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Functionalization of remote C(sp3)-H bonds
enabled by copper-catalyzed coupling
of O-acyloximes with terminal alkynes
Zhaodong Li1,3, Rubén O. Torres-Ochoa2,3, Qian Wang2 & Jieping Zhu 2*

Transition metal catalyzed Sonogashira cross-coupling of terminal alkynes with aryl(vinyl)

(pseudo)halides has been successfully extended to alkyl halides for the synthesis of func-

tionalized internal alkynes. The direct alkynylation of remote unfunctionalized sp3 carbon by

terminal alkynes remains difficult to realize. We report herein an approach to this synthetic

challenge by developing two catalytic remote sp3 carbon alkynylation protocols. In the pre-

sence of a catalytic amount of Cu(I) salt and a tridentate ligand (tBu3-terpyridine), O-acy-

loximes derived from cycloalkanones and acyclic ketones are efficiently coupled with terminal

alkynes to afford a variety of γ- and δ-alkynyl nitriles and γ-alkynyl ketones, respectively.
These reactions proceed through a domino sequence involving copper-catalyzed reductive

generation of iminyl radical followed by radical translocation via either β-scission or 1,5-

hydrogen atom transfer (1,5-HAT) and copper-catalyzed alkynylation of the resulting

translocated carbon radicals. The protocols are applicable to complex natural products.
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A lkyne is an important functional group in organic synthesis
and is also found in natural products and pharmaceuticals1.
Among many available synthetic methodologies, the

Sonogashira reaction is one of the most reliable transformations for
the synthesis of internal alkynes2. Initially developed for coupling of
terminal alkynes with aryl/vinyl (pseudo)halides in the presence of
Pd/Cu3 or Cu catalyst alone4,5, the reaction has subsequently been
extended to alkyl bromides/iodides (Fig. 1a) using Pd/Cu6, Ni/Cu7,
and Cu/hν8 catalytic systems9. In a different approach, in situ
oxidation of N,N-dimethylaniline derivatives to the corresponding
iminiums followed by nucleophilic addition of copper acetylides has
been developed for the synthesis of propargylamines (Fig. 1b)10.
The direct alkynylation of remote unfunctionalized sp3 carbon by
terminal alkynes remains, to the best of our knowledge, unknown.

Using nitrogen-centered radicals (NCRs) as precursors of
carbon-centered radicals has become the focus of recent intense
research efforts11–14. In this context, redox-active acyclic15 and
cyclic16 oxime derivatives, pioneered by Forrester and Zard,
respectively, have been demonstrated to be versatile precursors of
iminyl radicals under either oxidative or reductive conditions.
Depending on the structure of oximes, the iminyl radicals can
evolve to a carbon radical through either β-scission17–32 or 1,5-
hydrogen atom transfer (1,5-HAT) process33–39. The resulting
carbon radicals can then be trapped by radical acceptors, affording
remote C(sp3) functionalized alkylnitriles and ketones. However, in
spite of a great amount of dedicated efforts, synthetic transforma-
tions involving translocated carbon radicals were limited mainly to
the radical addition/homolytic substitution (SH2) and oxidation
reactions. For example, terminal alkynes have been used as radical
acceptors by Chen and Xiao for the synthesis of functionalized
dihydronaphthalenes (Fig. 1c)22. Recent report from Leonori’s
group showed that even in the presence of a Ni catalyst, radical
addition to terminal alkyne occurred at the expense of the cross-
coupling reaction to afford 1,2-disubstituted alkenes (Fig. 1c)31. To
avoid this radical addition problem, Chen has very recently devised
a clever three-component process, in which the primary radical

resulting from the β-scission was trapped by styrene to generate a
more stable benzylic radical, which can then undergo the Cu-
catalyzed cross-coupling with terminal alkynes32. To the best of our
knowledge, only the Waser’s hypovalent EBX reagent was capable
of trapping the primary alkyl radical to afford the γ-alkynyl nitriles
(Fig. 1d)28,40,41.

Stimulated by the challenges associated with the direct alkyny-
lation of unfunctionalized remote sp3 carbon, we became interested
in alkynylation of oxime esters with terminal alkynes. The underline
principle is outlined in Fig. 1e. Reduction of O-acyloximes 1 (cyclic)
or 2 (acyclic) by copper acetylide A, formed in situ from terminal
alkyne 3 and Cu(I) species, would afford Cu(II) intermediate B and
iminyl radical C. β-Scission or 1,5-HAT of the latter would generate
the carbon-centered radical D which, upon radical oxidative addi-
tion to B, would afford Cu(III) species E. Facile reductive elim-
ination from E would furnish the alkynylated product with
concurrent regeneration of the Cu(I) catalytic species. In this cat-
alytic cycle, copper went through three oxidation states and the
high-valent Cu(III) species, difficult to access by classic oxidative
addition, would be formed via a SET process. Although most of
radical–Cu(II) rebound processes involved activated secondary or
tertiary benzylic carbons42–44, we have very recently shown that it is
also possible to functionalize the primary radical in the presence of
copper under photocatalysis conditions45,46. While dual photo-
catalyst/Cu catalytic system has emerged as a powerful tool for
cross-coupling reactions47, the catalytic cycle depicted in Fig. 1e
using copper as the only catalyst remained uncommon48–51. We
report herein the successful realization of this endeavor by devel-
oping synthesis of γ- and δ-alkynyl nitriles 4 and γ-alkynyl ketones
5 from simple oxime esters 1 or 2 and terminal alkynes 3 (Fig. 1f).

Results
Cu-catalyzed alkynylation of cycloalkanone oxime esters. We
began our studies by investigating the reductive alkynylation of
cyclobutanone oxime esters with phenylacetylene (3a). After
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systematic survey of the ester groups, the copper sources, the
ligands, the bases, the temperature, and the solvents with or
without Blue LEDs irradiation (Supplementary Methods,
Tables 1–7), the optimum conditions found consisted of per-
forming the reaction of 1a with 3a in acetonitrile (c 0.2 M) in the
presence of CuI (0.1 equiv), 4,4,’4”-tri-tert-butyl-2,2′:6′,2″-ter-
pyridine (tBu3-TERPY, 0.2 equiv) and potassium carbonate (2.0
equiv) at 60 °C. Under these conditions, 4a was isolated in 76%
yield. We stress that the use of tBu3-TERPY as a ligand is
determinant to the success of the reaction.

As shown in Fig. 2, a range of aryl acetylenes bearing electron-
donating and electron-withdrawing groups at different positions
underwent the C(sp3)–C(sp) coupling with O-acyloxime 1a to
afford the γ-alkynyl alkylnitriles in good to high yields (4a–4j).
Alkynes attached to an heteroarene such as pyridine, indole, and
even thiophene were compatible to afford alkynylated nitriles 4k–
4m in satisfactory yields. (S)-Methyl 4-ethynyl-N-Boc-phenyla-
lanate took part in the reaction to give 4n in 60% yield. Aliphatic
alkynes participated in the reaction to deliver the products 4o–4u
in good yields. A range of functional groups, such as ester, amide,
carbamate, sulfonamide bearing an acidic proton, were well
tolerated. However, reaction of unprotected 4-ethynylaniline and
3-ethynylphenol with 1a afforded the desired product in low
yields (<30%). Performing the reaction of 1a with 3q at 2.0 mmol
scale under standard conditions provided 4q in similar isolated
yield (70%).

The alkynylation protocol was next applied to a diverse set of
oxime esters (Fig. 3). Oxime esters derived from C-3 mono- and
disubstituted cyclobutanones underwent alkynylation smoothly
to afford the corresponding γ-alkynylated nitriles (4v–4af).
Nonsymmetrical C-2 substituted cyclobutanone derivatives
underwent β-scission at the more substituted position to deliver
the alkynylation products (4ag–4ai) in good yields. Ring-opening

alkynylation of oxetan-3-one oxime ester proceeded well to
provide the coupling product 4af in 62% yield. 2,3,3-Trisub-
stituted oxime ester was alkynylated without event to afford the
highly functionalized alkyne 4aj. Bicyclo[3.2.0]hept-2-en-6-one-
derived oxime ester was converted to trans-3,4-disubstituted
cyclopentene derivative 4ak in 76% yield. Gratefully, oxime
esters derived from less strained cyclopentanones and dihydro-
furan-3(2H)-one underwent similar transformation to afford
δ-alkynylated nitriles (4al, 4am, 4an) in good yields. It is
nevertheless important to note that the presence of a substituent
alpha to the oxime function is needed to drive the fragmentation
and that the oxime esters derived from cyclohexanone failed to
produce the ω-alkynylated alkylnitriles. We stress that aryl
chloride (4ad, 4ae) and alkenes (4ah, 4ak), including α,β-
unsaturated ester (4w), which are excellent radical acceptors of
the transient nucleophilic alkyl radicals, remained unaltered.

Cu-catalyzed γ-C(sp3)-H alkynylation of linear oxime esters.
Oxime esters derived from linear ketones were next examined for
the synthesis of γ-alkynylated ketones by a domino sequence
involving reductive generation of iminyl radicals followed by 1,5-
HAT and alkynylation of the resulting carbon-centered
radicals52–56. Reaction of 2a (R1= R2= Ph) with 3a (R= Ph)
under aforementioned standard conditions afforded only a trace
amount of 5a, with the unfunctionalized ketone being isolated as
the major product. This result was not unexpected considering
the reversibility of 1,5-HAT of iminyl radicals to benzylic radi-
cals35. After an exhaustive optimization of reaction conditions
(see Supplementary Methods, Tables 8–14), we found that stir-
ring a DCE solution of 2a (0.1 mmol) with 3a (0.2 mmol) at 45 °C
in the presence of (CuOTf)2·C6H6 (0.05 equiv), tBu3-TERPY (0.1
equiv), and K2CO3 (2 equiv) provided the desired internal alkyne
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5a in 76%. The generality of this protocol is shown in Fig. 4.
Regardless of the electronic nature of the oxime esters and the
acetylenes, the γ-C(sp3)-H alkynylation proceeded smoothly to
afford the corresponding γ-alkynylated ketones (5a–5p) in good
yields. Oxime esters derived from aliphatic ketones (5q–5t) were
selectively alkynylated at the benzylic position. Functional groups
such as terminal alkyne (5t), nitrile (5s), thioether (5ae), enyne
(5ag), alkyl chloride (5ac), and heteroarenes (5u–5w) were well
tolerated. Alkynylation on a tertiary carbon was also feasible
(5af), albeit with reduced yield. An experiment performed at
1.0 mmol scale between O-acyloxime 2b and phenylacetylene (3a)
gave 5b in 76% isolated yield. However, the presence of an aryl
(R2=Aryl group) or a heteroatom substituent (R2= SMe, 5ae) in
oxime 2 is needed in order for the domino alkynylation process to
occur. In fact, the bond dissociation energy (BDE) of iminyl NH
bonds (93 kcal/mol) is lower than most of the C(sp3)-H bond (96-
105 kcal/mol), which makes the 1,5-HAT of iminyl radical to
carbon radical thermodynamically unfavorable. One solution to
this problem is to perform the reaction under acidic condi-
tions15,33,39, which are unfortunately incompatible with the pre-
sent alkynylation conditions.

Application of these protocols to the late-stage functionaliza-
tion of natural product-derived alkynes was examined. As shown
in Fig. 5a, estrone-derived alkyne 6a, γ-tocopherol-derived alkyne
7a and glucose derivative 8a were successfully engaged in the
reaction with cyclic oxime ester 1a to produce the internal
alkynes 6b, 7b, and 8b, respectively, in synthetically useful yields.

Reaction of mestranol derivative 9a with oxime ester 2b afforded
the expected γ-alkynylated ketone 9b in 72% yield. Finally, post-
functionalization of γ-alkynylated alkylnitriles and ketones were
performed to demonstrate the synthetic potential of these
building blocks. Thus, Ni/BPh3-catalyzed [2+ 2+ 2] cycloaddi-
tion of nitrile 4c with dec-5-yne (10) afforded the fused pyridines
11 and 12 in 50 and 40% yields, respectively57. On the other
hand, base-promoted cyclization of the alkynyl ketone 5a
afforded the trisubstituted 4H-pyran 13 in 85% yield (Fig. 5b)58.

Control experiments were conducted to gain insights on the
possible reaction mechanism. Addition of radical inhibitors such
as TEMPO or TBHP to the reaction mixture suppressed or
substantially reduced the product formation (Supplementary
Methods, S283). The reaction of 2o with phenylacetylene 3a
afforded enyne 5ah in 75% yield, while reaction of 1t with 3t
provided indane 14 (57%, d.r. 1:1) involving a 5-exo-trig radical
cyclization before the final Cu-catalyzed cross-coupling reaction
(Fig. 6). The results of these control experiments indicated clearly
the existence of the radical intermediates and the feasibility of the
reaction pathway depicted in Fig. 1e.

Discussion
Generation of heteroatom-centered radicals followed by
β-scission or 1,5-HAT and functionalization of the resulting
translocated carbon radicals have been an active research area for
the past few years. However, the reported transformations
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involved mainly the addition of the C-radicals to multiple bonds
including alkynes, atom transfer, and reduction/oxidation reac-
tion. To address this limitation, we proposed to combine this
radical chemistry with the powerful transition metal-catalyzed
cross-coupling reaction, and demonstrated that capture of the C
radical by organocopper salts followed by reductive elimination of
the resulting Cu(III) intermediate is a highly efficient way to
functionalize the translocated C radical. Indeed, we developed
efficient and functional group-tolerant Cu-catalyzed syntheses of
γ- and δ-alkynyl nitriles and γ-alkynyl ketones, respectively, from
readily accessible O-acyloximes and terminal alkynes. The reac-
tion proceeded through a domino sequence involving reductive

generation of iminyl radical followed by its translocation to a
carbon-centered radical via either β-scission or 1,5-HAT and
copper-catalyzed coupling of the resulting C(sp3) radical with the
terminal alkynes. The catalytic amount of copper played a triple
roles: it reacted with terminal alkyne to form the copper (I)
acetylide, which in turn served as a reductant to reduce the oxime
ester to generate the iminyl radical and the Cu(II) species. Finally,
Cu(II) intermediate underwent radical rebound with the trans-
located carbon radical to produce the Cu(III) species. Reductive
elimination of the latter afforded the remote alkynylated alkyl-
nitriles or ketones with the concurrent regeneration of the Cu(I)
species.
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Methods
Cu-catalyzed alkynylation of cycloalkanone oxime esters. O-acyloximes 1
(0.2 mmol), terminal alkynes 3 (0.4 mmol, 2.0 equiv), K2CO3 (0.4 mmol, 2.0 equiv),
CuI (0.02 mmol, 0.1 equiv), and tBu3-TERPY (0.04 mmol, 0.2 equiv) were placed in
a dry Schlenk tube. The reaction vessel was evacuated and filled up with nitrogen
three times, then CH3CN (1.0 mL) was added at rt. After being stirred at 60 °C for
12 h, the reaction mixture was diluted with water and extracted with DCM. The
combined organic layers were washed with aqueous NH4Cl solution and dried over
anhydrous MgSO4. After removal of the solvent under reduced pressure, the crude
product was purified by column chromatography (silica gel, eluent: ether/petro-
leum ether) to give the corresponding γ- or δ-alkynyl nitrile 4.

Cu-catalyzed γ-C(sp3)-H alkynylation of linear oxime esters. A suspension of
O-acyloximes 2 (0.1 mmol), K2CO3 (0.2 mmol, 2.0 equiv), tBu3-TERPY (0.01 mol,
0.1 equiv), and (CuOTf)2·C6H6 (0.005 mmol, 0.05 equiv) in DCE (c 0.05 M) was
deoxygenated by freeze–pump–thaw cycles. Alkyne 3 (0.2 mmol, 2.0 equiv) was
introduced and the reaction mixture was stirred at 45 °C until the complete con-
sumption of the starting materials (monitored by TLC). The reaction mixture was
poured into a saturated NaHCO3 solution and extracted with EtOAc. The com-
bined organic layers were washed with aqueous NH4Cl solution, dried over
Na2SO4, and evaporated to dryness under reduced pressure. The residue was
purified by flash column chromatography on silica gel to afford the corresponding
γ-alkynylated ketone 5.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and the Supplementary Information, as well as from the authors upon
request.
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