Skip to main content
. 2019 Oct 22;124(2):274–287. doi: 10.1038/s41437-019-0273-4

Table 5.

Accuracies for non-genotyped individuals using single- and multi-trait models in scenario N5

Trait1 Region size2 Single-trait3 Multi-trait
ssSNPB1 ssBayesN0 ssSNPB2 ssSNPB1 ssBayesN0 ssSNPB2
L4 1 SNP a0.328c a0.325c a0.326c a0.357a a0.353b a0.355ab
100 SNPs a0.327b a0.327b a0.326b a0.357a a0.355a a0.355a
1 Chr a0.324c a0.325c a0.324c ab0.349ab a0.347b a0.350a
WG a0.327b a0.325b a0.327ab b0.343ab a0.350b a0.352a
H 1 SNP a0.506d b0.507cd a0.510b a0.508bc ab0.509b a0.512a
100 SNPs a0.507c a0.511ab a0.511ab a0.509bc a0.512ab a0.512a
1 Chr ab0.503b bc0.504ab b0.504ab ab0.505a bc0.505ab b0.506ab
WG b0.503b c0.503b b0.503b b0.504ab c0.506a b0.506a

1L and H: low (0.1) and high (0.4) heritability traits, respectively

2Chr chromosome, WG whole genome

3ssSNPB1 and ssSNPB2: Single-step SNPBLUP, for which the variance components were obtained from BayesN0 and ssBayesN0, respectively

4Different alphabets mean significantly different values at a Type 1 error rate of 0.05 with Bonferroni correction. Subscripts and superscripts stand for comparisons within column and row, respectively, for each trait