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Mendelian randomization (MR) uses genetic variants as instrumental variables

to infer whether a risk factor causally affects a health outcome. Meta‐analysis

has been used historically in MR to combine results from separate epidemio-

logical studies, with each study using a small but select group of genetic vari-

ants. In recent years, it has been used to combine genome‐wide association

study (GWAS) summary data for large numbers of genetic variants. Heteroge-

neity among the causal estimates obtained from multiple genetic variants

points to a possible violation of the necessary instrumental variable assump-

tions. In this article, we provide a basic introduction to MR and the instrumen-

tal variable theory that it relies upon. We then describe how random effects

models, meta‐regression, and robust regression are being used to test and

adjust for heterogeneity in order to improve the rigor of the MR approach.
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1 | INTRODUCTION

The primary aim of observational epidemiology is to deter-
mine the root causes of illness, with the focus of many epi-
demiological analyses being to examine whether exposure
to a particular risk factor modifies the severity, or the like-
lihood of developing, a disease. Causal conclusions are
rarely justified following a traditional analysis, even when
strong statistical associations are measured between an
exposure and outcome, because it is never certain that all
confounders of the association have been identified, mea-
sured, and appropriately adjusted for. Mendelian random-
ization (MR)1 offers an alternative way to probe the issue
of causality in epidemiological research, by using addi-
tional genetic variants that are hypothesized to satisfy
the instrumental variable (IV) assumptions.
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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Directed acyclic graphs (DAGs) are a useful tool, both
to explain the rationale for an MR study and to clarify the
IV assumptions that its validity rests on. Figure 1 shows a
DAG relating the simplest single unit of genetic variation
—a single nucleotide polymorphism (SNP) G—to an
exposure, X, and outcome, Y, in the presence of unmea-
sured confounding, represented by U.

The true causal effect of the exposure on the outcome is
denoted by the arrow from X to Y in Figure 1 and the
parameter β. The “associational” estimate obtained from
a simple regression of the outcome on the exposure could
be systematically different from this causal effect, because
confounding may be responsible for all, or part of, its mag-
nitude. From the DAG in Figure 1, this can be understood
by noting that the association between X and Y is contrib-
uted to by the direct effect path X→ Y and the “back door”
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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FIGURE 1 Causal directed acyclic graph (DAG) representing the

hypothetical relationship between genetic variant G, exposure X, and

outcomeY, in the presence of unobserved confounding, U. Solid arrows

represent allowed relationships between the variables. Dashed lines

represent relationships that are forbidden for G to qualify as a valid

instrumental variable (IV). The G‐X and X‐Y arrows are parameterized

by γ and β, with the latter denoting the causal effect of X on Y
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path X ← U → Y.2 Suppose, however, that a SNP G exists,
which robustly predicts a proportion of the exposure that
is unrelated to any confounders of the exposure‐outcome
relationship. This is represented by the path G → X and
the absence of a path between G and U. If, in addition, G
can only influence the outcome through the exposure, as
represented by the absence of a direct path from G to Y,
then this SNP is said to be a “valid IV.”

G is usually coded as 0, 1, or 2 to reflect the number of
exposure‐increasing alleles of a SNP an individual carries.
This assumes that G exerts a linear per‐allele effect on X.
The exposure itself is typically a continuous measure, for
example, a person's blood pressure, body mass index, or
cholesterol level. It will sometimes represent a binary
health behavior, for example, whether an individual is a
current smoker. The outcome of interest can be continu-
ous but is often a binary variable, usually representing
the presence or absence of a disease.

1.1 | Testing for causality

If G is a valid IV, then any nonzero association between
this SNP and the outcome provides evidence to support
the hypothesis that the exposure causally effects the out-
come and β≠ 0. This can be understood by noting that G
is “d‐separated” from Y (or independent of Y) in
Figure 1 upon removal of the path X → Y.2 Genetic vari-
ants have successfully been used to test for causality by
looking at their association with the outcome in a variety
of settings. However, most MR studies go further, by
attempting to estimate the magnitude of the causal effect,
β. Specifically, this parameter quantifies the effect on the
outcome when the exposure is intervened on and changed
by one unit, with all other factors remaining fixed.

2 | QUANTIFYING THE CAUSAL
EFFECT IN MR USING THE RATIO
ESTIMATE AND TSLS

If SNPG is a valid IV, the exposure can be assumed to caus-
ally affect the outcome in a linear fashion with no effect
modification, then the underlying SNP‐outcome associa-
tion (denoted by Γ) should be the product of the underlying
SNP‐exposure association (denoted by γ) and the causal
effect of the exposure on the outcome, β. That is,

Γ ¼ βγ: (1)

From Equation 1, the simplest estimate for β (bβR, where R
stands for “ratio”) is obtained by dividing the SNP‐
outcome association estimate by the SNP‐exposure associ-
ation estimate to give:

bβR ¼
bΓbγ : (2)

The standard error of the ratio estimate can be approxi-

mated via a Taylor series expansion of bβR using the delta
method.3 The ratio estimate in (2) is calculated from two
summary estimates, but it is also equivalent to the estimate
obtained by the following two‐step procedure applied to
individual level data on Y, X, and G:

Step 1: Regress the exposure on the SNP via the model:

X ∣G ¼ γ0 þ γGþ εX : (3)

Step 2: Regress the outcome on the fitted values of the
regression in step 1, bX , via the model:

Y ∣bX ¼ β0 þ βbX þ εY (4)

and report its estimated regression coefficient, bβ. This is
referred to as “two‐stage least squares” (TSLS).

When multiple SNPs are available as IVs, they can be
easily incorporated into a TSLS analysis to yield a single
causal estimate, by calculating fitted values based on a
multivariable regression of the exposure on all SNPs
together in model (3). In that case, γ and G would repre-
sent vectors of association parameters and SNP values for
each individual. This automatically allows for any poten-
tial correlation between the SNPs, for example, due to
linkage disequilibrium (LD). Standard errors for the TSLS
estimate in (4) must take into account the uncertainty in
the first stage model (3). This correction is performed as
standard in most software packages.

Equation 1, the ratio estimate in (2) and the TSLS proce-
dure in (3) and (4) are only strictly correct when Y is itself
continuous. When Y is binary, logistic regression is typically
used to quantify the G‐Y association in (2) or the association
between the genetically predicted exposure and outcome in
(4). In this case, the causal effect of a unit change in the
exposure on the risk of Y will have a magnitude that
depends on the reference level of X chosen (and so will



BOWDEN AND HOLMES488
not be constant). It will also be attenuated towards zero by
an amount proportional to the residual variance in the logis-

tic model not explained by bX . This is due to the
noncollapsibility of the odds ratio.4 However, because
genetic effects generally explain a very small amount of var-
iation in the exposure, this means that the range of geneti-
cally predicted exposure levels is very narrow around the
center of the distribution of X. Modeling the causal effect
of moving between different levels of the genetically pre-
dicted exposure as a constant value therefore provides a very
good approximation to the true “local” causal effect. For fur-
ther discussion, see appendix 1 in Zhao et al.5
3 | META ‐ANALYZING MR
ESTIMATES ACROSS STUDIES

Meta‐analysis has classically been used to combine MR
estimates, derived using either the ratio or TSLS methods,
across different epidemiological cohorts. Many of the pit-
falls and challenges in synthesizing standard (ie, non-
causal) estimates across studies are avoided in the MR
setting, because the IV assumptions mean that con-
founder adjustment is unnecessary.

For example, the C‐reactive protein (CRP)–coronary
heart disease (CHD) genetics collaboration6,7 brought
together 47 separate epidemiological studies to investi-
gate the causal role of CRP, a marker of inflammation,
FIGURE 2 Meta‐analysis of the association of rs1205 with C‐reactive

the C‐reactive protein coronary heart disease genetics collaboration.7 E

odds ratio of CHD per allele (right). CHD, coronary heart disease; CRP
on the risk of CHD, using individual level data on approx-
imately 200 000 individuals.

Four SNPs located in the same gene region were utilized
as IVs to predict circulating CRP levels. Estimates for the
effect of each SNP on log CRP and CHD risk were derived
for each study. The results were then meta‐analyzed across
studies.7,8 An example of the findings for one of the genetic
variants (rs1205) is provided in Figure 2.

The collaboration's meta‐analysis provided important
evidence in support of the emerging consensus that CRP is
unlikely to have a major role in the development of CHD.
4 | THE CHANGING FACE OF
STUDY DESIGN: TWO ‐SAMPLE
SUMMARY DATA MR

The CRP example is typical of a traditionalMR study design,
in that it made use of individual level data and utilized a
small number of correlated genetic variants with a known
functional role on an exposure to firstly estimate study‐
specific causal effects and secondly meta‐analyze the results
across studies. Unfortunately, the level of cooperation and
administrative burden required to share individual level
data in this way has meant that this model is relatively inef-
ficient for the large‐scale pursuit of MR analyses. In recent
years, however, it has become possible in theory for anyone
to conduct an MR analysis by combining summary esti-
mates of SNP‐trait associations from two genome‐wide
protein (left) and heart disease (right) in studies contributing towards

stimates reflect the mean difference in log CRP per allele (left) and

, C‐reactive protein



TABLE 1 Examples of international consortia with publically

available data on genetic associations with disease traits

Disease Trait International Consortia

Alzheimer International Genomics of Alzheimer's
Project (IGAP)

Anthropometric
traits

Genetic Investigation of Anthropometric
Traits (GIANT)

Autism
Bipolar disorder
Major depressive
disorder

Psychiatric Genomics Consortium (PGC)

Blood pressure International Consortium for Blood
Pressure (ICBP)

Coronary heart
disease

Coronary Artery Disease Genome‐wide
Replication and Meta‐analysis
(CARDIOGRAM)

Glycaemic traits Meta‐analyses of Glucose and Insulin‐related
traits Consortium (MAGIC)

Lipid fractions Global Lipids Genetics Consortium (GLGC)

Type II diabetes Diabetes Genetics Replication and Meta‐
analysis (DIAGRAM)
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association studies (GWASs), released into the public
domain by international disease consortia. This has become
known as two‐sample summary data MR.9,10

Specifically, suppose that a single common SNP is mea-
sured in two separate GWAS (eg, “studies 1 and 2”) where
study 1 measured its association with trait X and study 2
measured its association with trait Y. A ratio estimate
for the causal effect of X on Y can be obtained by dividing
the SNP‐Y association estimate from study 2 by the SNP‐X
association estimate in study 1, just as in formula (2).

Typically, GWASs report summary data estimates of
associations with a trait for the strongest SNP within a
specific genomic region, across many regions
encompassing the entire genome. This has led to a dra-
matic increase in the number of uncorrelated variants
that that can, in principle, be used within an MR analysis.
Ratio estimates for each SNP are then combined to yield
an overall causal effect using standard inverse variance
weighted (IVW) meta‐analysis formulae:

bβIVW ¼
∑
j
wj
bβRj

∑
j
wj

: (5)

Here, bβRj represents the ratio estimate obtained from the

jth SNP, and wj is its inverse variance weight. Tradition-
ally, so‐called “first order” weights are used, which
assume that the denominator of the ratio estimatebβRj = bΓj=bγj has negligible uncertainty (so that bγj ≈ γj)
and can therefore be treated as a constant. This referred
to as the “no measurement error (NOME)” assump-
tion11,12 and means that

wj ¼ 1=Var bβRj� �
¼ bγ2j

Var bΓj� � ¼ bγ2j
σ2Yj

:

A nonexhaustive list of GWASs with publicly available
data that has been used in two‐sample summary data
MR studies is given in Table 1. For a more complete list
of consortia, see Haycock et al.13
FIGURE 3 Scatter plot of single nucleotide polymorphism

(SNP)‐outcome associations versus SNP‐exposure associations for a

fictional Mendelian randomization (MR) analysis using 13 variants.

Vertical and horizontal lines centered at each data point show 95%

confidence intervals for the associations. The slope joining each

data point to the origin represents the ratio estimate of a given SNP.

IVW, inverse variance weighted
5 | VISUALIZING RATIO
ESTIMATES IN TWO ‐SAMPLE
SUMMARY DATA MR

When conducting two‐sample summary data MR, each
SNP contributes an individual ratio estimate. When
inspecting the set of ratio estimates used to furnish an
IVW analysis, it is standard practice to produce a scatter
plot of the SNP‐outcome association estimates versus
the SNP‐exposure associations. Figure 3 shows a scatter
plot for a fictional MR study involving 13 ratio estimates
—each dot represents an individual SNP with its associa-
tion with the exposure plotted on the horizontal axis and
its association with the outcome on the vertical axis. Hor-
izontal and vertical dotted black lines indicate 95% confi-
dence intervals for the exposure and outcome
associations, respectively. By convention, the SNPs in
Figure 3 have been coded so that their corresponding
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SNP‐exposure associations are all positive. The slope of
the line joining each point to the origin is the ratio esti-
mate for that variant, as illustrated for variant “1” in
the figure. We can then interpret the IVW estimate as
the slope obtained from a linear regression of the SNP‐
outcome associations on the (positively oriented) SNP‐
exposure associations, under the constraint that the inter-
cept of the regression is fixed at zero. That is, the IVW
estimate in (5) obtained using first order weights is iden-
tical to fitting the model:

bΓj ¼ βbγj þ σYjϵj; ϵj ∼ N 0; 1ð Þ: (6)

The zero intercept constraint follows directly from the
assumption that all variants are valid IVs, which in turn
means that all true SNP‐exposure and SNP‐outcome asso-
ciation pairs satisfy Equation 1.

The two‐sample summary data framework has led to
an acceleration in the implementation of MR analyses,
due to its ease of implementation, and has also increased
the power to detect causal associations. Unfortunately,
due to the sheer number of variants that can now be eas-
ily included in such MR analyses, often with limited
knowledge of their functional role, it is increasingly likely
that some do not meet the IV assumptions due to a phe-
nomenon known as horizontal pleiotropy.14 This occurs
when a SNP affects the outcome through pathways other
than the exposure of interest. This pathway could either
be through a confounder of the exposure and outcome
or via an independent pathway, as illustrated in
Figure 1.

Given its growing importance and its close connection
to meta‐analysis, the remainder of this review focuses on
the two‐sample summary data framework, and on
methods for detecting and adjusting for bias due to
pleiotropy.
6 | DETECTING HETEROGENEITY
AMONG CAUSAL ESTIMATES

Valid genetic instruments should generally furnish simi-
lar estimates of causal effect. This can be easily assessed
using Cochran's Q statistic:

Q ¼ ∑
j
Qj ¼ ∑

j
wj
bβRj−bβIVW� �2

; (7)

which is identical to the Sargan overidentification test
used in econometrics.15 If Q detects substantial heteroge-
neity among the causal estimates, which cannot be
explained by sampling variation alone, then an extension
to the basic model is required. A natural way to achieve
this is to include an additional term, αj, into Equation 1
linking the true SNP‐outcome association to the true
SNP‐exposure association for SNP j, as in Equation 5:

Γj ¼ βγj þ αj: (8)

Here, αj represents the direct pleiotropic effect of SNP j
on the outcome not through the exposure. Although hor-
izontal pleiotropy is strictly a violation of the IV assump-
tions, its presence does not necessarily preclude reliable
causal inference under the following two conditions:

1. Pleiotropic effects are independent in magnitude of
the SNP‐exposure associations (the instrument
“strength”) across all variants. This is referred to as
the InSIDE assumption.16

2. The mean pleiotropic effect across all variants, α, is
zero.

If both conditions hold, then the horizontal pleiotropy is
said to be “balanced” and the causal effect can be reliably
estimated via a standard additive or multiplicative ran-
dom effects model extension to the IVW approach.12,17,18
7 | SEPARATING WEAK
INSTRUMENT BIAS FROM
PLEIOTROPY

Detecting heterogeneity does not automatically imply the
presence of pleiotropy. Instead, it implies that at least one
of the IV assumptions, or instead one of the various
modeling assumptions required specifically for two‐
sample summary data MR has been violated. This could
be, for example, because each SNP acts on the exposure
to produce a different true causal effect. Alternatively, it
could be induced by combining data on two cohorts that
are not homogeneous.12,19

A more benign factor that can lead to an easily quan-
tifiable inflation of Q (even when all IV and modeling
assumptions are satisfied) is when the NOME assumption
used to justify first order weighting is violated because of
nonnegligible uncertainty in the SNP‐exposure associa-
tions. If this is the case, the SNPs are referred to as “weak
instruments,” which leads to regression dilution bias in
the IVW estimate towards the null. Instrument strength
for the IVW approach can be quantified using the mean
F statistic.

F ¼ 1
L
∑
L

j¼1

bγ2j
σ2Xj

;

and the dilution towards zero approximated by the rela-

tion F − 1
� �

=F.5,11 For example, an F of 100 or 20 would
indicate a likely 1% or 5% dilution in the IVW estimate,
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respectively. Recent work20 has shown that both of these
negative features can be removed from the analysis by the
use of more sophisticated weighting as follows: The first
order weights in Q can be replaced with new weights of
the form:

wj βð Þ ¼ β2σ2Xj þ σ2Yj
γ̂2j

; (9)

where σ2Xj represents the variance of bγ2j and β represents

the causal effect parameter of interest. Next, the value
of β is found that minimizes Q by setting its derivative
(with respect to β) to zero.

The resulting minimal Q statistic is free from inflation
due to weak instruments. The optimized value of β
flowing from the use of the weights in (9) is an improved
IVW estimate that is free from regression dilution bias
under a fixed effect model. However, if heterogeneity is
detected by the minimal Q statistic, then new weights
that incorporate an additional random effects heterogene-
ity parameter must be defined before the Q statistic is
minimized with respect to both parameters. For example,
under an additive random effect model, this weight func-
tion would be

wj β; τ2
� � ¼ β2σ2Xj þ σ2Yj þ τ2

γ̂2j
; (10)

with τ2 representing the additional variance due to pleiot-
ropy. For further technical details including a multiplica-
tive random effects model implementation, see other
studies.5,20
FIGURE 4 A, Hypothetical scatter plot with directional

pleiotropy. Consequently, MR‐Egger estimates a nonzero intercept.

B, Hypothetical funnel plot. Directional pleiotropy is seen to induce

asymmetry. The MR‐Egger estimate can be interpreted as the value

that would have been obtained if the funnel plot were symmetrical.
[Colour figure can be viewed at wileyonlinelibrary.com]
8 | ACCOUNTING FOR
HETEROGENEITY AND BIAS DUE
TO DIRECTIONAL PLEIOTROPY

Pleiotropy is said to have a directional element when the
mean pleiotropic effect across all variants, α, is nonzero,
which induces bias in the standard IVW estimate. Direc-
tional pleiotropy can be viewed as analogous to the phe-
nomenon of “small study bias” that affects mainstream
meta‐analyses of published study results. That is, a trend
in study effect estimates according to their sample size.
Small study effects can be formally tested for by the pres-
ence of a nonzero intercept in a regression of study esti-
mates on their standard errors. This is the principle of
Egger regression.21 In the MR context, directional pleiot-
ropy can be assessed by performing “MR‐Egger regres-
sion.”16 This is a meta‐regression of SNP‐outcome
association estimates on the corresponding SNP‐exposure
association estimate, after they have been oriented in the
positive direction. This is identical to the standard IVW
approach, except that the intercept of the regression slope
is estimated, rather than being fixed to zero. For example,
if first order weights are used as in (6), then the MR‐
Egger model would be

bΓj ¼ β0 þ βbγj þ σYjϵj; ϵj ∼ N 0; 1ð Þ: (11)

Providing that the InSIDE assumption holds and the
SNP‐exposure associations are precise enough for first
order weighting to be appropriate, testing for a nonzero
intercept in MR‐Egger regression is then equivalent to
testing for directional pleiotropy, and the MR‐Egger slope
provides a consistent estimate of the causal effect.16

The presence of directional pleiotropy can be visually
assessed using a scatter plot, of SNP‐outcome associations
versus SNP‐exposure associations, as illustrated for hypo-
thetical data in Figure 4A. It can also be assessed using a
funnel plot16 (as shown for the same hypothetical data in
Figure 4B), which displays causal effect estimates on the
horizontal axis versus their square root precision on the

http://wileyonlinelibrary.com
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vertical axis. When there is no pleiotropy or balanced
pleiotropy and the InSIDE assumption holds, then:

• The intercept of the MR‐Egger regression model will
not differ substantially from zero.

• The funnel plot should appear symmetrical, in that
less precise estimates should funnel in from either
side towards the most precise estimates.

• The IVW and MR‐Egger causal estimates will be con-
sistent with each other.
9 | THE PERFORMANCE OF
MR ‐EGGER REGRESSION IN
PRACTICE

9.1 | When does MR‐Egger provide a
better fit to the data?

The utility of applying MR‐Egger regression in a given
scenario can be assessed by seeing how much of the het-
erogeneity about the IVW estimates can be successfully
explained by the addition of an intercept term in the
model. As a basic principle, MR‐Egger will explain more
heterogeneity as the magnitude of its intercept increases
(away from the null). This can be explicitly quantified
using an extension to Cochran's Q statistic—namely,
Rucker's Q′12,22

—that was proposed for use in main-
stream meta‐analysis. When first order weights are used,
Q′ can be written as follows:

Q′ ¼ ∑
L

j¼1
wj

bβRj−bβ0bγj−bβ
 !2

; (12)

wherebβ0 andbβ are the MR‐Egger estimates obtained from
model (11). To formally test whether the MR‐Egger
model provides a better fit, the difference Q − Q′ can be
compared with a χ21 distribution.

12
9.2 | Precision and weak instrument bias
of MR‐Egger regression

In practice, the IVW estimate is likely to yield far more
precise estimates than MR‐Egger regression. An impor-
tant factor affecting only the precision of MR‐Egger is
the amount of variation between the set of SNP‐exposure
associations, once they have been oriented in the positive
direction. That is, it works best when there are SNPs with
both small, medium, and large associations relative to
one another. This is true when fitting any sort of
univariable linear regression model with an intercept
because the explanatory variable of the regression (in this
case bγj) must exhibit some variation, the more the better.

When such variation is not present over and above what
would be expected by the SNP‐exposure association stan-
dard errors, σXj, (as represented by the horizontal error
bars in Figure 4A), it would suffer complete regression
dilution bias. That is, its estimate would be shrunk on
average to zero. Rather being used in its original guise
to quantify heterogeneity among causal estimates,
Higgins I2 statistic23 has been repurposed in MR to quan-
tify the expected dilution of MR‐Egger regression esti-
mates, by calculating it with respect to the SNP‐
exposure summary data bγj; σ2Xj� �

.11 This is referred to as
“ I2GX .” An I2GX close to 1 would indicate no dilution,

whereas an I2GX of 0.5 would indicate a likely 50% dilu-

tion. Note that an I2GX of 1 is equivalent to the NOME
assumption being satisfied. This could be achieved even
if there were very little variation between the SNP‐
exposure association estimates, as long as they are very
precise. I2GX is therefore a measure of the collective
strength of a set of instruments for MR‐Egger. The
errors‐in‐variables technique of simulation extrapolation
has successfully been applied to correct for this weak
instrument bias when I2GX is sufficiently low.11 Further
research is ongoing to extend the modified weights in
Equation 10, so that they can be used for both IVW and
in MR‐Egger regression.

Because of its relative imprecision, MR‐Egger regres-
sion is not advocated to replace the standard IVW
approach. Indeed, it is best utilized within the context
of a sensitivity analysis,14,24 and given most credence
when it provides a demonstratively better fit to the data.12
9.3 | Robust meta‐analytic approaches

The InSIDE assumption is likely to be violated when a
SNP is associated with the exposure of interest through
a confounder of the exposure‐outcome relationship (as
represented by the dotted arrow between G and U in
Figure 1). This is because it would make the magnitude
of an SNP's pleiotropy correlated with its strength as an
instrument.12 This invalidates both the IVW and MR‐
Egger analyses. For this reason, robust meta‐analytic
methods have been proposed,25,26 which do not rely on
the InSIDE assumption, and are being increasingly
implemented alongside IVW and MR‐Egger. Specifically,
rather than calculating an IVW mean of all ratio esti-
mates (eg, the IVW estimate):

• The “weighted median” estimate25 calculates median
of the IVW empirical distribution function of ratio
estimates.
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• The mode‐based estimate (MBE)26 calculates the
modal value of the same weighted empirical distribu-
tion function.

Currently, both approaches use first order inverse vari-
ance weights to define their empirical distribution func-
tions. The weighted median can provide a consistent
estimate for the causal effect even if up to half of the
SNPs violate InSIDE (ie, most SNPs do not). The MBE
can provide a consistent estimate if valid SNPs (ie, those
with a zero value of αj in Equation 5) form the largest
subset of all SNPs that have the same value of αj.

In order to improve the robustness of IVW and MR‐
Egger regression, outlier detection and removal strategies
have also been proposed. For example, in Bowden et al,20

the individual contribution of each SNP to Cochran Q can
be assessed informally against a χ21 distribution to see
whether a small number of SNPs are driving the apparent
heterogeneity and are therefore candidates for removal in
a sensitivity analysis. This approach will be demonstrated
in the applied example below. Studentized residuals and
Cook's distance have also been used in MR studies to
detect influential SNPs27 that merit closer inspection.
The Galbraith radial plot has additionally been
repurposed for detecting outlying variants in MR.28
FIGURE 5 A, Scatter plot of the SBP data horizontal and vertical

dashed lines show 95% confidence interval for each association.

IVW, MR‐Egger, weighted median slope, and MBE slope are also

shown. B, Funnel plot of the SBP data. Data on variant rs17249754

are represented by a square in each plot. CHD, coronary heart

disease; IVW, inverse variance weighted; MBE, mode‐based

estimate; MR, Mendelian randomization; SNP, single nucleotide

polymorphism [Colour figure can be viewed at wileyonlinelibrary.
com]
9.4 | Example: examining the causal effect
of SBP on CHD

We illustrate the methods described thus far by
reanalyzing a two‐sample summary data MR study previ-
ously reported by Ference et al29 and Bowden et al20 that
examined the causal effect of systolic blood pressure
(SBP; the exposure) on CHD (the outcome). SNP‐
exposure association estimates were obtained from the
International Consortium for Blood Pressure (ICBP)
GWAS consortium for 26 variants that were robustly
associated with SBP at genome‐wide statistical signifi-
cance levels. Log‐odds ratio estimates of SNP‐CHD associ-
ation were collected from Coronary Artery Disease
Genome‐wide Replication and Meta‐analysis (CARDIO-
GRAM) consortium. Both data sources are publically
accessible (see Table 1); however, we provide these data
as Supporting Information for the interested reader.

Figure 5 shows a scatter plot of the SNP‐CHD versus
the SNP‐SBP associations along with their 95% confi-
dence intervals and its corresponding funnel plot. Causal
effect estimates for the log‐odds ratio of CHD for a
1 mmHg increase in SBP were obtained via the IVW
and MR‐Egger approaches. Estimates for the weighted
median estimator and MBE are also shown. The SNP‐
exposure association estimates were sufficiently precise
(a mean F statistic of 61) and sufficiently varied (an I2GX
statistic of 0.96) for the NOME assumption to approxi-
mately hold. We therefore use first order weights for all
estimators in the analysis. Full results are given in
Table 2. To improve their clinical relevance, the estimates
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TABLE 2 Results for the SBP‐CHD MR analysis. Estimates reflect the odds ratio for a 5 mmHg increase in SBP on the risk of CHD. Results

shown for all methods with and without variant rs17249754

Method (All Variants) OR (95% CI) P Value Heterogeneity Statistic (P Value)

IVW (Slope) 1.30 (1.18–1.44) 3.01 × 10−5 Q = 67.1 (1.03 × 10−5)

MR‐Egger (Intercept) 1.18 (0.99–1.41) 0.0745 Q′ = 58.6 (1.00 × 10−4)

(Slope) 0.99 (0.73–1.34) 0.934

Weighted median (Slope) 1.37 (1.23–1.52) 1.57 × 10−6 Q − Q′ = 8.5 (3.60 × 10−3)

MBE (Slope) 1.35 (1.13–1.61) 0.002

Method (rs17249754 Removed) OR (95% CI) P Value Heterogeneity Statistic

IVW (Slope) 1.39 (1.28–1.51) 2.63 × 10−8 Q = 35.0 (0.068)

MR‐Egger (Intercept) 1.05 (0.91–1.22) 0.51 Q′ = 34.3 (0.061)

(Slope) 1.27 (0.97–1.67) 0.09 Q − Q′ = 0.7 (0.4)

Weighted median (Slope) 1.39 (1.25–1.53) 1.25 × 10−6

MBE (Slope) 1.36 (1.14–1.61) 0.002

Abbreviations: IVW, inverse variance weighted; MBE, mode‐based estimate; MR, Mendelian randomization.
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in Table 2 are shown as odds ratios and reflect the effect
of a 5 mmHg increase in SBP.

The IVW, weighted median, and MBE approaches all
suggest a positive causal effect of SBP on CHD. MR‐Egger
regression, by contrast, infers that directional pleiotropy
is largely driving the analysis and suggests a causal effect
close to zero.

We would expect Q and Q′ statistics to be equal to
their degrees of freedom (25 and 24, respectively), under
the null hypothesis of no heterogeneity. Since they are
both more than twice this value, substantial heterogene-
ity around the IVW and MR‐Egger estimates is detected
that could be due to horizontal pleiotropy. The difference
Q − Q′ = 8.5 is extreme under a χ21 distribution, which
suggests that MR‐Egger is a better fit to the data. A more
detailed outlier analysis revealed that this heterogeneity
was largely driven by a single outlying variant—
rs17249754 in the ATP2B1 gene (shown as a square rather
than a circle in Figure 5). It alone contributes a value of
28.3 to Q, which equates to 42% of its total. The next larg-
est individual SNP contribution is 8.4. Since rs17249754 is
a relatively strong and potentially pleiotropic instrument
in the analysis, this could lead to the InSIDE assumption
being violated, and be responsible for the large discrep-
ancy between the IVW and MR‐Egger results. Repeating
the analysis after the removal of rs17249754 shows the
estimates are indeed in broad agreement (Table 2), and
statistical heterogeneity around the IVW and MR‐Egger
estimates is substantially reduced (as noted by the values
of Q and Q′). Furthermore, the difference Q − Q′ = 0.7
now indicates that MR‐Egger does not provide a substan-
tially better fit to the data. The weighted median and
MBE results are least affected by the removal of
rs17249754, highlighting their inherent robustness to
outliers.

In summary, our MR analysis supports the hypothesis
that SBP is causally related to CHD risk, which aligns
these findings to meta‐analysis of equivalent trial
evidence.30
10 | CONCLUSIONS AND FUTURE
DIRECTIONS

Meta‐analysis methods have been used in MR investiga-
tions throughout its short lifetime, initially as a tool for
aiding collaborative analysis of individual level data
across epidemiological studies and latterly for synthesiz-
ing GWAS results within two‐sample summary data
MR. Established techniques for detecting heterogeneity
and bias in meta‐analysis have successfully been applied
to MR to both test and adjust for violations of the IV
assumptions. However, the direction of methodology is
not just one way: MR‐Egger regression has recently been
proposed as a means to adjust the analysis of multicenter
randomized trials for nonadherence31 and to examine the
mechanism of action for statins.32 Median‐ and mode‐
based estimation have also been suggested as sensitivity
analysis tools for meta‐analyses of RCTs with suspected
small study effects.33

Our description of the summary data MR approaches in
this paper assume that the SNPs used in the analysis are
sufficiently separated in the genome so as to be mutually
uncorrelated. This justifies the use of standard weighted
least squares to estimate the parameters in IVW and MR‐
Egger regression and also underlies the simple empirical
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density functions used by the weighted median and MBE.
Both IVW and MR‐Egger regression can easily be
extended to the case of correlated variants. In that case,
themodel parameters must be estimated using generalized
least squares by specifying a correlation matrix for the set
of SNPs.34 Extensions for the weighted median and MBE
for correlated variants have yet to be explored and is an
interesting avenue for further research.

Summary data MR analysis relies on obtaining SNP‐
trait associations from a GWAS, which is itself usually a
conglomeration of data from many studies. Meta‐analysis
is therefore required to derive the necessary estimates.
Fixed effect models are typically used for this purpose,35

for example, the most widely used software package
METAL36 does not have a random effects option. If het-
erogeneous results are obtained for a single SNP across
studies, whole studies are sometimes removed to promote
the fixed effect analysis. State‐of‐the‐art methods for ran-
dom effects meta‐analysis37,38 might have considerable
utility in improving the summary information flowing
from a GWAS, which would then affect subsequent sum-
mary data MR analyses. This is another area for future
research.

The uptake and implementation of two‐sample sum-
mary data MR is being facilitated by software packages
in R39,40 and Stata41 to implement all of the analysis
methods highlighted in this paper, and more. In particu-
lar, MR‐BASE (http://www.mrbase.org/)40 is an analyti-
cal web‐based platform linking genetic and trait
summary data from over 1000 studies and 14 million
samples with state‐of‐the‐art tools for MR analysis. This
has enabled causal relationships to be assessed with ease
on an unprecedented breadth and scale. In time, it may
be necessary for analysis and reporting guidelines, which
have worked successfully for meta‐analyses of clinical tri-
als,42 to be agreed on to help ensure that MR analyses
remain a principled and reliable means to probe causal
questions in the new era of “big data.”
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