Skip to main content
. 2019 Oct 22;124(2):274–287. doi: 10.1038/s41437-019-0273-4

Table 3.

Accuracies for non-genotyped individuals using single- and multi-trait models in scenario G9

Trait1 Region size2 Single-trait3 Multi-trait
ssSNPB1 ssBayesN0 ssSNPB2 ssSNPB1 ssBayesN0 ssSNPB2
L4 1 SNP ab0.351c ab0.357c ab0.361c b0.402b b0.406b a0.418a
100 SNPs a0.355c a0.363c a0.363c a0.412b a0.426a a0.427a
1 Chr b0.340b b0.342b bc0.342b c0.378a c0.377a b0.378a
WG b0.337c b0.337c c0.336c d0.361abc d0.365b c0.366a
H 1 SNP a0.526cd a0.528d a0.531bc a0.529bcd a0.533b a0.537a
100 SNPs a0.530c a0.535b a0.535b a0.534b a0.539a a0.539a
1 Chr b0.513abc b0.513c b0.513bc b0.516abc b0.517ab b0.517a
WG b0.511bc b0.511c b0.511bc b0.513abc b0.514ab c0.514a

1L and H: low (0.1) and high (0.4) heritability traits, respectively

2Chr chromosome, WG whole genome

3ssSNPB1 and ssSNPB2: Single-step SNPBLUP, for which the variance components were obtained from BayesN0 and ssBayesN0, respectively

4Different alphabets mean significantly different values at a Type 1 error rate of 0.05 with Bonferroni correction. Subscripts and superscripts stand for comparisons within column and row, respectively, for each trait