Table 2.
Best models for each of the working hypothesis selected according to the model’s AICc and ΔAICc. The hypotheses and models with the higher support (and lower AICc values) are presented in bold.
| Models | df | AICc | ΔAICc | AICc weight | 
|---|---|---|---|---|
| H1 - productivity/food resources availability hypothesis | ||||
| NDVI + Rabbit_abundance | 3 | 65.20 | 0.00 | 0.419 | 
| NDVI | 2 | 65.34 | 0.14 | 0.392 | 
| Rabbit_abundance | 2 | 66.79 | 1.59 | 0.189 | 
| H2 - Disturbance hypothesis | ||||
| Road_network | 2 | 67.04 | 0.00 | 1.000 | 
| H3 - Life-history traits hypothesis | ||||
| Body_size + Age | 3 | 61.67 | 0.00 | 0.162 | 
| Body_size + Age + Mongoose_dens | 4 | 61.67 | 0.00 | 0.162 | 
| Age + Mongoose_dens | 3 | 61.98 | 0.31 | 0.138 | 
| Age | 2 | 62.03 | 0.36 | 0.135 | 
| Gender + Body_size + Age | 4 | 62.97 | 1.30 | 0.085 | 
| Gender + Body_size + Age + Mongoose_dens | 5 | 63.00 | 1.33 | 0.083 | 
| Gender + Age + Mongoose_dens | 4 | 63.24 | 1.57 | 0.074 | 
| Gender + Age | 3 | 63.26 | 1.59 | 0.073 | 
| H4 - Climate and orography hypothesis | ||||
| Altimetry + Annual_rainfall + Annual_temp_range + River_network | 5 | 55.87 | 0.00 | 0.542 | 
| Altimetry + Annual_rainfall + Annual_temp_range | 4 | 57.61 | 1.74 | 0.227 | 
| H5 – Cattle farm hypothesis | ||||
| Dens_cattle_farm | 2 | 66.84 | 0.00 | 1.000 | 
df - degrees of freedom. AICc - Akaike’s information criterion. ΔAICc - difference to the lowest AICc value; AICc weight - Akaike weights. Rabbit_abundance - Abundance of wild rabbits; NDVI - Normalized Difference Vegetation Index; Road_network - road network density; Body_size – First component of the Principal component analysis (PCA) of body size (based on weight, snout-tail length, neck perimeter); Mongoose_dens – Egyptian mongoose abundance; Annual_temp_range - annual temperature range.