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1  | INTRODUC TION

Air quality that is considerably related to climate change, human 
health, and other environmental conditions can be assessed by 
measuring particulate matter (PM) concentrations. Air pollution as-
sociated with PM concentrations has been studied significantly on 
its adverse effects.1-4 Fine airborne particles, PM2.5 (particle size 
less than or equal to 2.5 μm), have been considered one of the high-
est health risks, causing numerous diseases including lung cancer, 
arrhythmia, asthma, pneumonitis, and cardiovascular mortality.5-11 
The first key factor for effective management of air pollution is to 
continuously monitor air quality by measuring PM concentrations. 
Most of the government agencies in the world employ sparsely dis-
tribute monitoring stations equipped with expensive and high‐qual-
ity monitoring systems. However, the stations cannot effectively 

and accurately represent the pollutant gradients within cities, and it 
is even more difficult to assess air quality in indoor environment.12-14 
Due to this limitation in the coverage of the monitoring stations, re-
cently many industries and researchers have been developing real‐
time monitoring systems for large networks.

Recently, many low‐cost sensors based on light scattering tech-
niques with optical systems have been widely developed and em-
ployed to evaluate air quality with much higher spatial resolution.15 
Moreover, the new sensors have been adopted by many researchers 
and citizen scientists in many applications to collect personal expo-
sure and mobile monitoring data in hot spots.16-19 However, several 
issues such as little information from manufacturers, simplified mea-
surement, and noise handling techniques are growing concerns on 
reliability and accuracy of the low‐cost sensors.20 Besides, relatively 
little investigation on the performance of these low‐cost sensors 
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PM10 measurements. The 32, 24, and 16% of all the tested sensors for PM1, PM2.5, 
and PM10 measurement, respectively, are in the category of Class 1 (reference instru-
ment reading ± 20%) requirement. The performance of the low‐cost dust sensors for 
PM10 measurement was relatively less satisfactory.
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have been conducted, and there is still lack of standard calibration 
and evaluation methods for the sensors.

Several researchers adopted their own calibration and evalua-
tion procedures to test the low‐cost sensors including co‐location 
measurements in ambient environment and lab‐scale measurements 
using standard test particles or ambient airborne particles.15,18,20-25 
However, the accuracy of measurement data has always been ques-
tioned by many researchers and scientists,15,26,27 and the limited 
number of sensors have been assessed due to the time‐consuming 
evaluation process, which might not be able to represent the over-
all performance of hundreds of low‐cost sensors in the commercial 
market. Besides, the lack of standardized methods for performance 
evaluation of low‐cost sensors results in difficulties in intercompar-
isons of the sensors evaluated in different studies.28 Therefore, a 
standard test procedure should be required for these overflowing 
low‐cost sensors.

In the year 2015, there was a big dispute in Korea about the ac-
curacy of low‐cost dust sensors. Since then many scientists and in-
dustrial people have been collaborating to establish a standardized 
method in testing a dust sensor. As a result, the Korean industrial 
standard “SPS‐C KACA 0027‐7269:2018” for a low‐cost dust sensor 
test was introduced in May 30, 2018. Based on this standardized 
procedure, we tested the low‐cost dust sensor extensively from 
June to December 2018, and we classified the sensors into 4 groups 
based on the accuracy of the sensor measurements by comparing a 
reference instrument. In this study, 264 sensors with three differ-
ent types according to their deployment conditions were tested, 
that is, a “module type” sensor that is half‐finished and cannot be 
used as it is a “standalone type” sensor that is ready to use and 
an “embedded type” sensor that is installed inside an air purifier 
or an air conditioner. Based on this classification, 53 module type, 
126 standalone type, and 85 embedded type sensors, that is, total 
264 sensors from 23 manufactures were systematically evaluated. 
Since the low‐cost dust sensors are operated by detecting a scat-
tered light coming from a particle, we checked the sensor's lighting 
source effect on its performance. The 27 and 237 sensors out of 
the total 264 sensors have a light‐emitting diode (LED) and a laser as 
their lighting source, respectively. It should be noted that this paper 
systematically addressed the performance of hundreds of sensors 
according to their PM concentration measurements at a glance. Our 
findings from the results based on the standardized sensor evalua-
tion are expected to provide important insights and valuable guide-
lines to effectively select and develop low‐cost sensors.

2  | TEST METHOD

Basically, we adopted an exponentially decaying particle concen-
tration for the evaluation of low‐cost dust sensors. The advantage 
of this concentration condition is that the testing time is relatively 
short, mostly taking less than 10  minutes, compared with other 
test methods using a constant particle concentration, which usu-
ally takes more than an hour.29 Therefore, in this study, two types 

of test systems using the exponentially decaying particle concen-
tration were applied. The first one is a chamber system as shown 
in Figure 1A. This method is very useful when testing an air puri-
fier with an embedded type of a low‐cost dust sensor. Due to the 
purifying process of the air purifier removing particles inside the 
test chamber, the particle concentration in the chamber will de-
crease exponentially as a function of time. The chamber dimension 
in Figure 1A is 5 × 5 × 2 m3. For testing a dust sensor in an air puri-
fier using the chamber system shown in Figure 1A, the introduced 
particles in the chamber are well mixed by the air coming from the 
air purifier and if necessary, an auxiliary agitating fan can be used 
to ensure the uniform particle concentration in the chamber. In 
this case, one must be careful about the airflow velocity near the 
dust sensor. If the flow speed is high near the sensor then the dust 
sensor may not function properly.30 The second test system is to 
employ a low air‐speed duct with an exponentially decaying par-
ticle concentration as shown in Figure 1B. This system performs 
well for the test of a low‐cost dust sensor with a small size and high 
sensitivity to an airflow around it. The details in the low‐speed 
duct test method are well described in Kang et al30 Briefly, gener-
ated particles by an atomizer are introduced to a particle mixing 
chamber until the particle concentration in the chamber reaches 
a certain level, and then the path between the aerosol generator 
and the mixing chamber is disconnected. After this step, only the 
clean air is supplied to the particle mixing chamber, and the parti-
cles with an exponentially decaying concentration are introduced 
to the test duct system. We used a flow straightener with a typical 
honeycomb structure before the test section to obtain the flow 
uniformity. The uniformity of flow velocity and particle concentra-
tion in the test section was confirmed before each test.

For test particles, 5 wt% potassium chloride (KCl) solution was 
used to generate KCl particles by an atomizer for both test systems. 
The exemplary size distributions of the generated KCl particles as 

Practical Implications
•	 There are lots of low‐cost dust sensors available in the 

market or used by many researchers and citizen scien-
tists for air quality evaluations; however, the reliability of 
these sensors has been questioned due to the absence of 
a standardized calibration method.

•	 This study suggests the newly developed test method 
for the evaluation of low‐cost dust sensors, and it classi-
fies the 264 sensors into 4 groups based on the accuracy 
compared with the reference instrument.

•	 The developed test method can be used for the evalu-
ation of the response time of the low‐cost dust sensors 
tested under the fast‐changing concentration conditions, 
and through the introduced test method, one can select 
the proper sensors for their specific purpose and cali-
brate the sensors quickly.
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time elapses with 4 minutes of the time interval are shown in Figure 2. 
The size distributions were measured by a Grimm 1.209 dust mon-
itor (Model 1.209, Grimm Aerosol Technik Company), and this was 
used as a reference instrument in this study. The number mean 

diameter was 0.44 ± 0.02 μm, and the geometrical standard deviation 
of 1.62 ± 0.05 was maintained during the entire testing periods for 
6 months, that is, from June to December, 2018. Tested low‐cost sen-
sors measured particle concentrations, and the data were compared 
to the data simultaneously obtained by the reference instrument.

The sensor performance was classified into 4 groups based on 
the deviation from the reference data as shown in Figure 3. For 
the evaluation of the sensors, we focused on their measurement 
accuracy and response characteristic. The accuracy of the sensors 
was estimated by the absolute concentration data at the lowest and 
highest concentrations, and the response characteristics to the rap-
idly changing concentration were assessed by the ratio of the slope 
obtained by the sensors to the one from the reference instrument.

F I G U R E  1  Schematics of low‐cost dust sensor evaluation 
systems: (A) chamber test; (B) low‐speed duct test

F I G U R E  2   Potassium chloride particle size distributions as a 
function of elapsed time with an exponentially decaying particle 
concentration. The time interval is 4 min

F I G U R E  3   Classification and acceptance limits of low‐cost 
sensor performance
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The Class 1 acceptance limit is represented by a red solid line par-
allelogram in a semi‐log graph. This is equivalent to the inside of ±20% 
of the regression line of the reference data (black dashed line). It should 
be noted that due to the exponentially decaying particle concentration, 
the concentration is represented in log scale on the y‐axis. In the same 
manner, we set the limits as ±30% and ±50% of the reference data for 
Class 2 and Class 3, respectively. Class 4 is the one beyond the Class 
3 acceptance criteria. To clarify the classification method, we showed 

an example in Figure 3. It can be seen that the measurement data of 
the test sensor for the highest and lowest concentrations during the 
test period meet the criteria for Class 3 and Class 1, respectively. In 
this case, we classify this low‐cost dust sensor as Class 3. It should be 
mentioned that if there are experimental errors in the particle gener-
ation or flow system, the regression data obtained by the reference 
instrument shown in Figure 3 will not be straight in a semi‐log graph.

F I G U R E  4   Exemplary measurement data obtained by the (A) 
module (PM1), (B) standalone (PM2.5), and (C) embedded (PM2.5) 
type sensor

F I G U R E  5  Slopes of the regression lines for PM1 measurement 
obtained by test sensors (78 samples) and reference instrument: (A) 
module; (B) standalone; (C) embedded type sensor
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3  | RESULTS AND DISCUSSION

Some of the sample test results are shown in Figure 4. Figure 4A‐C 
are the sample test results for a “module type” sensor, “standalone 
type” sensor, and “embedded type” sensor, respectively. Based on 
the criteria introduced in the previous section, the tested sensors 

in Figure 4A‐C were classified to Class 1, Class 3, and Class 2, 
respectively.

Figure 5 represents the slopes obtained from the measurements 
using 78 PM1 sensors including all three types, that is, module, stand-
alone, and embedded types. It is clearly seen that the absolute val-
ues of the slopes obtained from the test sensors classified as Class 1, 
2, and 3 are in good agreement with those from the reference instru-
ment regardless of sensor types, lying on the 1:1 line. However, the 
obtained slopes from some of Class 4 sensors are slightly deviated 
from the reference data, for example, black stars in Figure 5A.

The linearity comparison for 125 PM2.5 sensors with the three 
types was also performed, and the results are shown in Figure 6. 
Except for some of Class 4 sensors, the other low‐cost dust sen-
sors have the similar slopes to the reference instrument, indicating 
the response characteristics of the sensors to the exponentially 
changing concentration are generally good. The degree of devi-
ations from the 1:1 line shown in the module type sensors, that 
is, Figure 6A, was found to be larger than the other two types of 
sensors, especially when compared to the embedded type sensors 
in Figure 6C.

F I G U R E  6  Slopes of the regression lines for PM2.5 measurement 
obtained by test sensors (125 samples) and reference instrument: 
(A) module; (B) standalone; (C) embedded type sensor

F I G U R E  7  Slopes of the regression lines for PM10 measurement 
obtained by test sensors (61 samples) and reference instrument: (A) 
module; (B) standalone type sensor
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The results for PM10 measurements are represented in Figure 7, 
but due to some difficulties in manufacturing process, which might 
be related to failure of the satisfaction of certain criteria, embedded 
type sensors were not available during the test period. Therefore, 
Figure 7 only shows the results for the module and standalone types 
of sensors. We found that most of the Class 4 sensors with the mod-
ule type showed significant deviations in slope while relatively good 
linearity was seen for the standalone type sensors.

In addition to the evaluation of linearity, we can clearly evalu-
ate the degree of deviation for the measurements of high and low 
particle concentrations from the reference data. Figure 8 quanti-
tatively represents the degree of deviation of PM1 (Figure 8A‐C), 
PM2.5 (Figure 8D‐F), and PM10 (Figure 8G,h) measurements relative 
to the reference instrument at the high and low concentrations. If a 
data point is placed within ±20% of the reference data at both high 
and low concentration, the sensor is classified as Class 1, which is 

depicted as a circular solid dot in a red rectangle. In the same way, 
the limit of Class 2 and 3 is represented as a blue and dark red rect-
angle, respectively. To be noted, some of the sensor data points that 
are out of the most outer boundaries, that is, over ±80%, are not 
shown. From the way of representing the data as shown in Figure 8 
based on the testing method introduced in this study, one can easily 
evaluate the performances of sensors according to particle size and 
concentration.

The performance classifications of test sensors are summa-
rized in Table 1 for different sensor types, that is, module, stand-
alone, and embedded types. According to the results shown in 
Table 1, about one quarter of the low‐cost dust sensors regardless 
of sensor type were classified into Class 1. As seen in the table, a 
considerable portion of the module type sensors, that is, 32.1%, 
belongs to Class 4, indicating the less accuracy compared with 
the standalone and embedded type sensors. Therefore, it can 

F I G U R E  8   Deviations of particulate matter (PM) concentration measurements from the reference data at high and low particle 
concentrations. Cs and Cr are the concentration measured by a test sensor and reference instrument, respectively: (A) PM1, module; (B) PM1, 
standalone; (C) PM1, embedded; (D) PM2.5, module; (E) PM2.5, standalone; (F) PM2.5, embedded; (G) PM10, module; (H) PM10, standalone type 
sensor
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be concluded that standalone and embedded type sensors were 
calibrated better by the final manufactures than the half‐finished 
module manufactures.

Figure 9 represents the percentages of sensor grade depend-
ing on PM for all test sensors. The accuracy of the low‐cost dust 
sensors is higher for detecting smaller sized particles, that is, PM1, 

compared with PM2.5 and PM10. For instance, the Class 1 satisfac-
tion ratio for PM1, PM2.5, and PM10 is 32%, 26%, and 16%, respec-
tively. From the result, low‐cost dust sensors cannot detect larger 
particles efficiently, which should be a main part needed to be im-
proved near future. It should be noted that theoretically the optic 
system can easily detect large particles due to higher scattering 

  Class 1 Class 2 Class 3 Class 4 Total

(a) Module type

PM1 2 (3.8%) 2 (3.8%) 4 (7.5%) 3 (5.7%) 11 (20.8%)

PM2.5 8 (15.1%) 4 (7.5%) 6 (11.3%) 6 (11.3%) 24 (45.3%)

PM10 3 (5.7%) 4 (7.5%) 3 (5.7%) 8 (15.1%) 18 (34.0%)

Total 13 (24.5%) 10 (18.9%) 13 (24.5%) 17 (32.1%) 53 (100%)

(b) Standalone type

PM1 10 (7.9%) 4 (3.2%) 8 (6.3%) 3 (2.4%) 25 (19.8%)

PM2.5 15 (11.9%) 10 (7.9%) 22 (17.5%) 11 (8.7%) 58 (46.0%)

PM10 7 (5.6%) 7 (5.6%) 15 (11.9%) 14 (11.1%) 43 (34.1%)

Total 32 (25.4%) 21 (16.7%) 45 (35.7%) 28 (22.2%) 126 (100%)

(c) Embedded type

PM1 13 (15.3%) 9 (10.6%) 15 (17.6%) 5 (5.9%) 42 (49.4%)

PM2.5 9 (10.6%) 10 (11.8%) 11 (12.9%) 13 (15.3%) 43 (50.6%)

Total 22 (25.9%) 19 (22.4%) 26 (30.6%) 18 (21.2%) 85 (100%)

TA B L E  1   The ratio of low‐cost 
dust sensors for each Class based 
on particulate matter: (a) module; (b) 
standalone; (c) embedded type sensor

F I G U R E  9   Classification of low‐cost sensors based on particulate matter (PM): (A) PM1 (78 samples); (B) PM2.5 (125 samples); (C) PM10 (61 
samples)

F I G U R E  1 0   Classification of low‐cost sensors based on light source: (A) LED (27 samples); (B) laser (237 samples); (C) total 264 samples
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intensity. However, these test results showed opposite trend, and 
one possible explanation is that the low particle sampling efficiency 
and the significant transportation losses for larger particles inside 
a sensor. Therefore, the findings in this study also enlighten the im-
portance of the proper designs of the sampling port and flow chan-
nel for minimizing the particle losses, which might affect the sensor 
performance significantly.

We classified the sensors’ performance according to the type of 
light source in the sensors, that is, LED or laser, shown in Figure 10. 
Only 27 samples adopted an LED as an illumination source, and 
most of the sensors used a laser, that is, 237 samples. As it is shown 
in Figure 10, no significant difference on sensor performance was 
found.

We also estimated the ratios of the low‐cost sensors according 
to PMs in Figure 11, and detailed values are summarized in Table 2. 
Interestingly, the effect of a light source on detecting different 
sized PMs was observed from the results showing that the low‐
cost sensors with an LED as a light source can hardly function on 
PM10 measurement as shown in Figure 11C. This may be caused 
by the sampling mechanism of the LED type sensors. LED type 
sensors usually employ heating registers as an air mover. This reg-
ister type air mover usually generates very low air speed inside 

the sensor that can hardly transport large‐sized particles into the 
sensing zone.

In general, the sensor performance of the LED‐based module 
type sensors is much less satisfactory than the embedded type 
sensors. This may imply that the sensors embedded in air purifi-
ers have better algorithms or calibrations than the half‐finished 
module sensors. The performance of the low‐cost dust sensors 
according to the light source and the sensor types is summarized in 
Table 3. The assessment procedure for different types of sensors 
and the data shown in this study will provide manufacturers and 
users with valuable insights on the performance of low‐cost dust 
sensors.

4  | CONCLUSION

Low‐cost dust sensor performance has been tested using an expo-
nentially decreasing particle concentration that is recommended in 
Korean industrial standard “SPS‐C KACA 0027‐7269:2018.” About 
264 sensor samples were tested and classified into 4 different 
groups, Class 1, 2, 3, and 4, depending on their performance, which 
is evaluated by comparing with an optical particle counter used as 

F I G U R E  11   Classification of low‐cost sensors based on particulate matter (PM) and light source: (A) PM1 (78 samples); (B) PM2.5 (125 
samples); (C) PM10 (61 samples)

  Class 1 Class 2 Class 3 Class 4 Total

(a) PM1

LED 4 (5.1%) 2 (2.6%) 1 (1.3%) 5 (6.4%) 12 (15.4%)

Laser 21 (26.9%) 13 (16.7%) 26 (33.3%) 6 (7.7%) 66 (84.6%)

Total 25 (32.1%) 15 (19.2%) 27 (34.6%) 11 (14.1%) 78 (100%)

(b) PM2.5

LED 2 (1.6%) 2 (1.6%) 5 (4%) 3 (2.4%) 12 (9.6%)

Laser 30 (24.0%) 22 (17.6%) 34 (27.2%) 27 (21.6%) 113 (90.4%)

Total 32 (25.6%) 24 (19.2%) 39 (31.2%) 30 (24%) 125 (100%)

(c) PM10

LED 0 0 3 (4.9%) 0 3 (4.9%)

Laser 10 (16.4%) 11 (18.0%) 15 (24.6%) 22 (36.1%) 58 (95.1%)

Total 10 (16.4%) 11 (18%) 18 (29.5%) 22 (36.1%) 61 (100%)

TA B L E  2   The number and ratio of low‐
cost dust sensors for each Class based on 
light source: (a) PM1; (b) PM2.5; (c) PM10
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a reference instrument. Most of the sensors showed a very good 
linearity (slope of concentration measurement data) with the refer-
ence data. About one quarter of the tested sensors satisfied the 
Class 1 acceptance limit. However, the accurate PM10 measurement 
by using the low‐cost sensors was found to be relatively difficult to 
achieve, which might be caused from the difficulty in transporting 
large particles to detection zones. The comprehensive assessment 
presented in this study should be widely adopted for the further 
improvement of low‐cost dust sensors in this high demand.
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