural proteins of the basal lamina 
(fibronectin, laminin, heparan sulfate) and tight junction proteins 
(ZO‐1, ZO‐2, claudin‐5), which is known to cause breakdown of tight 
junctions, increased paracellular leak, and opening of the BBB during 
ishemic and inflammatory insults. Another protein, histidine‐rich 
protein‐2 (HRP‐2) that is released at the time of schizont rupture,118 
can activate the innate immune system via NLRP3 inflammasome 
activation. The ensuing compromising of tight junction integrity 
and IL‐1β‐ and MyD88‐dependent increased vascular permeability 
has been proposed to promote CM pathogenesis.119 In support of 
this, HRP‐2 has been shown to line the endothelial walls of blood 
vessels,120 particularly in retinopathy‐positive CM patients.121 Once 
the BBB is disrupted, leukocytes, cytokines, chemokines, and solu‐
ble parasite products may enter the brain parenchyma to activate 
the microglia and damage astrocytes and neurons, causing neuro‐in‐
flammation and coma.122

Box 1 Animal models of Plasmodium falciparum malaria

A detailed analysis of the intracerebral pathogenesis and pa‐
thology in CM comes primarily from postmortem studies. For 
this reason, infections of various strains of mice with P. berghei 
ANKA (PbA) is a popular in vivo model to dissect the mecha‐
nisms of CM. PbA infection can induce a condition known as 
experimental cerebral malaria (ECM), which recapitulates 
some—but certainly not all—features of CM. This has led to 
considerable scepticism regarding the utility of this murine 
model.364,365

In both humans and mice, the clinical signs of CM progress from 
seizures, ataxia, and paralysis to coma and eventually death.366 
However, although cerebral IE sequestration is a prominent fea‐
ture of CM,364 it is a minor feature of ECM.367,368 Intravascular 
accumulation of platelets and immune cells has been observed 
in ECM, and CD8+ cells appear central to ECM pathogenesis. 
369-372 The picture is less clear in CM, where some studies have 
reported infiltration of leukocytes and platelets within the brain 
microvasculature,96,173 whereas others did not find that.195,373 
Intravascular accumulation of monocytes has also been re‐
ported, but there is little evidence of high numbers of CD8+ T‐
cell accumulation in human CM.
ECM is characterized by a prominent pro‐inflammatory cytokine 
response with high levels of IFN‐γ and TNF‐α, which results in 
upregulation of activation markers including ICAM‐1, VCAM‐1, 
and E‐selectin.374 Although TNF‐α ‐deficient mice are also sus‐
ceptible to PbA‐induced ECM,375 ICAM‐1 must be present for 
ECM to develop.376 Although inflammatory changes in the brain 
are lower in CM, elevated concentrations of circulating pro‐in‐
flammatory cytokines are characteristic.377,378 This contrib‐
utes to a marked increase in the expression of endothelial cell 
adhesion molecules,106,144 and IEs and ICAM‐1 co‐localize in 
cerebral vessels postmortem.106 Of particular relevance to the 
present text, none of the genomes of rodent malaria parasite 
encodes PfEMP1‐like molecules, and we therefore direct inter‐
ested readers to comprehensive ECM reviews elsewhere.379,380
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3.3 | Endothelial activation

Endothelial inflammation is a characteristic feature of P. falciparum 
malaria and correlates with disease severity in general and CM in 
particular.123-127 The inflammation may be induced directly by IEs 
adhering to the endothelium, or indirectly by inflammatory host 
and parasite products (such as IE membrane components, HRP‐2, 
etc).128-132 However, activation may also occur independent of IEs 
as there is also evidence of generalized endothelial inflammation at 
sites devoid of IE sequestration.110,133-135

Endothelial cells derived from Malawian children with CM have 
been shown to express particularly high levels of parasite and plate‐
let receptors, to produce many endothelial microvesicles, release 
high levels of pro‐inflammatory cytokines (including TNFα and IFNγ), 
and to be highly prone to undergo apoptosis.134,136,137 It seems likely 
that IEs may be involved, as they can induce apoptosis in primary 
brain endothelial cells, including cells from the brain,138 and cellu‐
lar apoptosis has been suggested to cause increased endothelial 
permeability.138-141

Activated brain endothelial cells are known to express high 
levels of a number of potential IE receptors (ie, ICAM‐1, VCAM‐1, 
P‐selectin, and E‐selectin), exocytose Weibel‐Palade bodies, re‐
lease microvesicles, vascular endothelial growth factor (VEGF), 
and soluble cell adhesion molecules (ie, sICAM‐1), and to show 
breakdown of tight junctions.142-146 Three bioactive molecules 
are released from the Weibel‐Palade bodies, P‐selectin (recruiting 
leukocytes), von Willebrand Factor (vWF; binding platelets), and 
Angiopoetin (Ang)‐2. Ang‐1 and Ang‐2 are critical soluble regula‐
tors of endothelial activation and integrity, and levels of Ang‐1 and 
Ang‐2 have been described as reliable biomarkers of CM.147 Ang‐2 
is a vessel‐destabilizing molecule that increases vascular perme‐
ability and facilitates endothelial activation by counteracting the 
action of Ang‐1 by displacing Ang‐1 from the receptor.148-150 Ang‐1 
conversely mediates activation of the Tie‐2 receptors on endothe‐
lial cells. This inhibits apoptosis, reduces expression of ICAM‐1, 
VCAM‐1, and E‐selectin, promotes NO synthesis, and increases 
the expression of endothelial tight junctions.151-154 It thus acts as 
a promoter of endothelial cell quiescence and survival. Release 
of Ang‐2 from Weibel‐Palade bodies increases the Ang‐2/Ang‐1 
ratio and thus endothelial responsiveness. Increased concentra‐
tion of Ang‐2 with decreased levels of Ang‐1 has been associated 
with development of severe malaria in several studies,113-115,147,155 
and children with retinopathy‐positive CM have higher levels of 
Ang‐2, Ang‐2/Ang‐1, soluble Tie‐2, von Willebrand Factor, VEGF, 
and sICAM‐1, and lower levels of Ang‐1, compared to CM patients 
without retinopathy.114 Both Ang‐1 and Ang‐2 are regulated by ni‐
tric oxide (NO) produced in the endothelium from L‐arginine. NO 
causes vasorelaxation, downregulation of endothelial receptors, 
and reduces thrombosis.156 The bioavailability of NO is reduced 
in CM and this has been associated with fatal outcome.157-159 Low 
NO stimulates Weibel‐Palade body exocytosis and activation 
of endothelium, with increased Ang‐2 release from endothelial 
cells and expression of ICAM‐1 and VCAM‐1.160,161 Impaired NO 

production thus disrupts the ang‐1/Tie‐2‐dependent signaling that 
maintains endothelial cell quiescence and vascular integrity.159,162 
This in turn promotes enhanced endothelial cell activation and 
cytoadhesion of IEs.163 All this notwithstanding, inhalation of NO 
was not found to reduce neurological defects or mortality in chil‐
dren with CM.164

von Willebrand Factor is synthesized by the endothelial cells, 
and some of the synthesized vWF is constitutively secreted into 
plasma, but most is stored within Weibel‐Palade bodies and only 
secreted following activation of the endothelial cell.165 vWF, par‐
ticularly as large multimers, show enhanced binding to platelets 
and efficiently modulates aggregation of platelets.166 IEs can bind 
to platelets via P‐selectin, C1q receptors, and thrombospondin 
receptor (CD36), leading to formation of IE/platelet clumps.167-169 
The significance of this is indicated by the observation that chil‐
dren who died of CM had more platelet build‐up in cerebral ves‐
sels than those dying of severe malarial anemia or non‐malarial 
encephalopathy.170 Platelet accumulation was particularly prom‐
inent at sites of IE sequestration. Platelet‐mediated IE clumping 
is thus likely to aggravate microvascular obstruction in CM, and 
release of tumor growth factor β from platelet granules may fur‐
thermore cause apoptosis of brain endothelial cells.171,172 In ad‐
dition, accumulation of platelets may enable transfer of CD36 to 
endothelial cells, thus potentially providing an additional IE recep‐
tor to brain endothelium, which normally expresses little or no 
CD36.173 Overall, the marked increase in plasma vWF levels in pa‐
tients with severe malaria is likely to contribute to severe malaria 
pathogenesis.114,115,166,174 Finally, activation of endothelium leads 
to increased shedding of microvesicles from the plasma membrane 
of cells.175 Endothelial microvesicles have been found in very high 
concentrations in children with CM, and their levels correlate with 
disease severity.176,177 It has been proposed that these vesicles 
may contribute to excessive T‐cell activation and the immune 
pathogenesis of CM, as they express the molecules required for 
antigen presentation and T‐cell stimulation, such as β2‐microglob‐
ulin, MHC‐II, CD40, and ICOSL.178 In addition, increased concen‐
trations of non‐endothelial microvesicles have been observed in 
CM, where they may also contribute to pathogenesis. Thus, the 
number of platelet‐derived microvesicles correlates with the 
depth of the coma and thrombocytopenia,177 and extracellular IE‐
derived vesicles containing PfEMP1 (see below) can induce pro‐in‐
flammatory cytokines in human primary monocytes.179,180

4  | PFEMP1 AND PATHOGENESIS OF CM

As mentioned above, P. falciparum parasites display PfEMP1 mol‐
ecules on the surface of the erythrocytes they infect. From about 
16  hours postinvasion, these high‐molecular weight variant par‐
asite proteins efficiently mediate adhesion of the IEs to a range 
of host receptors,181-185 and this is the reason why only young, 
ring‐stage IEs are present in the peripheral circulation. It has long 
been speculated that PfEMP1‐mediated IE adhesion to specific 



     |  237JENSEN et al.

receptors in key tissues and organs is an important determinant 
of clinical outcomes of P. falciparum infection. This hypothesis has 
been confirmed in the case of placental malaria, where the selec‐
tive accumulation of IEs in the intervillous space is mediated by 
VAR2CSA‐type PfEMP1 with affinity for placental CSA.30,38,186 It 
is furthermore well established that protective immunity to pla‐
cental malaria depends on acquisition of IgG to CSA‐adhering and 
VAR2CSA‐expressing IEs.187-190 These findings have raised the 
hope that other specific PfEMP1 variants and host receptors may 
play similar and decisive roles in other forms of severe P. falcipa‐
rum malaria, not least CM.108,191-193

4.1 | Sequestration of infected erythrocytes 
in the brain

IEs adhere to host endothelial receptors in the postcapillary ven‐
ules of a number of organs, such as lungs, liver, intestine, brain, and 
the placenta.194,195 This tissue‐specific sequestration causes circu‐
latory disturbances and inflammation, and single‐ and multi‐organ 
pathology such as renal, liver, lung, and placental dysfunction, and 
CM.196-201 Sequestration probably evolved to allow mature IEs, de‐
formed by the parasites inside, to avoid destruction in the spleen.24 
Identification of the parasite ligands, not least the specific PfEMP1 
variants, which mediate IE sequestration in particular tissues—and 
the host receptors they bind to, has thus been a long‐standing and 
important research priority. CM research is no exception.

Many studies have reported links between severe malaria (in‐
cluding CM) in children and infection with parasites transcribing var 
genes encoding PfEMP1 proteins from Group A and B/A.202-211 Other 
studies have narrowed the list of candidate genes to those having 
specific sequence signatures and/or encoding PfEMP1 variants with 
well‐defined receptor specificity.28,209,210,212-217 ICAM‐1 (CD54) was 
recognized as an endothelial IE receptor early on,27 and it has long 
been suspected to be important for the selective accumulation of 
IEs in the brain of CM patients.106,133,144,218 In line with this, contact 
with IEs can lead to endothelial upregulation of ICAM‐1.128,129,134,219 
Furthermore, it has been reported that P.  falciparum parasites iso‐
lated from African children with CM bind preferentially to ICAM‐1 in 
vitro.220 However, the opposite has also been reported,221 and iso‐
lates from Asian adult malaria patients do not appear to show pref‐
erential adhesion to ICAM‐1.222,223 Finally, some studies have failed 
to find evidence of high ICAM‐1 expression in the brains of fatal CM 
victims.220,221 Taken together, a complex picture regarding the rela‐
tionship between ICAM‐1‐specific IE adhesion and CM pathogenesis 
emerges, although most of these data suggest that CM in (African) 
children is quite different from CM in (Asian) adults.83

IE adhesion to ICAM‐1 is mediated by PfEMP1 variants that can 
also bind to either EPCR or CD36.14,34,35,224,225 The former of these 
groups, exemplified by the P. falciparum 3D7 PfEMP1 PFD1235w,18 
shows a clear association specifically with CM.14,226-229 PFD1235w 
belongs to Group A, and contains the domain cassette DC4 
(Figure 2D). The DC4 family was originally identified by a search for 
orthologs of the pfd1235w gene in parasites from Ghanaian malaria 

patients, inspired by the link between PFD1235w and severe ma‐
laria.202,230 The search resulted in a panel of genetically distinct 
parasites binding ICAM‐1 via the DBLβ3 domain of the DC4‐type 
PfEMP1 expressed on the IE surface.18 Sequence analysis of these 
domains identified a C‐terminal ICAM‐1‐binding motif (I[V/L]x3N[E]
GG[P/A]xYx27GPPx3H).14 The motif, which is also present in some 
Group A PfEMP1 proteins outside DC4 (including some DC5‐ and 
DC13‐containing variants) and in a few Group B/A variants,14,18 is re‐
stricted to DBLβ domains located immediately downstream of CIDR 
domains of the EPCR‐binding subtype.13,14

Endothelial protein C receptor is the cognate receptor for 
PfEMP1 proteins containing domain cassette DC8 or DC13.28 DC13 
is found among group A PfEMP1, whereas DC8 is found in Group B 
PfEMP1, and has evolved by recombination of ancestral Group A and 
B var genes.209 PfEMP1 variants containing DC8 or DC13 are com‐
mon,8 and bind avidly to endothelial cells of lung, heart, and bone 
marrow.231 DC8‐containing PfEMP1 proteins tend to be among the 
first expressed in early childhood infections, indicating that they 
possess adhesion properties that confer a survival advantage to 
IEs in malaria‐naive children.213 In addition, P.  falciparum parasites 
obtained from African children and Indian adults with severe ma‐
laria—including CM—transcribe DC8‐ and DC13‐encoding var genes 
at high levels.209,215-217,226,227 Their relevance to CM pathogenesis is 
further indicated by studies showing that IEs selected for adhesion 
to brain endothelial cells preferentially express these domain cas‐
settes.213,214 Finally, expression of EPCR‐binding PfEMP1 variants 
from Group A have been linked to brain swelling,228 which is a major 
contributor to mortality in pediatric CM.88 The available evidence 
linking the EPCR‐adhering IE phenotype to severe malaria in gen‐
eral, and to CM in particular, is not completely unequivocal.232-234 
As an example, a study of Kenyan children with CM did not find ev‐
idence supporting particular enrichment of DC8‐ or DC13‐contain‐
ing PfEMP1 variants in children with retinopathy, a well‐established 
indicator of CM, despite finding the expected association between 
CM and transcription of var genes encoding Group A PfEMP1.235

As mentioned above, not all PfEMP1 variants capable of binding 
ICAM‐1 also bind EPCR. Indeed, all but one236 of the ICAM‐1‐bind‐
ing DBLβ domains identified prior to the discovery of DC4 in Group 
A were found in Group B and Group C proteins.34,35 Those PfEMP1 
proteins appear to be under dual selection for adhesion to ICAM‐1 
and CD36, as they all contain a CD36‐binding CIDRα domain up‐
stream of the ICAM‐1‐binding DBLβ domain.35,36,237 This is not sur‐
prising, as CD36 is a very common IE adhesion receptor and most 
non‐placental P.  falciparum isolates can bind to it.30,220,221 Affinity 
for CD36 is a feature of the majority of Group B and C PfEMP1 
proteins,35,36 but is not found in the Group A and B/A PfEMP1 that 
dominate in severe infections and in individuals with limited malaria 
immunity.202,204,207,209,238 Rather, CD36 binding is associated with 
uncomplicated malaria,239,240 and appears to have evolved to medi‐
ate IE sequestration in tissues other than the brain, where CD36 is 
absent or only sparsely present.135,155

Combining the above evidence, the adhesion phenotype that 
is most clearly related to CM is IEs expressing Group A PfEMP1 
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proteins (including DC4) that allow concomitant binding to both 
ICAM‐1 and EPCR (“double binders”).14 The association between se‐
vere disease (and in particular, CM) and IE affinity for either of these 
receptors alone is less clear. It is worth noting in that context that 
the EPCR‐binding CIDRα1 domain in DC8, and in some DC13, is not 
followed by an ICAM‐1‐binding DBL domain.13,14 Finally, although 
several molecules other than those already mentioned have been 
implicated as IE adhesion receptors, including some that appear to 
be expressed on brain endothelium,241 none of them have been 
linked to disease severity.

4.2 | Rosetting and clumping

Infected erythrocytes do not only adhere to the endothelium, but also 
to surrounding uninfected or infected erythrocytes. The former type 
of such aggregates, called rosettes, were first reported in the P frag‐
ile‐infected monkeys.242 The finding was quickly followed by studies 
demonstrating that the same phenotype was present in P.  falcipa‐
rum,243,244 and it appears that most species of malarial parasites are 
capable of inducing rosettes,245 which is a complex phenotype involv‐
ing multiple parasite and host molecules.246 Thus, several erythro‐
cyte molecules, including complement receptor 1, heparan sulphate, 
and the ABO blood group antigens, appear to be involved as recep‐
tors.247-250 On the parasite side, several ligands have been implicated, 
including members of several variant surface antigen families.251,252

Infected erythrocytes isolated from patients with CM have been 
reported to form rosettes at significantly higher rates than IEs from 
patients with uncomplicated malaria.253-256 This difference might 
contribute to occlusion of cerebral microvessels by rosettes, to ce‐
rebral sequestration of IEs that express PfEMP1 variants that can 
bind to host receptors shared by cerebral microvessels and erythro‐
cytes,257,258 and/or expressing PfEMP1 variants that allow binding 
to separate receptors on endothelium and on erythrocytes, respec‐
tively.42 With respect to the first of these possibilities, microvascu‐
lar flow rates appear to be an important determinant for the clinical 
consequences of rosetting,259 similar to what appears to be the case 
for IE sequestration (see above). With respect to the last possibility, 
several PfEMP1 variants with capacity to bind to more than one re‐
ceptor at the same time (mostly via different domains) have been de‐
scribed and linked to disease severity.14,40,260 However, while some 
studies have shown significant correlations between rosetting and 
severe malaria/CM,253,254,261-263 others have failed to find such a re‐
lationship.264-266 Although the reason for the discrepancy is not fully 
resolved, it may reflect genuine geographical differences between 
Africa (where the association is generally found) and Southeast Asia 
(where it usually is not). Similar geographic differences have been 
described for other receptor‐specific adhesive IE phenotypes and 
malaria severity.220,222,267,268 If indeed such geographical variation 
exists, it may involve differences in the parasites, the hosts, and/or 
the transmission intensity. The relative contributions of these vari‐
ables remain completely unresolved, however.

The receptor specificity of the PfEMP1 variant expressed is 
an obvious determinant of whether PfEMP1‐dependent rosetting 

occurs or not. However, soluble plasma factors that can bind to 
PfEMP1 may also be of pathologic significance. Thus, IE rosetting in 
vitro generally (but not always) requires the presence of plasma or 
serum in the assay, and several components have been implicated.246 
The most studied of these is IgM, which can clearly enhance rosette 
formation.20,269,270 This function of IgM is independent of the anti‐
gen specificity of the antibody as it is mediated by the Fc rather than 
the Fab domains.20,271 It furthermore requires a pentameric IgM 
conformation,271-273 probably because IgM augments rosette forma‐
tion by cross‐linking multiple PfEMP1 molecules, thereby enhancing 
their combined avidity for the erythrocyte receptor involved.20,274 
Several of the approximately 60 PfEMP1 variants in a given genome 
contain domains that are able to bind IgM this way,275,276 but the 
potential of this finding for identifying PfEMP1 proteins involved 
in the pathogenesis of severe malaria in general, and of CM in par‐
ticular, is largely unknown. A single study recently pointed to the 
protease‐inhibitor α2‐macroglobulin as another important cofactor 
of rosetting,277 but the generality and clinical significance of this 
finding remains unclear.

IEs can also bind to other IEs via platelets (thrombocytes); a 
phenotype referred to as clumping.167 Clumping has been asso‐
ciated with severe malaria including CM in some, but not all stud‐
ies.169,278,279 The platelet receptor involved appears to be gC1qR/
HABP1/p32, and as this receptor is also present on cerebral micro‐
vascular endothelium, it provides a plausible link between clumping 
and C.168 However, to our knowledge it is not known whether IE 
affinity for gC1qR/HABP1/p32 is mediated by PfEMP1 or whether 
this adhesion phenotype is significantly involved in the pathogenesis 
of CM.

4.3 | The role of blood flow on IE adhesion

Erythrocytes normally flow down the central line of a blood ves‐
sel,280,281 but the deformation and enhanced stiffness of IEs cause 
them to marginate, thus bringing them into contact with adhesion 
receptors on the endothelial surface.282,283 The distribution of 
cells, including IEs, in the blood stream is furthermore dependent 
on variables such as vessel diameter and plasma viscosity and flow 
rates.284 Flow not only affects margination of circulating cells, but 
can also lead to upregulation of endothelial receptors and cytokines 
in response to changes in shear stress. This is particularly true for 
ICAM‐1, VCAM‐1, and IL‐1β.285,286 Endothelial integrins are also sen‐
sitive to changes in blood flow and become activated in response 
to increased shear stress.287,288 Blood flow is thus an important pa‐
rameter to consider in studies of IE adhesion. A variety of in vitro 
assays have yielded important insights in this regard.289-296 As an 
example, CD36‐specific adhesion of normal and ovalocytotic IEs 
were similar in static assays, but were markedly different in assays 
conducted under physiologically more plausible flow conditions.297 
With respect to CM‐relevant and PfEMP1‐specific adhesion, flow‐
based studies of adhesion of IEs expressing PfEMP1 variants that 
can mediate binding to both ICAM‐1 and EPCR have revealed syner‐
gies that could not be discerned in static assays.14,298
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4.4 | Converging on the protein C pathway

In spite of the very significant morbidity and high mortality of cer‐
ebral P. falciparum malaria, the pathophysiology of the disease is only 
partly understood.104,191,299 A range of potential and non‐exclusive 
pathogenic mechanisms has been proposed, such as circulatory ob‐
struction by sequestered IEs, imbalanced cytokine responses, and 
endothelial dysfunction and loss of BBB integrity.105,107,108,300 The 
available evidence is slowly converging on a scenario where CM is 
the consequence of the impact of IEs expressing particular PfEMP1 
variants on the protein C‐dependent maintenance of the integrity of 
brain endothelium.17,301

The protein C pathway is a crucial anti‐coagulant and anti‐inflam‐
matory regulator of thrombin production during clot formation.302 
Normally (Figure 4), thrombomodulin on the endothelial surface binds 
thrombin and activates protein C to become activated protein C (APC) 

in a process that is strongly promoted by EPCR (also known as ac‐
tivated protein C receptor).301 The binding of APC to EPCR inhibits 
endothelial activation and TNFα‐dependent inflammation, thereby 
limiting the opportunity for IE sequestration mediated by known 
PfEMP1 receptors such as ICAM‐1, VCAM‐1, E‐selectin, and thrombo‐
spondin‐1.303 The interaction also activates PAR‐1, which has an anti‐
apoptotic effect that protects the endothelial barrier integrity.302,304

It has been proposed that this delicate system of checks‐and‐
balances may be upset by IEs adhering to EPCR, thereby preventing 
physiologically appropriate activation of protein C.301,305,306 The 
PfEMP1 proteins expressed by EPCR‐adhering IEs bind EPCR near/at 
the site where protein C/APC normally binds. The IEs might thereby 
interfere with binding of the normal ligand and compromise protec‐
tive APC‐dependent maintenance of the BBB via PAR‐1.13,307,308 The 
result would be excessive endothelial inflammation, thrombin activa‐
tion, fibrin cross‐linking, platelet activation, upregulation of ICAM‐1 

F I G U R E  4   Linking the protein C pathway with EPCR‐ and ICAM‐1‐binding IEs in cerebral malaria. (A), Effects of EPCR in the absence of 
Plasmodium falciparum‐IE. Thrombin (Thr) is produced by the interaction between tissue factor (TF) and circulating activated factor VII (VIIa) 
(1). Thrombin initiates the EPCR‐ and thrombomodulin (TM)‐facilitated activation of protein C (APC) that then inhibits thrombin production 
(2). APC uses EPCR as a coreceptor for cleavage of proteinase‐activated receptor 1 (PAR‐1). The EPCR‐APC activation of PAR‐1 inhibits 
the nuclear factor‐κB pathway and exerts anti‐inflammatory and anti‐apoptotic activity (3). S1P signaling results in decreased endothelial 
permeability, and S1P production leads to enhancement of tight junctions and protection of endothelial barrier integrity (4). Angiopoetin‐1 
(Ang1) produced in response to the APC‐PAR‐1 interaction decreases Weibel‐Palade body (WPB) exocytosis by occupying Tie2 (5). (B), 
The impact of infected erythrocytes expressing EPCR‐bound PfEMP1 on the surface. The IE‐EPCR interaction activates endothelial cells 
to release pro‐inflammatory cytokines (IL‐1, TNFα) that induce shedding of EPCR and TM from the endothelial surface and increases 
expression of ICAM‐1 (6). The EPCR‐IE interaction results in reduced levels of APC and increased thrombin generation with fibrin deposition 
(7). Increased levels of thrombin shift the PAR‐1 response toward activation of the RhoA and NFκB with increased surface expression of 
ICAM‐1 on the endothelial cell (8). The shift in the PAR‐1 response inhibits S1P release resulting in loss of tight junctions, and compromises 
endothelial barrier function by causing localized vascular leaks (9). A reduction in Ang‐1 levels increases WPB exocytosis via Tie2 and 
production of von Willebrand Factor (vWF) and Ang2 (10). Increased levels of Ang‐2 further increase WPB exocytosis and contribute to 
the loss of endothelial barrier integrity and leakage (11). Platelets become activated by thrombin and cytokines, which leads to production 
of platelet microvesicles (12). Thrombin and activated platelets combine to form thrombi (13). Strings of vWF and activated platelets form 
complexes, which like thrombi impair the cerebral circulation. (C), The increase in ICAM‐1 (in panel B) allows IE expressing PfEMP1 with a 
shared DBLβ ICAM‐1 motif to adhere to the brain endothelium. A large proportion of the ICAM‐1‐adhering IEs might initially bind EPCR via 
their CIDRα1 domains
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expression, downregulation of EPCR, and endothelial leakage. This 
corresponds to the petechial lesions, fibrin clots, EPCR denuding, 
thrombomodulin deficiency, axonal injury, and brain swelling that 
have been reported in pathology studies of the brains of patients 
who died of CM.82,301,309-315 The lack of APC may furthermore allow 
induction of endothelial dysfunction via parasite and host soluble 
factors, such as histones, heme, and HRP‐2, released locally when 
IEs rupture.316,317

Brain microvascular endothelium may be particularly susceptible 
to the disruption of the protein C pathway by EPCR‐adhering IEs 
because EPCR is expressed at low levels at this site as opposed to 
the high expression seen in arteries and veins.318,319 CM is associ‐
ated with loss of EPCR in the brain, and increased levels of soluble 
EPCR have been reported and associated with CM mortality.301,320 
Human genetic variability affects the level of soluble EPCR, and 
there is some indication that some variants may be associated with 
protection from severe malaria, including CM, conceivably by neu‐
tralizing IE adhesion to EPCR.232 However, other studies did not 
detect such associations.233,234 Substantial variation also exists in 
genetic sequence of the CIDR1α domains in PfEMP1 that mediate 
binding to EPCR, although the EPCR‐binding surface is largely con‐
served despite this variation.13 The variation nevertheless appears 
to impart differences in binding affinity that may affect how IE bind‐
ing impacts normal EPCR function. The CIDRα1.1 domains in DC8 
thus affected APC and thrombin‐induced permeability less than the 
CIDRα1.4 domains of DC13.307,321 It is plausible that such diversity 
might contribute to the divergent pathophysiology of CM1 and CM2, 
where CM1 is characterized solely by IE sequestration, whereas 
CM2 also involves activation of coagulation and formation of fibrin 
clots and ring hemorrhages.75,82,96

The impact of EPCR‐binding IEs on the protein C pathway 
proposed above is consistent with features of CM pathogene‐
sis, but most studies have found this IE adhesion phenotype to 
be associated with severe malaria in general, rather than with CM 
specifically.209,215-217,226,227 However, this lack of specificity can 
be explained if CM pathogenesis requires parasites that express 
PfEMP1 variants that bind both to EPCR and ICAM‐1 (the above‐
mentioned “double binders”). Our hypothesis involves a pathogenic 
cascade (Figure 4), where IEs initially adhere to EPCR on non‐in‐
flamed cerebral endothelium.14,17 This activates the endothelial cells 
as described above, induces their release of pro‐inflammatory cyto‐
kines, and increases their expression of ICAM‐1.110,219,301 “Double 
binders” may directly exploit this inflammatory response by adher‐
ing to ICAM‐1, and this has been associated with disruption of the 
BBB.132 In contrast, erythrocytes infected by parasites expressing 
PfEMP1 variants that only have affinity for EPCR are likely to dis‐
lodge, as EPCR is shed as a part of the inflammatory response.301

5  | PFEMP1 AND IMMUNIT Y TO CM

In areas with stable transmission of P. falciparum parasites, suscepti‐
bility to clinical malaria is inversely correlated with age. Antibodies to 

parasite antigens on the surface of IEs are important, even decisive, 
determinants of this relationship, including the gradually decreasing 
risk of developing severe malaria such as CM.322-325 Acquisition of 
this type of immunity following natural parasite exposure is remark‐
ably slow, incomplete, and temporally unstable, characteristics that 
all point to variant antigens, and in particular to PfEMP1 as the pri‐
mary antigenic target.17,326

5.1 | Naturally acquired, PfEMP1‐specific immunity

The variant‐specific, PfEMP1‐centric hypothesis of susceptibility to, 
and acquired immunological protection against, P. falciparum malaria 
hinges on the idea that the infecting parasites adapt to pre‐exist‐
ing and developing immunity by switching to variants that are not 
recognized by specific antibodies.327,328 Severe disease ensues when 
those variants enable IEs to adhere to receptors that are widespread, 
allow strong IE adhesion, are expressed in critical tissues, and/or 
have vital functions. This is more likely to occur in individuals with 
little or no acquired immunity, and to involve variants that are rela‐
tively conserved among different parasite clones. As immunity to 
initially virulent variants is acquired, the parasites are steadily forced 
to express variants that are less virulent (more diverse, less likely to 
mediate firm IE adhesion, less likely to bind to widespread receptors, 
and more likely to be expressed in tissues where the consequences 
of IE sequestration are less serious).

Variant‐specific immunity is indeed acquired in the orderly fash‐
ion predicted by the above theory. Antibodies to relatively conserved 
(“common”) parasite antigens and protection from severe malaria are 
acquired first, followed by antibodies to more variant antigens asso‐
ciated with uncomplicated disease, and eventually by antibodies rec‐
ognizing very diverse (“rare”) antigens expressed on the surface of IEs 
obtained from carriers of asymptomatic/subclinical infections.329-332 
Transcription of var genes and acquisition of PfEMP1‐specific IgG fol‐
lows this pattern, and shapes what PfEMP1 variants are compatible 
with parasite survival in a given semi‐immune host.207,238,333 Thus, var 
gene transcription in children with limited pre‐existing immunity and 
severe disease is skewed toward Group A,202,204,207 supporting the 
idea that these genes encode PfEMP1 proteins with adhesion spec‐
ificities that are optimal for multiplication of the asexual parasites in 
non‐immune hosts, and likely include binding properties that predis‐
pose to severe malaria. As children acquire Group A anti‐PfEMP1 
antibodies over successive infections, the proportion of var genes in 
Group B and C, encoding PfEMP1 variants associated with uncompli‐
cated disease gradually increases.238,333-335 The clearest example of 
this type of relationship so far is the susceptibility to placental P. fal‐
ciparum infection, and the acquisition of immunity to that particular 
form of severe malaria, as both depend on a particular type of PfEMP1 
called VAR2CSA.187,188,336 However, there is every reason to assume 
that it applies to all forms of P. falciparum malaria, including CM.17

IgG antibodies to the Group A, DC4‐containing PfEMP1 that can 
mediate IE adhesion to both ICAM‐1 and EPCR are acquired early in 
life in areas with stable transmission of P. falciparum, and this acqui‐
sition is associated with protection from severe malaria, including 
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CM.202,337,338 The same applies to IgG specific for the CIDR domains 
that mediate IE adhesion to EPCR,214,339,340 although divergent 
evidence also exists.341 A very recent study indicates that IgG to 
ICAM‐1‐binding PfEMP1 variants from Group B, which do not share 
the ICAM‐1‐binding motif with the Group A PfEMP1s (including DC4 
variants) and that do not contain an EPCR‐binding CIDR domain are 
acquired only when Group A (“dual binding”)‐specific immunity is al‐
ready in place.342 This study thus further underpins the theory of a 
PfEMP1 hierarchy modulated by host immunity.

The degree of IgG cross‐reactivity that transcends clone‐specific 
variability in key antigens is of obvious importance. Encouragingly, 
naturally acquired antibodies capable of inhibiting the interaction 
between ICAM‐1 and many ICAM‐1‐binding DBLβ domain vari‐
ants were recently observed.338 The prevalence of IgG specific for 
Group A ICAM‐1‐binding domains furthermore appears to be higher 
than those specific for EPCR‐binding CIDRα1 domains, suggesting 
that the former antibody specificity is more cross‐reactive than the 
latter.341

5.2 | PfEMP1‐based vaccination and other PfEMP1‐
specific interventions against CM

An ideal malaria vaccine would elicit immunity that prevents infec‐
tion of humans and leads to transmission elimination and global 
eradication of P. falciparum. While this goal is elusive at the present 
time, vaccines that prevent severe malaria illness, particularly in chil‐
dren and pregnant women, could constitute an alternative or interim 
strategy.

Current efforts to develop VAR2CSA‐based vaccines to pre‐
vent placental malaria is the most advanced example of a PfEMP1‐
based approach to malaria vaccination, as several such vaccines 
are currently in clinical trials.343-347 However, it is conceivable that 
development of vaccines to prevent severe malaria in children, 
including CM, might be possible using a similar strategy.193 An 
obvious goal would be vaccines eliciting a broadly reactive anti‐
body response preventing, and ideally reversing, adhesion of IEs 
to ICAM‐1 and EPCR, which appear as key receptors in CM patho‐
genesis. Vaccines designed to specifically target “double binders” 
would seem particularly attractive. Blocking of EPCR‐specific ad‐
hesion of IE by vaccination with relevant CIDRα1 domains would 
lead to protection not only against CM, but also against severe 
childhood malaria in general. Unfortunately, EPCR‐binding CIDRα1 
domains show substantial interclonal sequence variation and ex‐
perimental antibodies binding distant variants are difficult to gen‐
erate and are rarely inhibitory.348,349 This reduces the likelihood of 
natural induction of cross‐inhibitory IgG responses targeting the 
critical parts of CIDRα1 domains. In contrast, the highly conserved 
ICAM‐1 binding site of these “dual binding” PfEMP1 variants en‐
courage future efforts to raise broadly cross‐reactive IgG antibody 
responses against such molecules using their ICAM‐1 binding DBLβ 
domain as part of a strategy to prevent death due to CM.14,338

However, many questions remain unanswered. Aside from 
the uncertainty regarding the feasibility of making a vaccine with 

the desired qualities, it is unclear whether inhibition/reversal of 
ICAM‐1/EPCR‐specific IE adhesion would be sufficient to prevent 
CM. It is similarly unclear to what extent acquired clinical protection 
from CM requires neutralizing (IE adhesion‐blocking) antibodies, as 
opposed to opsonizing antibodies leading to preferential phagocytic 
and/or cytotoxic removal of IEs expressing particularly pathogenic 
PfEMP1 variants.

While efforts to overcome the obstacles in the development of 
a PfEMP1‐specific vaccine to protect against CM continue, other 
interventions should also be pursued. Unfortunately, adjunctive 
therapies (eg, glucocorticoids, anti‐TNFαs, iron chelators, osmotic 
regulators, anti‐oxidants, and glycosaminoglycans), aimed at pro‐
tecting against CM‐related brain damage and neuronal injury, have 
so far been unsuccessful.72,350,351 Furthermore, current anti‐malar‐
ial drugs fail to reverse adhesion of IEs.352 This notwithstanding, 
our improved understanding of molecular and cellular basis of CM 
pathogenesis might encourage novel adjunctive therapies aimed at 
dislodging sequestered parasite by interfering with PfEMP1‐medi‐
ated IE adhesion. Along this line, soluble EPCR has been shown to in‐
hibit adhesion of DC8‐expressing IEs and endothelial cells in vitro.28 
The finding of a soluble EPCR variant that binds PfEMP1 without 
affecting protein C binding to EPCR supports the in vivo feasibility 
of this approach,13 although the very low off‐rates of the PfEMP1‐
EPCR interaction may not allow release of IEs already bound.308 
Finally, a monoclonal antibody has been reported to inhibit and re‐
verse adhesion of IEs to ICAM‐1, including antibodies that affect 
“dual binding” PfEMP1 variants.353 However, the associated cost of 
this intervention will probably prevent its use in clinical practice.354

6  | CONCLUSIONS AND THE WAY 
FORWARD

Our understanding of the molecular basis of the interactions be‐
tween P. falciparum parasites and the humans they infect is progress‐
ing at a rapid pace. This is not least so for the tissue‐, organ‐, and 
receptor‐specific adhesion of IEs that act as major contributors to 
the pathogenesis of P. falciparum malaria, including the development 
of severe complications such as CM.

The critical importance of PfEMP1 for parasite survival makes 
these antigens major immune targets, and acquisition of PfEMP1‐
specific antibodies indeed appears to be a central component of 
naturally acquired protection. Emulating and accelerating these 
responses through vaccination would therefore seem obvious. 
However, the flipside is that the importance of PfEMP1 to the 
parasites applies a strong selective pressure on them to evolve 
mechanisms to evade protective, PfEMP1‐specific immunity. The 
most prominent example of this is clonal antigenic variation, which 
undoubtedly evolved to delay and frustrate the acquisition of 
PfEMP1‐specific protective antibodies, thereby enabling chronic 
infections.17,326,355-358 It is an important issue to ascertain pre‐
cisely how, and at what level(s), this undermining operates. While 
it seems clear that interclonal variation in functionally important 
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antibody epitopes is involved, it is essentially unknown to what 
extent clonal antigenic PfEMP1 variation is affecting important T‐
cell‐dependent helper functions. Clonal antigenic variation apart, 
it is becoming increasingly clear that P.  falciparum parasites have 
evolved a range of other strategies to evade PfEMP1‐specific 
immunity. Examples are antigen topology and cloaking, interfer‐
ence with antigen presentation, and subversion of soluble host 
molecules.20,277,359-362

In conclusion, much has been learnt from years of research on 
CM pathogenesis and immunity, although a lot remains to be known. 
Because this malaria complication is such an important part of the 
intolerable obstacle that P. falciparum malaria constitutes to health 
and to economic progress and equality, we are obliged to continue 
this research.193,363
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