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The introduction of West Nile virus (WNV) into North Amer-
ica sparked an interest in predicting where and when the
virus would appear.1 Predictive risk mapping is a process by

which components of the disease cycle are used to create models
and subsequent risk maps.2,3 The methods have become more prac-
tical for a broader range of diseases and study locations because
remote sensing can now provide environmental information at
required spatial and temporal resolution.4,5

Vector-borne diseases, such as WNV, are particularly amenable
to spatial and temporal analysis as they are highly influenced by
regular, seasonal climate, and environmental changes.3,6-8 During
the season, mosquitoes become infected with the West Nile virus
primarily through bird-blood meals and then retransmit the virus
to any one of multiple bird species, a cycle which amplifies the
virus. Governed by environmental conditions and host behaviours,
infected mosquitoes can spread WNV to other incidental hosts,
such as humans and horses.

Defining the risk of WNV infection is a key component to pub-
lic health intervention strategies.9 Prioritization of vector-borne dis-
ease programs in the overall public health budget is a juggling act,
affected by limited funding availability. In Saskatchewan, inter-
ventions are prioritized largely based on environmental conditions
conducive to mosquito development and surveillance for clinical
disease in humans. Health officials could increase the cost effec-
tiveness of control and surveillance programs with a method of pre-
dicting differences in regional risk of infection.

The primary objective of this study was to describe the applica-
tion of a previously established model to predict areas of low, medi-
um, and high risk of WNV in humans in both 2003 and 2007 in the
province of Saskatchewan.10 The second objective was to use his-
torical surveillance data from 2003-2005 to make predictions of
areas of risk of WNV in humans in 2007.

MATERIALS AND METHODS

WNV infection risk – 2003 and 2007
Human surveillance data were obtained from Saskatchewan Health
as the number of laboratory-confirmed WNV individuals (which
included WN fever, WN neurological syndrome and asymptomatic
individuals, http://www.health.gov.sk.ca/wnv-surveillance-results-
archive (accessed July 14, 2009)) per rural municipality (RM). In
2003, each RM with WNV individuals (sampled RM) was classified
by category of WNV infection risk using the 25th and 75th per-
centiles: low-risk (0.0-0.09%), medium-risk (>0.09%-0.41%), and
high-risk (>0.41%). This classification was repeated in 2007, with
the following results: low-risk (0-0.14%), medium-risk (>0.14%-
0.36%), and high-risk (>0.36%). The population at risk was deter-
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mined for 2003 and 2007 using Statistics Canada 2001 and 2006
census data by rural municipality, respectively.

Environmental variables
Variables used in the analysis were the same as those identified in
a previous study regarding WNV infection in horses in 2003.10

Those variables that had multiple statistically significant time peri-
ods were condensed into one or two principal components with
principal component analysis before use in the final models (SPSS
14.0, SPSS Inc., Chicago, IL, USA).10,11

Land Surface Temperature
Land Surface Temperature (LST) images (Moderate Resolution Imag-
ing Spectrometer satellite (MODIS); Earth Observing System 
Gateway, National Aeronautics and Space Administration;
http://lpdaac.usgs.gov) were provided as 8-day composites (1 kilo-
metre resolution) beginning May 1st and ending September 13th for
2003 and 2007. The images were joined together and clipped to
show only the province of Saskatchewan (PCI Geomatica 9, PCI
Geomatics, Richmond, ON, Canada). The images included daytime
(maximum) and nighttime (minimum) temperatures and were
manipulated to give a mean LST. For each year, the mean LST aver-
aged for each RM was calculated for each 8-day composite.

Precipitation
Precipitation values (mm) were obtained for 2003 and 2007 on a
daily basis from Environment Canada. Eight-day composites (total
precipitation per time period) were created to match the remotely
sensed time periods. Interpolation among the 176 stations in the
province was accomplished using Inverse Distance Weighted (IDW)
method (ArcGIS 9.2, ESRI Inc., Redlands, CA, USA).12 For each year,
the averaged total value for each time period by RM was calculat-
ed.

Vegetation
Normalized Difference Vegetation Index (NDVI) (MODIS satellite;
http://lpdaac.usgs.gov) is a simple index of vegetation cover which
allows monitoring of seasonal changes in vegetation growth.13

Images (500 metre resolution) were provided as 16-day composites
starting April 23rd and ending September 13th for both 2003 and
2007. For each year, the average value per RM was calculated.

Land Cover
North Digital and South Digital Land Cover dataset based on satellite
imagery from 2000 for the province of Saskatchewan was obtained
from Information Services Corporation of Saskatchewan. Classifica-
tions were further aggregated to make a manageable number of cate-
gories for analysis. Those categories selected for consideration in the
models included: water, wetland (which includes bog, marsh, fen, etc.),
and treed (which includes pine, spruce, hardwood, softwood, etc.). The
percentage of RM covered by each of the categories was calculated.

Statistical analysis
Overview
Discriminant analysis (SPSS 14.0, SPSS Inc., Chicago, IL, USA) was
used to predict membership in the three mutually exclusive groups
(low, medium and high risk).14 The yearly datasets were divided
into a) a training dataset (consisting of a random selection of RMs
with data) and b) a testing dataset (consisting of the remaining RMs
with data and any RMs without data) (Table 1). The training data
were used to analyze the known differences between RMs with data;
subsequently, these differences were then applied to the testing
data to assess the accuracy of the predictions of remaining RMs
with and without data.

Multivariable model selection was partially determined through
overall classification or prediction accuracy percentage for both
training and testing datasets. This was defined as the proportion of
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Table 1. Results from Final 2003, 2007 and Historically Trained 2007 Multivariable Models

2003 2007 Historically Trained 2007

Model 148 sampled RMs 193 Sampled RMs

RMs* sampled Training 118 sampled RMs (observed 154 sampled RMs (observed 72 RMs with historical data (observed 
categorization: 28 low-risk, categorization: 35 low-risk, categorization: 22 low-risk, 
62 medium-risk, 28 high-risk) 77 medium-risk, 42 high-risk) 32 medium-risk, 18 high-risk)

Testing 30 sampled RMs (observed 39 sampled RMs (observed 193 sampled RMs (observed categorization: 
categorization: 9 low-risk, categorization: 12 low-risk, 47 low-risk, 92 medium-risk, 54 high-risk)
11 medium-risk, 10 high-risk) 15 medium-risk, 12 high-risk)

Plus remaining 150 Plus remaining 105 Plus remaining 105 unsampled RMs
unsampled RMs unsampled RMs

Model Accuracy Training 67% 61% 100%
Testing 60% 44% 45%

Significant Variables† Function 1 Mean LST‡ NDVI Tree coverage
NDVI‡ Mean LST NDVI
Precipitation Precipitation Mean LST
Tree coverage Tree coverage Precipitation

Function 2 Water coverage Water coverage§ Water coverage
Wetland coverage Wetland coverage§ Wetland coverage

Precipitation

Eigenvalues Function 1 0.544 0.446 7.55
Function 2 0.203 0.020 2.495

Group membership probability Low risk 85% 76% 91%
Medium risk 67% 57% 91%
High risk 74% 63% 96%

* RMs = rural municipalities
† Variables that were significant in the model are recorded by function in the order of importance for contributing to the function.
‡ LST = land surface temperature, NDVI = normalized difference vegetation index
§ Function not statistically significant but retained for increased model accuracy



RMs with data correctly classified based on the observed risk cate-
gory (pre-model classification based on proportion data) compared
to the predicted risk category (post-model classification).14 In addi-
tion, multivariable models were fit with an unequal weighting
scheme to adjust the posterior probabilities to account for prior
knowledge of observed group membership.14 Separate matrices (to
account for unequal group covariance matrices) were used when
Box’s M test was significant (p=0.05) and the prediction accuracy
percentage changed substantially from a model that used a com-
mon matrix for all groups.14 Ultimately, the final model was the
one that produced the best overall classification with the least over-
lap of risk categorization between high- and low-risk areas.

The results of the discriminant analysis were twofold: a) provid-
ing functions or sets of variables by which the risk categories were
discriminated by, how well each of these functions discriminated
and which variables within the functions were most informative,
and b) providing a set of three probabilities predicting the likeli-
ness of membership in each of the three risk categories.14 Individ-
ual RMs were classified (based on the functions) into one of the risk
categories by predicting the group (low-, medium- or high-risk) to
which the individual RM most likely belonged.14 The categoriza-
tion rule is less reliable for RMs with maximum probability of
<75%. Therefore, maximizing the overall probability of group
membership for all RMs in each group was used in final model
selection. Chloropleth maps of the predicted risk categories were
generated using ArcGIS 9.2.

Yearly Models (2003, 2007)
Yearly models were based on WNV infection risk and environ-
mental variables by RM from within each year (2003 and 2007).

Comparison of the 2003 and 2007 yearly models was done with
the kappa statistic.

Historical Prediction Model
Information from modeling of horse and human surveillance data con-
ducted in Saskatchewan in 2003-2005 was used to create a historical
training dataset.10 Selection of RMs (n=72) with suitable data was based
on consistent predictions from previously established models where at
least 2 of the predictions had probabilities of group membership of 75%
or higher. The historical training dataset was used to train the model-
ing of the 2007 human dataset. Comparison of the 2007 yearly and his-
torically trained models was done with the kappa statistic.

RESULTS

Predictive ability – 2003 human dataset
The numbers of predicted RMs in the three risk categories were: 59
in the low-risk group, 203 in the medium-risk group, and 36 in the
high-risk group (Figure 1). The model used two functions to pre-
dict RM category (Table 1).

Predictive ability – 2007 human dataset
The numbers of predicted RMs in the three risk categories were: 59
in the low-risk group, 198 in the medium-risk group, and 41 in the
high-risk group (Figure 2). The model used one function to predict
RM category (Table 1). The second function was not statistically
important in the prediction of RMs but was retained to maximize
model accuracy.

The agreement in the classification result for individual RMs
when compared between the 2007 and 2003 models was poor;
kappa was 0.10 for high-risk RMs and 0.62 for low-risk RMs.
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Figure 1. Depiction of predicted group membership (low,
medium or high risk of infection) for 2003 human
dataset by RM, with indication of RMs with 75% or
greater probability of group membership

Figure 2. Depiction of predicted group membership (low,
medium or high risk of infection) for 2007 human
dataset by RM, with indication of RMs with 75% or
greater probability of group membership



Predictive ability – historical training data on 2007
human dataset
The number of predicted RMs in the three risk categories was: 65 in the
low-risk group, 136 in the medium-risk group, and 97 in the high-risk
group (Figure 3). The model used two functions to predict RM catego-
ry (Table 1). Both functions incorporated precipitation information;
function 1 used June values while function 2 used July values.

Comparison of the historically trained 2007 model with the orig-
inal 2007 model revealed that both models classified the following
number of RMs the same: 43 low-risk RMs, 118 medium-risk RMs
and 33 high-risk RMs. The agreement, as calculated using kappa
statistic, was 0.40 for high-risk RMs and 0.61 for low-risk RMs. The
historically trained model clearly demonstrated a southwest to
northeast trend of decreasing risk, which is not as clear from the
other models.

DISCUSSION

The models in this study try to geographically predict which areas
are at risk of infection (high, medium or low risk) by defining a set
of criteria upon which to classify that risk. There appears to be a
trend of high-risk areas concentrating in the south-central and
south-western portions of the province. However, individual RMs
did differ in their category of risk depending on the model and year,
a reflection of the model’s limitations. The models could have had
error introduced due to training dataset selection, inaccuracies in
the RM classification prior to entry into the model (i.e., location of
human individual, not the location of exposure), and reliance on
summarized environmental data. Predictions of individual RMs
should be used with caution; instead, by applying a smoothing
technique, the maps would indicate general but larger areas or
trends of high risk of infection.

In the model trained by the historical dataset, model predictions
compared to the original risk categories based on passive surveil-
lance were only 45% accurate; however, the model did maintain
high probabilities that the predictions for each risk group were
trustworthy. The predictive map clearly demonstrated a gradient
of risk decreasing from south to north which mirrors what is found
by mosquito trapping programs.8

The environmental variables included in this analysis were based
on previous models built using horse surveillance data and includ-
ed precipitation, temperature, vegetation and land cover, specifi-
cally wetlands, water and treed areas.10 The present predictive
models provided only marginally accurate predictions of risk geo-
graphically. Obviously, the complexity of the cycle is not completely
explained by these variables and their interactions alone. Factors
such as biodiversity, predators, parasites, food availability, human
behaviour and spatial resources will affect interactions between the
vector and hosts, while immune status of the hosts will become
more important the longer the virus remains endemic in an area.9

Variables contributing to the model functions were fairly con-
sistent between models. Precipitation and temperature were impor-
tant in the prediction of risk of WNV in humans, particularly in
2003; decreasing rainfall into July and higher temperatures overall
were associated with high-risk areas. Culex tarsalis uses standing
water with increased organic content for oviposition, which would
be washed away by increased rainfall.8,15 Habitat was also highly
important in the prediction of human WNV risk, particularly in
2007. In the present study, vegetation index was slightly higher on
average in low-risk areas as was the percentage of RMs covered in
trees, water and wetland. C. tarsalis prefers shallow, often stagnant
water of high organic content with little tree cover surrounding the
sites, such as water-filled hoof prints near livestock watering sites.8

In the 2007 model, the percentage of water and wetland coverage
was not statistically important to the prediction process. This could
be influenced by the fact that actual wetland capacity was much
higher in 2007 than 2003 owing to the few wet years that occurred
between them (personal communication, P. Curry, Saskatchewan
Health, December 2007).

By specifying what time periods should be incorporated into the
model-building process, it could be used as a method to make early
predictions or inform public health authorities about the develop-
ment of high-risk areas as the season progresses. The usefulness of
the models as a predictor of high-risk areas must be coupled with
the knowledge of vector abundance and host population dynam-
ics. Historically, maps of mosquito vectors consistently indicated
high-risk areas in the southeastern portion of the province. If mos-
quito trapping data were available, these models could validate pre-
dictions made based on mosquito information or signal areas where
mosquito data were required. With further research, greater accu-
racy in predicting WNV risk of infection will occur.
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Figure 3. Depiction of predicted group membership (low,
medium or high risk of infection) for historical
training dataset model of 2007 human dataset by RM
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RÉSUMÉ

Objectifs : Expliquer l’utilisation d’un modèle de prévision des secteurs à
risque modéré, moyen et élevé pour les humains de contracter le virus du
Nil occidental (VNO) en 2003 et en 2007 dans la province de la
Saskatchewan. Déterminer les secteurs à risque uniformément élevé
d’une année à l’autre, ainsi que les variables environnementales
importantes dans les secteurs à risque élevé.

Méthode : Nous avons obtenu auprès du ministère de la Santé de la
Saskatchewan le nombre de cas séropositifs pour le VNO confirmés en
laboratoire, par municipalité rurale. Statistique Canada nous a fourni le
nombre de personnes à risque par municipalité rurale. Des variables
climatiques et d’habitat ont été intégrées dans un modèle d’analyse
discriminante afin de produire des cartes du risque.

Résultats : Les modèles d’analyse discriminante étaient exacts à 67 %
en 2003 et à 44 % en 2007. Les variables climatiques et d’habitat sont
demeurées importantes dans tous les modèles, mais certaines variables
d’habitat avaient moins d’importance en 2007. Les cartes du risque
produites à partir du modèle chronologique de 2007 montrent que le
risque a eu tendance à diminuer en allant du Sud-Ouest vers le Nord-Est.

Conclusion : Ces modèles pourraient être utiles pour indiquer les
secteurs à risque élevé d’une année à l’autre ou selon des données
historiques. Les régions à risque élevé se caractérisent par une pluviosité
relativement faible en juin et en juillet suivie de hausses de la température
en juillet et en août, avec une couverture végétale et hydrique plus
limitée que dans les régions à risque modéré.

Mots clés : zoonoses; arbovirus; Saskatchewan; santé publique

RECENSION

L’évaluation : concepts et
méthodes
Astrid Brousselle, François Champagne, André-Pierre
Contandriopoulos et Zulmira Hartz (Éds.), Montréal, QC :
Les Presses de l’Université de Montréal, 2009; 304 pp., 49,95 $

Les auteurs ont respecté leur engagement maintes fois renou-
velé, soit de publier le fruit de leurs réflexions et de leurs expé-
riences de terrain en matière d’évaluation d’interventions. Le

modèle développé depuis les années quatre-vingt par le Groupe de
recherche interdisciplinaire en santé (GRIS), pour évaluer des inter-
ventions en santé, est la clef de voute du livre.

Après une analyse historique du développement de l’évaluation,
les auteurs présentent leur cadre conceptuel. Ils insistent ensuite, à
juste titre, sur l’importance de modéliser les interventions avant de
les évaluer et décrivent la démarche à suivre pour ce faire. Dans la
seconde section du livre, ils consacrent un chapitre à chacun des
sept types d’évaluation de leur modèle qu’ils illustrent par des cas
réels. Ils définissent les concepts, confrontent leurs définitions à
celles d’autres auteurs et exposent brièvement, un peu trop selon
moi, les méthodes pertinentes à l’atteinte des objectifs d’évalua-
tion. Justement parce que l’évaluation doit faire appel à une diver-
sité de méthodes et que le choix de celles-ci dépend d’une
multitude de facteurs, le lecteur aurait besoin d’être mieux outillé.
D’ailleurs, les cas mettent trop souvent l’accent sur les résultats des
évaluations alors que sur le plan pédagogique, il aurait été plus utile
de décrire davantage la démarche d’évaluation, les difficultés ren-
contrées et les décisions prises pour y faire face. En outre, les auteurs
du chapitre consacré à l’analyse des effets auraient eu avantage à
faire référence au livre de Shadish, Cook et Campbell (2002),
Experimental and Quasi-Experimental Designs for Generalized Causal
Inference afin de mettre à jour les aspects méthodologiques.

La lecture de la dernière section est essentielle : elle permet de
situer les paradigmes dans lesquels les travaux des évaluateurs 
s’inscrivent de même que les formes que l’utilisation des évalua-
tions peut prendre et surtout, elle guide le lecteur qui désire pro-
duire des évaluations crédibles dont l’utilisation sera optimale.

Appuyé sur un nombre imposant de références, le contenu de ce
livre est dense. Il s’agit d’un excellent outil pédagogique pour l’en-
seignement de l’évaluation en milieu universitaire, l’un des rares
livres disponibles en français. Il sera également utile aux inter-
venants et aux chercheurs qui désireront améliorer leurs compétences
dans le domaine de l’évaluation d’interventions, et ce, qu’ils tra-
vaillent dans le secteur de la santé et des services sociaux ou 
d’autres domaines d’activités tels que l’éducation ou l’économie
sociale, le modèle du GRIS pouvant être mis à l’épreuve dans une
grande diversité de contextes.
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