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Abstract
We consider a scale-free network of inhibitory Hindmarsh–Rose (HR) bursting neurons, and make a computational study

on coupling-induced cluster burst synchronization by varying the average coupling strength J0. For sufficiently small J0,

non-cluster desynchronized states exist. However, when passing a critical point J�c ð’ 0:16Þ, the whole population is

segregated into 3 clusters via a constructive role of synaptic inhibition to stimulate dynamical clustering between individual

burstings, and thus 3-cluster desynchronized states appear. As J0 is further increased and passes a lower threshold

J�l ð’ 0:78Þ, a transition to 3-cluster burst synchronization occurs due to another constructive role of synaptic inhibition to

favor population synchronization. In this case, HR neurons in each cluster make burstings every 3rd cycle of the

instantaneous burst rate RwðtÞ of the whole population, and exhibit burst synchronization. However, as J0 passes an

intermediate threshold J�mð’ 5:2Þ, HR neurons fire burstings intermittently at a 4th cycle of RwðtÞ via burst skipping rather

than at its 3rd cycle, and hence they begin to make intermittent hoppings between the 3 clusters. Due to such intermittent

intercluster hoppings via burst skippings, the 3 clusters become broken up (i.e., the 3 clusters are integrated into a single

one). However, in spite of such break-up (i.e., disappearance) of the 3-cluster states, (non-cluster) burst synchronization

persists in the whole population, which is well visualized in the raster plot of burst onset times where bursting stripes

(composed of burst onset times and indicating burst synchronization) appear successively. With further increase in J0,

intercluster hoppings are intensified, and bursting stripes also become dispersed more and more due to a destructive role of

synaptic inhibition to spoil the burst synchronization. Eventually, when passing a higher threshold J�hð’ 17:8Þ a transition

to desynchronization occurs via complete overlap between the bursting stripes. Finally, we also investigate the effects of

stochastic noise on both 3-cluster burst synchronization and intercluster hoppings.

Keywords Cluster burst synchronization � Localization of inter-burst-intervals � Intercluster hoppings � Inhibitory bursting

neurons

Introduction

Recently, much attention has been paid to burst synchro-

nization in a population of bursting neurons (Golomb and

Rinzel 1994; Elson et al. 1998; Stern et al. 1998; Varona

et al. 2001; van Vreeswijk and Hansel 2001; Dhamala

et al. 2004; Ivanchenko et al. 2004; Chik et al. 2004;

Shilnikov and Cymbalyuk 2005; Shi and Lu 2005; Tanaka

et al. 2006; Pereira et al. 2007; Batista et al. 2007, 2009;

Shi and Lu 2009; Wang et al. 2009; Batista et al. 2010;

Sun et al. 2011; Yu et al. 2011; Wang et al. 2011a, b;

Batista et al. 2012; Lameu et al. 2012; Langdon et al.

2012; Duan et al. 2013; Meng et al. 2013; Wang et al.

2013; Prado et al. 2014; Ferrari et al. 2015; Kim and Lim

2015a, b, 2016, 2018). Burstings occur when neuronal

activity alternates, on a slow timescale, between a silent

phase and an active (bursting) phase of fast repetitive

spikings (Rinzel 1985, 1987; Izhikevich 2000, 2006, 2007;

Coombes and Bressloff 2005). Due to a repeated sequence

of spikes in the bursting, there are several hypotheses on

& Woochang Lim

wclim@icn.re.kr

Sang-Yoon Kim

sykim@icn.re.kr

1 Institute for Computational Neuroscience and Department of

Science Education, Daegu National University of Education,

Daegu 42411, Korea

123

Cognitive Neurodynamics (2020) 14:69–94
https://doi.org/10.1007/s11571-019-09546-9(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-019-09546-9&amp;domain=pdf
https://doi.org/10.1007/s11571-019-09546-9


the importance of bursting activities in neural computation

(Lisman 1997; Izhikevich et al. 2003; Krahe and Gabbian

2004; Izhikevich 2004, 2006). For example, (a) bursts are

necessary to overcome the synaptic transmission failure,

(b) bursts are more reliable than single spikes in evoking

responses in post-synaptic neurons, (c) bursts evoke long-

term potentiation/depression (and hence affect synaptic

plasticity much greater than single spikes), and (d) bursts

can be used for selective communication between neurons.

Intrinsically bursting neurons and chattering neurons in the

cortex (Connors and Gutnick 1990; Gray and McCormick

1996), thalamic relay neurons and thalamic reticular neu-

rons in the thalamus (Llinás and Jahnsen 1982; McCormick

and Huguenard 1992; Lee et al. 2007), hippocampal

pyramidal neurons (Su et al. 2001), Purkinje cells in the

cerebellum (Womack and Khodakhah 2002), pancreatic b-

cells (Chay and Keizer 1983; Pernarowski et al. 1992;

Kinard et al. 1999), and respiratory neurons in pre-Bot-

zinger complex (Del Negro et al. 1998; Butera et al. 1999)

are representative examples of bursting neurons.

Here, we are concerned about burst synchronization

(i.e., synchrony on the slow bursting timescale) which

characterizes temporal coherence between burst onset

times (i.e., times at which burstings start in active phases).

This kind of burst synchronization is related to neural

information processes in health and disease. For example,

large-scale burst synchronization occurs in the sleep spin-

dles through interaction between the excitatory thalamic

relay cells and the inhibitory thalamic reticular neurons in

the thalamus during the early stage of slow-wave sleep

(Steriade et al. 1993; Bazhenov and Timofeev 2006).

These sleep spindles are associated with memory consoli-

dation (Gais et al. 2000; Sejnowski and Destexhe 2000). In

contrast, burst synchronization is also correlated to

abnormal pathological rhythms, related to neural diseases

such as movement disorder (Parkinson’s disease and

essential tremor) (Bevan et al. 2002; Uhlhaas and Singer

2006; Brown 2007; Hammond et al. 2007; Park et al.

2010) and epileptic seizure (Fisher et al. 2005; Uhlhaas and

Singer 2006).

In addition to burst synchronization, we are also inter-

ested in cluster synchronization. In this case, the whole

population is segregated into synchronous sub-populations

(called also as clusters) with phase lag among them (Be-

lykh et al. 2008; Moon et al. 2015). This type of cluster

synchronization has been investigated experimentally,

numerically, or theoretically in a variety of contexts in

diverse coupled (physical, chemical, biological, and neural)

oscillators; to name a few, Josepson junction arrays

(Aronson et al. 1991; Wisenfeld et al. 1996), globally-

coupled chemical oscillators (Kiss et al. 2005; Taylor et al.

2008; Miyakawa et al. 2013), synthetic genetic networks

(Zhang et al. 2009), and globally-coupled networks of

inhibitory (non-oscillatory) reticular thalamic nucleus

neurons (Golomb and Rinzel 1994) and other inhibitory

model neurons (Chik et al. 2004; Langdon et al. 2012).

Synaptic connectivity in neural networks has been found

to have complex topology which is neither regular nor

completely random (Sporns et al. 2000; Buzsáki et al.

2004; Chklovskii et al. 2004; Song et al. 2005; Bassett and

Bullmore 2006; Sporns and Honey 2006; Larimer and

Strowbridge 2008; Bullmore and Sporns 2009; Sporns

2011). Particularly, neural networks have been found to

exhibit power-law degree distributions (i.e., scale-free

property) in the rat hippocampal networks (Morgan and

Soltesz 2008; Bonifazi et al. 2009; Wiedemann 2010; Li

et al. 2010) and the human cortical functional network

(Eguı́luz et al. 2005). Moreover, robustness against simu-

lated lesions of mammalian cortical anatomical networks

(Felleman and Van Essen 1991; Young 1993; Young et al.

1994; Scannell et al. 1995, 1999; Sporns et al. 2004) has

also been found to be most similar to that of a scale-free

network (SFN) (Kaiser et al. 2007). This type of SFNs are

inhomogeneous ones with a few ‘‘hubs’’ (i.e., supercon-

nected nodes) (Barabási and Albert 1999; Albert and

Barabási 2002). Many recent works on various subjects of

neurodynamics have been done in SFNs with a few percent

of hub neurons with an exceptionally large number of

synapses (Batista et al. 2007, 2009; Wang et al. 2009;

Batista et al. 2010; Wang et al. 2011b; Ferrari et al. 2015).

In this paper, we consider an inhibitory SFN of

suprathreshold (i.e., self-oscillating) Hindmarsh–Rose

(HR) bursting neurons, and investigate coupling-induced

cluster burst synchronization by changing the average

coupling strength J0. For sufficiently small J0; desynchro-

nized states exist. But, when passing a critical point

J�c ð’ 0:16Þ, the whole population is segregated into 3

clusters via a constructive role of synaptic inhibition to

stimulate dynamical clusterings between individual burst-

ings, and thus 3-cluster desynchronized states appear. In

the presence of 3 clusters, inter-burst-intervals (IBIs) of

individual HR neurons are localized in a region of

2Tc\IBI\4Tc [Tc : cluster period (i.e., time interval

between appearance of successive clusters)], and a peak

appears at 3Tc. For J0\J�c , delocalization of IBIs occurs

through crossing the left and/or the right boundaries (cor-

responding to 2Tc and 4Tc; respectively), and thus break-up

of the 3 clusters occurs through intercluster hoppings

between the clusters.

As J0 is increased and a lower threshold J�l ð’ 0:78Þ is

passed, a transition to 3-cluster burst synchronization

occurs due to another constructive role of synaptic inhibi-

tion to favor population synchronization. In each cluster,

HR neurons make burstings every 3rd cycle of the

instantaneous whole-population burst rate RwðtÞ of the
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whole population, and hence a single peak appears at 3TG
[TG : global period of RwðtÞ] in the IBI histogram for the

whole population of HR neurons. Moreover, these burst-

ings in each cluster are also made in a coherent way, and

hence a type of incomplete synchronization occurs in each

cluster (i.e., burstings in each cluster show some coher-

ence, although they are not completely synchronized). In

this way, 3-cluster burst synchronization emerges. This

type of cluster burst synchronization is in contrast to that

occurring via post-inhibitory rebound (PIR) in globally-

coupled networks of subthreshold (i.e., non-oscillating)

neurons with inhibitory synaptic connections (Golomb and

Rinzel 1994; Chik et al. 2004; Langdon et al. 2012); in the

case of PIR, complete synchronization appears in each

cluster (i.e., states of all the neurons in each cluster are the

same).

However, as J0 is further increased and passes an

intermediate threshold J�mð’ 5:2Þ, a new minor peak

appears at 4TG in the IBI histogram, in addition to the

major peak at 3TG. Thus, delocalization of IBIs occurs by

crossing the right boundary (corresponding to 4TG). In this

case, HR neurons intermittently fire burstings at a 4th cycle

of RwðtÞ via burst skipping rather than at its 3rd cycle, and

hence intermittent hoppings between the 3 clusters occur.

Due to the intermittent intercluster hoppings via burst

skippings, break-up of clusters occurs (i.e., the 3 clusters

are integrated into a single one). However, in spite of

break-up of the 3 clusters, burst synchronization persists in

the whole population, which is well visualized in the raster

plot of burst onset times where bursting stripes (composed

of burst onset times and representing burst synchroniza-

tion) appear successively. With further increase in J0,

intercluster hoppings are intensified (e.g., for a larger J0 a

3rd peak appears at 5TG in the IBI histogram), and bursting

stripes also become smeared more and more due to a

destructive role of synaptic inhibition to spoil the burst

synchronization. Eventually, when passing a higher

threshold J�hð’ 17:8Þ; a transition to desynchronization

occurs via complete overlap between the bursting stripes.

In a desynchronized case, burst onset times are completely

scattered without forming any stripes in the raster plot.

Finally, the effects of stochastic noise on both 3-cluster

burst synchronization and intercluster hoppings are also

investigated.

This paper is organized as follows. In ‘‘Inhibitory scale-

free network of Hindmarsh–Rose bursting neurons’’ sec-

tion, we describe a Barabási-Albert SFN composed of

inhibitory HR bursting neurons. Then, in ‘‘Coupling-in-

duced cluster burst synchronization of inhibitory HR

bursting neurons’’ section we investigate coupling-induced

cluster burst synchronization by varying the average cou-

pling strength J0, and then study the effects of stochastic

noise on burst synchronization in ‘‘Effects of stochastic

noise on cluster burst synchronization’’ section. Finally, we

give summary and discussion in ‘‘Summary and discus-

sion’’ section.

Inhibitory scale-free network of Hindmarsh–
Rose bursting neurons

We consider an inhibitory SFN composed of N bursting

neurons equidistantly placed on a one-dimensional ring of

radius N
2p. We employ a directed Barabási-Albert SFN

model (i.e. growth and preferential directed attachment)

(Barabási and Albert 1999; Albert and Barabási 2002). At

each discrete time t, a new node is added, and it has lin
incoming (afferent) edges and lout outgoing (efferent) edges

via preferential attachments with lin (pre-existing) source

nodes and lout (pre-existing) target nodes, respectively. The

(pre-existing) source and target nodes i (which are con-

nected to the new node) are preferentially chosen

depending on their out-degrees d
ðoutÞ
i and in-degrees d

ðinÞ
i

according to the attachment probabilities PsourceðdðoutÞi Þ and

PtargetðdðinÞi Þ, respectively:

PsourceðdðoutÞi Þ¼ d
ðoutÞ
i

PNt�1

j¼1 d
ðoutÞ
j

andPtargetðdðinÞi Þ¼ d
ðinÞ
i

PNt�1

j¼1 d
ðinÞ
j

;

ð1Þ

where Nt�1 is the number of nodes at the time step t � 1.

Here, we consider the case of symmetric preferential

attachment with lin ¼ lout½� l�ð¼ 15Þ�. For generation of an

SFN with N nodes, we begin with the initial network at

t ¼ 0, consisting of N0 ¼ 50 nodes where the node 1 is

connected bidirectionally to all the other nodes, but the

remaining nodes (except the node 1) are sparsely and

randomly connected with a low probability p ¼ 0:1. The

processes of growth and preferential attachment are repe-

ated until the total number of nodes becomes N. In this

case, the node 1 will be grown as the head hub with the

highest degree.

As an element in our SFN, we choose the representative

bursting HR neuron model which was originally introduced

to describe the time evolution of the membrane potential

for the pond snails (Hindmarsh and Rose 1982, 1984; Rose

and Hindmarsh 1985). We consider the Barabási-Albert

SFN composed of N HR bursting neurons. The following

Eqs. (2–4) govern the population dynamics in the SFN:

dxi

dt
¼ yi � ax3

i þ bx2
i � zi þ IDC;i þ Dni � Isyn;i; ð2Þ
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dyi

dt
¼ c� dx2

i � yi; ð3Þ

dzi

dt
¼ r sðxi � xoÞ � zi½ �; ð4Þ

where

Isyn;i ¼
1

d
ðinÞ
i

XN

j¼1ðj 6¼iÞ
JijwijgjðtÞðxi � XsynÞ; ð5Þ

gjðtÞ¼
XFj

f¼1

Eðt�t
ðjÞ
f �slÞ;EðtÞ¼

1

sd�sr
ðe�t=sd�e�t=srÞHðtÞ:

ð6Þ

Here, the state of the ith neuron at a time t (measured in

units of milliseconds) is characterized by three state vari-

ables: the fast membrane potential xi, the fast recovery

current yi; and the slow adaptation current zi. The param-

eter values used in our computations are listed in Table 1.

More details on external stimulus to each HR neuron,

synaptic currents, and numerical integration of the gov-

erning equations are given in the following subsections.

External stimulus to each HR neuron

Each bursting HR neuron [whose parameter values are in

the 1st item of Table 1 (Longtin 1997)] is stimulated by a

DC current IDC;i and an independent Gaussian white noise

ni [see the 5th and the 6th terms in Eq. (2)] satisfying

hniðtÞi ¼ 0 and hniðtÞnjðt0Þi ¼ dijdðt � t0Þ, where h� � �i
denotes the ensemble average. The intensity of noise ni is

controlled by the parameter D. As IDC passes a threshold

I�DCð’ 1:26Þ in the absence of noise (i.e., D ¼ 0), each

single HR neuron exhibits a transition from a resting state

to a bursting state (see Fig. 1a). With increasing IDC, the

bursting frequency fb, (corresponding to the reciprocal of

the average IBI hIBIi), increases monotonically, as shown

in Fig. 1b. For a suprathreshold case of IDC ¼ 1:35,

deterministic bursting occurs when neuronal activity

alternates, on a slow time scale ð’ 578 msec), between a

silent phase and an active (bursting) phase of fast repetitive

spikings, as shown in Fig. 1c. The dotted horizontal line

(x�b ¼ �1) denotes the bursting threshold (the solid and

open circles denote the active phase onset and offset times,

respectively), while the dashed horizontal line (x�s ¼ 0)

represents the spiking threshold within the active phase. An

active phase of the bursting activity begins (ends) at a burst

onset (offset) time when the membrane potential x of the

bursting HR neuron passes the bursting threshold of x�b ¼
�1 from below (above). In this case, the HR neuron

exhibits bursting activity with the slow bursting frequency

fbð’ 1:7 Hz) [corresponding to the reciprocal of the aver-

age IBI (hIBIi ’ 578 msec)]. Throughout this paper, we

consider a suprathreshold case such that the value of IDC;i is

chosen via uniform random sampling in the range of

[1.3,1.4], as shown in the 2nd item of Table 1.

Synaptic currents

The last term in Eq. (2) represents the synaptic couplings

of HR bursting neurons. The coupling strength of the

synapse from the jth pre-synaptic neuron to the ith post-

synaptic neuron is Jij. These synaptic strengths are nor-

mally distributed with the mean J0 and the standard devi-

ation r0ð¼ 0:1Þ. Isyn;i of Eq. (5) represents a synaptic

current injected into the ith neuron, and Xsyn is the synaptic

reversal potential. The synaptic connectivity is given by the

connection weight matrix W (=fwijg) where wij ¼ 1 if the

bursting neuron j is presynaptic to the bursting neuron i;

otherwise, wij ¼ 0. Here, the synaptic connection is mod-

eled in terms of the Barabási-Albert SFN. Then, the in-

degree of the ith neuron, d
ðinÞ
i (i.e., the number of synaptic

inputs to the neuron i) is given by d
ðinÞ
i ¼

PN
j¼1ðj 6¼iÞ wij. The

fraction of open synaptic ion channels at time t is denoted

by g(t). The time course of gjðtÞ of the jth neuron is given

Table 1 Parameter values used

in our computations
(1) Single HR bursting neurons (Longtin 1997)

a ¼ 1 b ¼ 3 c ¼ 1 d ¼ 5 r ¼ 0:001

s ¼ 4 x0 ¼ �1:6

(2) External stimulus to HR bursting neurons

IDC;i 2 ½1:3; 1:4� D: Varying

(3) Inhibitory synapse mediated by the GABAA neurotransmitter

(Brunel and Wang 2003)

sl ¼ 1 sr ¼ 0:5 sd ¼ 5 Xsyn ¼ �2

(4) Synaptic connections between neurons in the Barabási-Albert SFN

l� ¼ 15 (symmetric preferential attachment)

J0 : Varying r0 ¼ 0:1
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by a sum of delayed double-exponential functions Eðt �
t
ðjÞ
f � slÞ [see Eq. (6)], where sl is the synaptic delay, and

t
ðjÞ
f and Fj are the fth spike and the total number of spikes of

the jth neuron at time t, respectively. Here, E(t) [which

corresponds to contribution of a presynaptic spike occur-

ring at time 0 to gjðtÞ in the absence of synaptic delay] is

controlled by the two synaptic time constants: synaptic rise

time sr and decay time sd, and HðtÞ is the Heaviside step

function: HðtÞ ¼ 1 for t� 0 and 0 for t\0. For the inhi-

bitory GABAergic synapse (involving the GABAA recep-

tors), the values of sl, sr, sd , and Xsyn are listed in the 3rd

item of Table 1 (Brunel and Wang 2003).

Numerical integration

Numerical integration of differential equations (2–4) is

done by using the 4th-order Runge-Kutta method in the

absence of noise (D ¼ 0) and the Heun method (San

Miguel and Toral 2000) in the presence of noise (D[ 0)

(with the time step Dt ¼ 0:01 msec). For each realization,

we choose a random initial point ½xið0Þ; yið0Þ; zið0Þ� for the

ith ði ¼ 1; . . .;NÞ neuron with uniform probability in the

range of xið0Þ 2 ð�1:5; 1:5Þ, yið0Þ 2 ð�10; 0Þ, and

zið0Þ 2 ð1:2; 1:5Þ.

Coupling-induced cluster burst
synchronization of inhibitory HR bursting
neurons

In this section, we consider a directed Barabási-Albert

SFN, composed of N inhibitory HR bursting neurons; in

most cases, N ¼ 103 except for the cases of the raster plot

for N ¼ 104 and the bursting order parameters hObir. The

synaptic coupling strengths fJijg are chosen from the

Gaussian distribution with the mean J0 and the standard

deviation r0ð¼ 0:1Þ. We investigate coupling-induced

cluster burst synchronization by varying J0 in the absence

of noise (D ¼ 0).

Emergence of dynamical clusterings

Figure 2a shows a bar diagram for diverse population

states. Here, C, NC, BS, and DS represent cluster, non-

cluster, burst synchronization, and desynchronization,

respectively. For sufficiently small J0; non-cluster desyn-

chronized states exist. However, when passing a critical

point J�c ð’ 0:16Þ; 3-cluster states appear. As an example,

we consider the case of J0 ¼ 0:19. Emergence of dynam-

ical clusterings may be well seen in the raster plot of

bursting onset times which corresponds to a collection of

all trains of burst onset times of individual bursting neu-

rons. As clearly shown in Fig. 2b, the whole population is

segregated into 3 sub-populations (also called clusters); NI

[number of neurons in the Ith (I ¼ 1; 2, and 3) cluster] ’ N
3
.

Clustered busting bands appear in a successive cyclic way

(i.e., I ! I þ 1 ! I þ 2 ! I) with the cluster period (i.e.,

average time interval between appearance of successive

clusters) Tcð’ 199:17 msec). Hence, in each cluster,

bursting bands appear successively with the period P½¼
3Tcð’ 597:5 msec)].

As macroscopic quantities showing the whole- and the

sub-population behaviors, we employ the instantaneous

whole population burst rate (IWPBR) RwðtÞ and the

instantaneous sub-population burst rate (ISPBR) R
ðIÞ
s ðtÞ (I =

1, 2, 3) which may be obtained from the raster plots in the

whole population and in the clusters, respectively (Kim and

Lim 2015a, b, 2016, 2018). To obtain a smooth IWPBR

RwðtÞ, we employ the kernel density estimation (kernel

smoother) (Shimazaki and Shinomoto 2010). Each burst

onset time in the raster plot is convoluted (or blurred) with

a kernel function KhðtÞ to obtain a smooth estimate of

IWPBR RwðtÞ:

RwðtÞ ¼
1

N

XN

i¼1

Xni

b¼1

Khðt � t
ðiÞ
b Þ; ð7Þ

where t
ðiÞ
b is the bth burst onset time of the ith neuron, ni is

(a)

(b)

(c)

Fig. 1 Single bursting HR neuron for D ¼ 0. a Bifurcation diagram in

the single HR neuron. Solid line represents a stable resting state,

while for the bursting state, maximum and minimum values of the

membrane potential x are denoted by solid circles. b Bursting

frequency fb versus IDC . c Time series of x(t) for the bursting state

when IDC ¼ 1:35. The dotted horizontal line (x�b ¼ �1) and the

dashed horizontal line (x�s ¼ 0) denote the bursting and the spiking

thresholds, respectively. The solid and open circles represent the burst

onset and offset times, respectively
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the total number of burst onset times for the ith neuron, and

we use a Gaussian kernel function of band width h:
KhðtÞ ¼

1
ffiffiffiffiffiffi
2p

p
h
e�t2=2h2

; �1\t\1: ð8Þ

(a)

(b1) (b2)

(b3)

(c)

(e)

(d)

(f)

Fig. 2 Emergence of 3-cluster state for J0 ¼ 0:19. a Bar diagram for

the population states. C, NC, BS, and DS denote clustering, non-

clustering, burst synchronization, and desynchronization, respectively.

b1 Raster plots of burst onset times in the whole population and in the

Ith cluster (I = 1, 2, and 3). b2 IWPBR RwðtÞ of the whole population

and ISPBR RðIÞ
s ðtÞ of the Ith cluster (I = 1, 2, and 3). b3 One-sided

power spectra of DRðIÞ
s ðtÞ [ = RðIÞ

s ðtÞ � R
ðIÞ
s ðtÞ] (I = 1, 2, and 3) with the

mean-squared amplitude normalization; the overbar denotes time

average. N ¼ 104: c raster plots of burst onset times in the whole

population and in the Ith cluster (I = 1, 2, and 3) and d IWPBR RwðtÞ
of the whole population and ISPBR RðIÞ

s ðtÞ of the Ith cluster (I = 1, 2,

and 3). e Time series of membrane potential xiðtÞ of a representative

neuron i in each cluster; i = 1, 2, and 3 for I = 1, 2, and 3 clusters,

respectively. f IBI histogram. Localization of IBIs in the gray region

of 2Tc\IBI\4Tc. Vertical dotted lines in c, d denote integer

multiples of the cluster period Tc
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Throughout the paper, the band width h of KhðtÞ is 20 ms.

The IWPBR RwðtÞ is shown in the top panel of Fig. 2b2.

We note that RwðtÞ is nearly stationary, because burst onset

times in the raster plot in the whole population are nearly

completely scattered. Hence, a 3-cluster desynchronized

state appears for J0 ¼ 0:19.

As in the case of RwðtÞ, we get the ISPBR kernel esti-

mate R
ðIÞ
s ðtÞ by employing the Gaussian kernel function of

Eq. (8):

RðIÞ
s ðtÞ ¼ 1

NI

XNI

i¼1

Xn
ðIÞ
i

b¼1

Khðt � t
ðI;iÞ
b Þ; ð9Þ

where t
ðI;iÞ
b is the bth burst onset time of the ith neuron in

the Ith cluster, n
ðIÞ
i is the total number of burst onset times

for the ith neuron in the Ith cluster, and NI is the number of

neurons in the Ith cluster. The ISPBRs R
ðIÞ
s of the Ith

clusters are shown in the I ¼1, 2, and 3 panels of Fig. 2b2,

respectively. We note that R
ðIÞ
s ðtÞ shows a square-wave-like

behavior. For each cluster, burst onset times in each

bursting band are nearly completely scattered (i.e., nearly

desynchronized), and hence a square-wave-like oscillation

occurs in each R
ðIÞ
s ðtÞ. During the ‘‘silent’’ part (without

burstings) for about 2P/3, R
ðIÞ
s ðtÞ ¼ 0 (which corresponds

to the bottom part), while in the bursting band for about

P / 3, R
ðIÞ
s ðtÞ rapidly increases to the nearly flat top, and

then decreases rapidly; P corresponds to the average period

of the square-wave oscillation. Through repetition of this

process R
ðIÞ
s ðtÞ exhibits a square-wave-like oscillation. The

sub-population bursting frequency f
ðIÞ
b of the ISPBR R

ðIÞ
s ðtÞ

(I = 1, 2, and 3) may be obtained from the one-sided power

spectra of DRðIÞ
s ðtÞ ½¼ R

ðIÞ
s ðtÞ � R

ðIÞ
s ðtÞ� with the mean-

squared amplitude normalization. The overbar represents

time average and the number of data for each power

spectrum is 213. Figure 2b3 shows power spectra of

DRðIÞ
s ðtÞ (I ¼1, 2, and 3). In the case of each sub-population

(cluster), the power spectrum has a main peak at f
ðIÞ
b ð’

1:67 Hz) and its harmonics. Hence, R
ðIÞ
s ðtÞ oscillates with

the slow sub-population bursting frequency f
ðIÞ
b , the recip-

rocal of which corresponds to the average period P of the

square-wave oscillation (also corresponding to the average

period for appearance of successive bursting bands in each

cluster).

To examine the square-wave-like behavior more clearly,

the number of HR neurons is increased from N ¼ 103 to

104. In this case, raster plots in the whole population and

the clusters and their corresponding IWPBR RwðtÞ and

ISPBR R
ðIÞ
s ðtÞ are shown in Fig. 2c, d, respectively. For the

whole population, burst onset times are more completely

scattered, and hence the corresponding IWPBR RwðtÞ is

more stationary. Furthermore, for each cluster, bursting

bands in the raster plot show clearly the clustering struc-

ture, and the corresponding ISPBR R
ðIÞ
s ðtÞ shows square-

wave oscillations more clearly. Thus, for each cluster, burst

onset times in bursting bands are completely scattered, and

they show a desynchronized state. In this way, 3-cluster

desynchronization appears for J0 ¼ 0:19.

We also investigate individual bursting behaviors of HR

neurons in each cluster. Figure 2e shows a time series of a

membrane potential xiðtÞ of a representative neuron in each

Ith cluster (i ¼ 1; 2; and 3 for I ¼ 1, 2, and 3, respectively);

the vertical dotted lines represent integer multiples of the

cluster period Tc. The 1st HR neuron in the I ¼ 1 cluster

makes burstings in the 1st clustering cycle (after the tran-

sient time t ¼ 103 msec). We note that the duration of

silent phase of the 1st neuron is about twice as long as the

length of its active bursting phase. During this silent phase,

the 2nd and the 3rd HR neurons in the I ¼ 2 and 3 clusters

exhibit burstings alternately in the 2nd and the 3rd clus-

tering cycle, respectively. In this way, individual HR

neurons in each cluster show burstings every 3rd clustering

cycle. This kind of individual bursting behaviors are well

shown in the IBI histograms (see Fig. 2f), where vertical

dotted lines denote integer multiples of Tc. The IBI his-

togram is composed of 5 � 104 IBIs, and the bin size for

the histogram is 2.5 ms. A single peak appear at

Tpeakð¼ 3TcÞ; Tpeak also corresponds to the average period

P for the appearance of bursting bands in each cluster. We

note that IBIs are localized in a range of 2Tc\IBI\4Tc.

Based on the IBI histogram, we suggest a criterion for

emergence of 3-cluster states. Localization of IBIs in the

range of 2Tc\IBI\4Tc results in emergence of 3 clusters.

For J0\J�c ; delocalization of IBIs occurs via crossing

the left and/or the right boundaries (corresponding to 2Tc
and 4Tc; respectively). As an example, we consider the

case of J0 ¼ 0:13. Figure 3a shows a delocalized IBI his-

togram. In this case, some fraction of IBIs cross both the

left and the right boundaries (see the black parts in the

insets of Fig. 3a). The fraction of IBIs above 4Tc is 0.0753,

while the fraction of IBIs below 2Tc is 0.0146. Hence,

‘‘late’’ burstings with IBIs larger than 4Tc are much more

probable than ‘‘early’’ burstings with IBIs smaller than 2Tc.

As a result of occurrence of these late and early burstings,

interburst hoppings between the 3 clusters occur, which

leads to break up of dynamical clusterings. Such inter-

cluster hoppings may be well seen in sequential long-term

raster plots of burst onset times in the whole population and

in the Ith (I ¼ 1, 2, and 3) clusters. Figure 3b1–b3 show

such raster plots in the early, the intermediate, and the final

stages, respectively. In Fig. 3b1, b2, late and early
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burstings are plotted with gray and black dots of a little

larger point size (= 1.5), in contrast to regular burstings

which are plotted with black dots of a smaller point size (=

0.5).

For the initial stage in Fig. 3b1, individual HR neurons

in the Ith cluster make intermittent intercluster hoppings to

the nearest neighboring ðI þ 1Þth [ðI � 1Þth] cluster due to

occurrence of late (early) burstings. Thus, bursting bands in

the Ith cluster become smeared into the nearest neighboring

bursting bands belonging to the ðI þ 1Þth and the ðI � 1Þth
clusters. In this way, intermittent ‘‘forward’’ hoppings from

the Ith to the ðI þ 1Þth cluster and ‘‘backward’’ hoppings

from the Ith to the ðI � 1Þth cluster occur through occur-

rence of late and early burstings, respectively. The

smearing degree of late burstings (larger gray dots) into the

ðI þ 1Þth cluster is larger than that of early burstings (lar-

ger black dots) into the ðI � 1Þth cluster.

For the intermediate stage in Fig. 3b2, one more step

occurs for the intercluster hoppings due to occurrence of

2nd late and early burstings. Hence, intercluster hoppings

occur from the Ith cluster to the ðI þ 1Þth and the ðI � 1Þth
clusters (due to the 1st late and early burstings) and then to

the ðI þ 2Þth and the ðI � 2Þth clusters (due to the 2nd late

and early burstings). Thus, bursting bands in the Ith cluster

(a)

(b1)

(c1) (c2) (c3)

(b2) (b3)

Fig. 3 Break-up of 3-cluster state via intercluster hoppings for

J0 ¼ 0:13. a IBI histogram. Delocalization of IBIs through crossing

the left and the right vertical boundary lines of the gray region

(corresponding to 2Tc and 4Tc; respectively). Sequential long-term

raster plots of burst onset times in the whole population and in the Ith

cluster (I ¼ 1; 2; and 3) in b1 the early, b2 the intermediate, and b3

the final stages; in (b1, b2), late burstings with IBIs larger than 4Tc
and early burstings with IBI smaller than 2Tc are plotted with gray and

black dots of a little larger point size. IWPBR RwðtÞ of the whole

population and ISPBR RðIÞ
s ðtÞ of the Ith cluster (I ¼1, 2, and 3) in the

c1 early, c2 the intermediate, and c3 the final stages
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become smeared into the nearest neighboring bursting

bands belonging to the ðI þ 1Þth and the ðI � 1Þth clusters

and then into the next-nearest neighboring bursting bands

belonging to the ðI þ 2Þth and the ðI � 2Þth clusters. In this

way, successive 2nd forward and backward intercluster

hoppings occur due to occurrence of 2nd late and early

burstings, respectively. We also note that the 1st (2nd) late

burstings and the 2nd (1st) early burstings are intermixed.

In this intermediate stage, smeared parts into neighboring

clusters are still sparse (i.e., their densities are low in

comparison with those of regular bursting bands).

As the time t is further increased, 3rd late and early

burstings may also occur, and then another forward

(backward) intercluster hoppings from the ðI þ 2Þth
[ðI � 2Þth] to the Ith clusters occur (i.e., return to the

original Ith cluster occurs due to the 3rd late and early

burstings). In this way, forward and backward intercluster

hoppings occur in a cyclic way [I ! I þ 1 (I � 1) ! I þ 2

(I � 2) ! I] due to occurrence of successive late and early

burstings. In the final stage after a sufficiently long time,

intercluster hoppings between clusters are more and more

intensified, which leads to complete break-up of clusters.

As a result, burst onset times in the raster plots are com-

pletely scattered in a nearly uniform way, independently of

I ¼ 1; 2, and 3, as shown in Fig. 3b3.

Figure 3c1–c3 show the IWPBR RwðtÞ and the ISPBR

R
ðIÞ
s ðtÞ (I = 1, 2, and 3), corresponding to the above raster

plots in Fig. 3b1–b3. In the initial stage in Fig. 3c1,

amplitudes (corresponding to heights of squares) of square-

wave oscillations are decreased and top parts of squares

become less flat (i.e., they begin to wiggle). Additionally,

small-amplitude oscillations (associated with low-density

smeared parts in the raster plots occurring due to forward

and backward intercluster hoppings) also appear in con-

nection with decreased square-wave oscillations

In the intermediate stage in Fig. 3c2, one more step for

forward and backward intercluster hoppings occurs due to

2nd late and early burstings, and hence forward and

backward smearing of late and early burstings extends to

the next-nearest neighboring clusters. In this case, ampli-

tudes of square-wave oscillations are more decreased and

top parts of squares also become much less flat. In this way,

square-wave oscillations become broken up more and

more. Additionally, small-amplitude oscillations (related to

extended smeared parts in the raster plots occurring due to

successive forward and backward intercluster hoppings)

appear and they cover the whole range between square-

wave oscillations. In this case, the amplitudes of extended

small oscillations are larger than those in the initial stage.

As the time t is further increased, these tendencies (e.g.,

decreasing tendency in amplitudes of square-wave oscil-

lations, increasing tendency in break-up of square-wave

structure, and increasing tendency in amplitudes of exten-

ded small oscillations) become intensified due to intensive

forward and backward intercluster hoppings. As a result of

complete break-up of clusters, all the ISPBR R
ðIÞ
s ðtÞ

become nearly the same as the IWPBR RwðtÞ, indepen-

dently of I, and also both R
ðIÞ
s ðtÞ and RwðtÞ are nearly sta-

tionary, as shown in Fig. 3c3 for the final stage.

Emergence of cluster burst synchronization

As the average coupling strength J0 is increased and passes

a threshold, a transition from cluster desynchronization to

cluster burst synchronization occurs. In a desynchronized

case, burst onset times are completely scattered in the

raster plot in the whole population (e.g., see the top panel

of Fig. 4b1). On the other hand, in the case of burst syn-

chronization, bursting stripes (composed of burst onset

times and representing burst synchronization) appear suc-

cessively in the raster plot in the whole population [e.g.,

see the top panels of Fig. 4b2–b5).

Recently, we introduced a realistic bursting order

parameter, based on RwðtÞ, for describing transition from

desynchronization to burst synchronization (Kim and Lim

2015b). The mean square deviation of RwðtÞ,

Ob � ðRwðtÞ � RwðtÞÞ2; ð10Þ

plays the role of an order parameter Ob; the overbar rep-

resents time average. This bursting order parameter may be

regarded as a thermodynamic measure because it concerns

just the macroscopic IWPBR RwðtÞ without any consider-

ation between RwðtÞ and microscopic individual burst onset

times. As N (number of HR neurons in the whole popula-

tion) is increased, RwðtÞ exhibits more regular oscillations

in the case of burst synchronization, while it becomes more

stationary in the case of desynchronization. Hence, in the

thermodynamic limit of N ! 1, the bursting order

parameter Ob, representing time-averaged fluctuations of

RwðtÞ from its time-averaged mean, approaches a non-zero

(zero) limit value for the synchronized (desynchronized)

state. In this way, the bursting order parameter Ob can

determine whether population states are synchronized or

desynchronized.

Figure 4a shows a plot of log10hObir versus J0. In each

realization, we discard the first time steps of a trajectory as

transients for 103 msec, and then we numerically compute

Ob by following the trajectory for 3 � 104 ms. Hereafter,

h� � �ir denotes an average over 20 realizations. For

J0\J�l ð’ 0:78Þ, the bursting order parameter hObir tends

to zero with increasing N. On the other hand, when passing

J�l a transition to burst synchronization occurs, because

hObir approaches a non-zero limit value. Consequently, for

J0 [ J�l burst synchronization occurs in the whole
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population due to a constructive role of synaptic inhibition

to favor the burst synchronization.

We consider specific examples of cluster desynchro-

nization and cluster burst synchronization. Figure 4b1, c1

show an example of cluster desynchronization for J0 ¼ 0:5,

as in the case of J0 ¼ 0:13 in Fig. 2b1, b2. For this cluster

desynchronized state, burst onset times are completely

scattered in bursting bands in each cluster, the corre-

sponding ISPBR R
ðIÞ
s ðtÞ exhibit square-wave oscillations,

and the IWPBR RwðtÞ½’ 1
3

P3
I¼1 R

ðIÞ
s ðtÞ] in the whole pop-

ulation becomes nearly stationary. Four examples for

cluster burst synchronization are given for J0 ¼ 0:8; 0.9,

1.0 and 5.0. In the case of J0 ¼ 0:8, bursting stripes begin

(a)

(b1)

(c1) (c2) (c3) (c4) (c5)

(b2) (b3) (b4) (b5)

(d1) (d2) (d3) (d4) (d5) (d6) (d7) (d8)

Fig. 4 Emergence of 3-cluster burst synchronization. a Plots of

thermodynamic bursting order parameter hObir versus the average

coupling strength J0. 3-cluster desynchronization for J0 ¼ 0:5: b1
raster plots of burst onset times in the whole population and in the Ith

cluster (I = 1, 2, and 3), and c1 IWPBR RwðtÞ of the whole population

and ISPBR RðIÞ
s ðtÞ of the Ith cluster (I = 1, 2, and 3). 3-cluster burst

synchronization for various values of J0: b2–b5 raster plots of burst

onset times in the whole population and in the Ith cluster (I = 1, 2, and

3), and c2–c5 IWPBR RwðtÞ of the whole population and ISPBR

RðIÞ
s ðtÞ of the Ith cluster (I = 1, 2, and 3). d1–d8 IBI histograms for

various values of J0. In d1, vertical dotted lines denote integer

multiples of the cluster period Tc, and in d2–d8 vertical dotted lines

represent integer multiples of the global period TG of RwðtÞ (TG ¼ Tc)
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to appear successively in the raster plot of burst onset times

in the whole population (see the top panel of Fig. 4b2), and

the corresponding IWPBR RwðtÞ also begins to exhibit

small-amplitude regular oscillations, as shown in the top

panel of Fig. 4c2. The whole population is segregated into

3 clusters. Bursting stripes in each cluster appear succes-

sively every 3rd global cycle of RwðtÞ, as shown in the I ¼
1, 2, and 3 panels of Fig. 4b2. The ISPBRs R

ðIÞ
s of the Ith

clusters are shown in the I ¼1, 2, and 3 panels of Fig. 4c2,

respectively. They exhibit regular oscillations with the sub-

population bursting frequency f
ðIÞ
b ð’ 1:67 Hz) which cor-

responds to
f
ðwÞ
b

3
[f

ðwÞ
b : whole-population bursting frequency

of RwðtÞ]. With increasing J0; cluster burst synchronization

gets better, as shown in the cases of J0 ¼ 0:9; 1.0, and 5.0.

Bursting stripes in the raster plots (in the whole population

and the clusters) become clearer (i.e., less smeared) (see

Fig. 4b3–b5) and the amplitudes of RwðtÞ and R
ðIÞ
s ðtÞ

become larger (see Fig. 4c3–c5).

We also investigate individual bursting behaviors of HR

neurons in terms of IBIs. Figure 4d1–d8 show IBI his-

tograms for various values of J0. Each IBI histogram is

composed of 5 � 104 IBIs and the bin size for the his-

togram is 2.5 ms. Vertical dotted lines in the IBI his-

tograms represent integer multiples of the cluster period Tc;

in the case of cluster burst synchronization, the value of Tc
is equal to that of the global period TG of RwðtÞ. In all cases

where 3-cluster states exist, single peaks appear at 3Tc, and

IBIs are localized in a range of 2Tc\IBI\4Tc, as in the

case of J0 ¼ 0:19 in Fig. 2f. In the desynchronized case of

J0 ¼ 0:5; its IBI histogram is broad due to incoherent

synaptic inputs. When passing the lower threshold

J�i ð’ 0:78Þ, a transition to burst synchronization occurs,

and then IBI histograms begin to be sharp due to coherent

synaptic inputs. As J0 is further increased, the peaks of the

IBI histograms become sharper due to increase in coherent

synaptic inputs. A maximum height of the peak appears

near J0 ¼ 2:0, and then it begins to decrease. Thus, the

peak for J0 ¼ 5:0 becomes broader, because J0 ¼ 5:0 is

close to an intermediate threshold J�mð’ 5:2) where break-

up of 3 clusters occurs (this point is explained in details in

the following subsection).

Break-up of cluster burst synchronization
via intercluster hoppings

As J0 is further increased and passes an intermediate

threshold J�m ð’ 5:2), 3-cluster burst synchronization

breaks up into (non-cluster) burst synchronization without

dynamical clusterings through intercluster hoppings. As an

example, we consider the case of J0 ¼ 10.

Figure 5a shows the IBI histogram with two peaks at

3TG and 4TG [TGð’ 170:5 msec): global period of RwðtÞ].
For J0\J�m; only single peak appears at 3TG [i.e., indi-

vidual HR neurons exhibit burstings every 3rd global cycle

of RwðtÞ], as shown in Fig. 4d2–d8. As J0 approaches the

threshold J�m, this peak becomes broad along with decrease

in its height. After passing J�m, individual HR neurons begin

to exhibit burstings intermittently at a 4th cycle of RwðtÞ
through burst skipping at its 3rd cycle. Here, 3rd and 4th

cycles of RwðtÞ refer to ones counted just after the latest

burstings (e.g., see the example given below). An example

for the 5th neuron in the 1st (I ¼ 1) cluster is given in

Fig. 5b. A burst skipping occurs in the small box in the

gray region [corresponding to a 3rd cycle of RwðtÞ], and

then another bursting appears at its 4th cycle; for reference,

RwðtÞ is shown on the top panel and vertical dotted lines

represent global cycles of RwðtÞ. Thus, in addition to the

major peak at 3TG, a new minor peak appears at 4TG in

Fig. 5a. Then, some fraction of IBIs with larger than 4TG
appear (i.e., late burstings occur) in contrast to the case of

cluster burst synchronization where IBIs are localized in a

range of 2TG\IBI\4TG. In this case, delocalization of

IBIs occurs by crossing just the right boundary (corre-

sponding to 4Tc), which is in contrast to the case of J0 ¼
0:13 where both the left and the right boundaries are

crossed.

Due to appearance of delocalized IBIs larger than 4TG
(i.e., because of occurrence of late burstings), only forward

intercluster hoppings occur, in contrast to the case of J0 ¼
0:13 where both forward and backward intercluster hop-

pings take place due to occurrence of late and early

burstings, respectively (see Fig. 3b1–b3). Forward inter-

cluster hoppings between the 3 clusters may be well seen in

sequential long-term raster plots of burst onset times in the

whole population and in the Ith (I ¼ 1, 2, and 3) clusters.

Figure 5c1–c3 show such raster plots, corresponding to

(c1) the early, (c2) the intermediate, and (c3) the final

stages. For the initial stage in Fig. 5c1, individual HR

neurons in the Ith cluster make intermittent intercluster

hoppings to the nearest neighboring ðI þ 1Þth cluster [i.e.,

neurons in the Ith cluster exhibit intermittent burstings at a

4th cycle of RwðtÞ (along with regular burstings of neurons

in the ðI þ 1Þth cluster) due to burst skipping at its 3rd

cycle]. As a result, additional bursting stripes (composed of

intermittent burstings occurring at a 4th cycle of RwðtÞ due

to burst skipping at its 3rd cycle) appear next to the regular

bursting stripes in the raster plot for the Ith cluster. These

additional bursting stripes in the Ith cluster are vertically

aligned with regular bursting stripes in the ðI þ 1Þth clus-

ter. In this way, intermittent hoppings from the Ith to the

ðI þ 1Þth clusters occur.
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For the intermediate stage in Fig. 5c2, one more step

occurs for the intercluster hoppings due to a 2nd burst

skipping, and hence intercluster hoppings occur from the

Ith cluster to the ðI þ 1Þth cluster (due to a 1st burst

skipping) and then to the ðI þ 2Þth cluster (due to a 2nd

burst skipping). Consequently, two successive additional

bursting stripes (consisting of intermittent burstings

occurring at a 4th cycle of RwðtÞ due to the 1st and 2nd

burst skippings) appear next to the regular bursting stripes

in the raster plot in the Ith cluster. These two additional

bursting stripes are vertically aligned with regular bursting

stripes in the ðI þ 1Þth and the ðI þ 2Þth clusters. Conse-

quently, for each cluster, bursting stripes appear at every

cycle of RwðtÞ in the raster plot, like the case of whole

population, although additional bursting stripes (formed

due to burst skippings) are still sparse (i.e., their densities

are low in comparison with those of regular bursting

stripes).

As the time t is further increased, a 3rd burst skipping

may also occur, and then another intercluster hopping from

the ðI þ 2Þth to the Ith clusters occurs (i.e., return to the

original Ith cluster occurs due to a 3rd burst skipping). In

(a)

(c1)

(d1) (d2) (d3)

(c2) (c3)

(b)

Fig. 5 Break-up of 3 clusters via intercluster hoppings for J0 ¼ 10. a
Double-peaked IBI histogram. Vertical dotted lines denote integer

multiples of the global period TGð’ 170:5 msec) of RwðtÞ. b Time

series of membrane potential x5ðtÞ for the 5th HR neuron in the 1st

(I ¼ 1) cluster. For reference, the IWPBR RwðtÞ of the whole

population is shown in the top panel. The 5th HR neuron exhibits a

bursting at the 4th cycle of RwðtÞ rather than at its 3rd cycle where it

shows a hopping instead of bursting, as shown inside the small box in

the gray region (corresponding to the 3rd cycle). Sequential long-term

raster plots of burst onset times in the whole population and in the Ith

cluster (I ¼1, 2, and 3) in c1 the early, c2 the intermediate, and c3 the

final stages. IWPBR RwðtÞ of the whole population and ISPBR RðIÞ
s ðtÞ

of the Ith cluster (I ¼1, 2, and 3) in the d1 early, d2 the intermediate,

and d3 the final stages
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this way, intercluster hoppings occur in a cyclic way (I !
I þ 1 ! I þ 2 ! I) due to successive burst skippings. After

a sufficiently long time, in the final stage in Fig. 5c3,

intercluster hoppings between clusters are more and more

intensified, which leads to complete break-up of clusters.

As a result, density of all bursting stripes becomes nearly

the same, independently of I ¼ 1; 2, and 3. We also note

that, in spite of break-up of clusters, burst synchronization

persists in the whole population, because bursting stripes

appear successively in the rater plot in the whole

population.

Figure 5d1–d3 show the IWPBR RwðtÞ and the ISPBR

R
ðIÞ
s ðtÞ, corresponding to the above raster plots in Fig. 5c1–

c3. In the initial stage in Fig. 5d1, smaller-amplitude

oscillations [corresponding to lower-density additional

bursting stripes appearing due to burst skippings at regular

3rd cycles of RwðtÞ] appear next to the regular oscillations

[occurring at every 3rd cycle of RwðtÞ] in each Ith (I ¼ 1, 2,

and 3) case. In the intermediate stage in Fig. 5d2, one more

step for intercluster hoppings occurs due to 2nd burst

skippings, and hence two successive smaller-amplitude

oscillations appear next to the regular oscillations in each

Ith (I ¼ 1, 2, and 3) case. Then, for each Ith cluster R
ðIÞ
s ðtÞ

makes oscillations at every cycle of RwðtÞ, although its

amplitudes vary depending on the cycles of RwðtÞ. As the

time t is further increased, these amplitudes tend to become

nearly the same due to intensified intercluster hoppings, as

shown in Fig. 5d3 for the final stage. Consequently, all the

ISPBRs R
ðIÞ
s ðtÞ become nearly the same as the IWPBR

RwðtÞ, independently of I, because of complete break-up of

clusters.

So far, we consider the case of J0 ¼ 10 where (non-

cluster) burst synchronization without dynamical cluster-

ings appears via intercluster hoppings which occur due to

burst skippings. With increase in J0 from 10, another type

of bursting skippings begin to occur at 4th cycles of RwðtÞ,
in addition to the above skippings at 3rd cycles for J0 ¼ 10.

Figure 6a1 shows the IBI histogram for J0 ¼ 15. When

compared with the IBI histogram for J0 ¼ 10 in Fig. 5a,

the height of the peak at 4TG is so much increased, and

hence its height becomes higher than that of the decreased

peak at 3TG. As a result, the peak at 4TG becomes a major

one. Furthermore, a new smaller peak appears at 5TG due

to intermittent burst skippings at 4th cycles of RwðtÞ. Thus,

(a1)

(b1)

(c1) (c2)

(d)

(c3)

(b2) (b3)

(a2) (a3)

Fig. 6 Transition from burst synchronization to desynchronization.

IBI histograms for J0 ¼ a1 15, a2 16, and a3 20. Vertical dotted lines

in a1, a2 denote integer multiples of the global period TG of RwðtÞ.
Raster plots of burst onset times for J0 ¼ b1 15, b2 16, and b3 20.

IWPBR RwðtÞ of the whole population for J0 ¼ c1 15, c2 16, and c3
20. d Plots of thermodynamic bursting order parameter hObir versus

the average coupling strength J0
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the IBI histogram for J0 ¼ 15 consists of 3 peaks at 3TG,

4TG, and 5TG. Figure 6b1, c1 show the raster plot in the

whole population and the corresponding IWPBR kernel

estimate RwðtÞ for J0 ¼ 15. In comparison with the case of

J0 ¼ 10 in Fig. 5c3, d3, due to a destructive role of

synaptic inhibition to spoil the burst synchronization, burst

stripes become more smeared, and amplitudes of RwðtÞ
become smaller. Consequently, the degree of (non-cluster)

burst synchronization becomes worse.

As J0 is further increased, this kind of tendency for burst

skippings is intensified. As an example, see the case of

J0 ¼ 16. The IBI histogram is shown in Fig. 6a2. In

comparison with the IBI histogram in Fig. 6a1 for J0 ¼ 15;

heights of both peaks at 3TG and 4TG are decreased, while

the height of the peak at 5TG is a little increased. Addi-

tionally, a new small peak appears at 6TG. In this way, the

IBI distribution becomes broad. When compared with the

case of J0 ¼ 15, bursting stripes become more smeared and

amplitudes of RwðtÞ are decreased, as shown in Fig. 6b2,

c2, respectively. In this way, with increasing J0 (non-

cluster) burst synchronization becomes more and more

worse.

Eventually, when passing a higher threshold J�hð’ 17:8Þ,
a transition to desynchronization occurs. Consequently, for

J0 [ J�h desynchronized states appear, as shown in the case

of J0 ¼ 20. In this case, the IBI histogram is so broad and

has just a central maximum via merging of peaks. Burst

onset times in the raster plot are completely scattered

without forming any bursting stripes, and the correspond-

ing IWPBR kernel estimate RwðtÞ becomes nearly sta-

tionary (see Fig. 6b3, c3, respectively). This type of

transition from burst synchronization to desynchronization

may also be well described in terms of the bursting order

parameter Ob of Eq. (10). Figure 6d shows a plot of

log10hObir versus J0. As N is increased, the bursting order

parameter hObir approaches a non-zero limit value for

J0\J�hð’ 17:8Þ, and hence (non-cluster) burst synchro-

nization occurs. On the other hand, when passing J�h a

transition to (non-cluster) desynchronization occurs,

because hObir tends to zero with increasing N. Conse-

quently, for J0 [ J�h (non-cluster) desynchronized states

appear due to a destructive role of synaptic inhibition to

spoil the burst synchronization.

Characterization of burst synchronization

We characterize burst synchronization in the range of

J�l \J0\J�h by employing a statistical-mechanical bursting

measure Mb (Kim and Lim 2015b). In the case of burst

synchronization, bursting stripes appear successively in the

raster plot of burst onset times in the whole population. The

bursting measure M
ðbÞ
i of the ith bursting stripe is defined

by the product of the occupation degree O
ðbÞ
i of burst onset

times (representing the density of the ith bursting stripe)

and the pacing degree P
ðbÞ
i of burst onset times (denoting

the degree of phase coherence between burst onset times in

the ith bursting stripe):

M
ðbÞ
i ¼ O

ðbÞ
i � PðbÞ

i : ð11Þ

The occupation degree O
ðbÞ
i of burst onset times in the ith

bursting stripe is given by the fraction of bursting neurons:

O
ðbÞ
i ¼ N

ðbÞ
i

N
; ð12Þ

where N
ðbÞ
i is the number of bursting neurons in the ith

bursting stripe. In the case of full burst synchronization, all

bursting neurons exhibit burstings in each bursting stripe in

the raster plot of burst onset times, and hence the occu-

pation degree O
ðbÞ
i in each bursting stripe becomes 1. On

the other hand, in the case of sparse burst synchronization,

only some fraction of bursting neurons show burstings in

each bursting stripe, and hence the occupation degree O
ðbÞ
i

becomes less than 1. In our case of burst synchronization,

O
ðbÞ
i \1 in the range of J�l \J0\J�h , and hence sparse burst

synchronization occurs.

The pacing degree P
ðbÞ
i of burst onset times in the ith

bursting stripe can be determined in a statistical-mechani-

cal way by taking into account their contributions to the

macroscopic IWPBR RwðtÞ. Central maxima of RwðtÞ
between neighboring left and right minima of RwðtÞ coin-

cide with centers of bursting stripes in the raster plot. A

global cycle starts from a left minimum of RwðtÞ, passes a

maximum, and ends at a right minimum. An instantaneous

global phase UðbÞðtÞ of RwðtÞ was introduced via linear

interpolation in the region forming a global cycle [for more

details, refer to Eqs. (14) and (15) in (Kim and Lim

2015b)]. Then, the contribution of the kth microscopic

burst onset time in the ith bursting stripe occurring at the

time t
ðbÞ
k to RwðtÞ is given by cosUðbÞ

k , where UðbÞ
k is the

global phase at the kth burst onset time [i.e.,

UðbÞ
k � UðbÞðtðbÞk Þ]. A microscopic burst onset time makes

the most constructive (in-phase) contribution to RwðtÞ when

the corresponding global phase UðbÞ
k is 2pn

(n ¼ 0; 1; 2; . . .), while it makes the most destructive (anti-

phase) contribution to RwðtÞ when UðbÞ
k is 2pðn� 1=2Þ. By

averaging the contributions of all microscopic burst onset

times in the ith bursting stripe to RwðtÞ, we obtain the

pacing degree of burst onset times in the ith stripe:
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P
ðbÞ
i ¼ 1

Bi

XBi

k¼1

cosUðbÞ
k ; ð13Þ

where Bi is the total number of microscopic burst onset

times in the ith stripe. By averaging M
ðbÞ
i of Eq. (11) over a

sufficiently large number Nb of bursting stripes, we obtain

the realistic statistical-mechanical bursting measure Mb,

based on the IWPBR RwðtÞ:

Mb ¼
1

Nb

XNb

i¼1

M
ðbÞ
i : ð14Þ

We follow 3 � 103 bursting stripes in each realization and

get hMbir via average over 20 realizations.

Figure 7a–c show the average occupation degree

hhOðbÞ
i iir, the average pacing degree hhPðbÞ

i iir, and the

statistical-mechanical bursting measure hMbir, respec-

tively. In the case of 3-cluster burst synchronization in the

range of J�l ð’ 0:78Þ\J0\J�mð’ 5:2Þ, hhOðbÞ
i iir (denoting

the density of bursting stripes in the raster plot) is 1
3
,

because individual HR neurons exhibit burstings every 3rd

cycle of RwðtÞ. However, for J0 [ J�m, hhOðbÞ
i iir decreases

slowly to a limit value ð’ 0:217Þ, due to burst skippings

(e.g., see IBI histograms Fig. 6a1, a2). The average pacing

degree hhPðbÞ
i iir represents well the average degree of

phase coherence in bursting stripes in the raster plot of

burst onset times (e.g., see Figs. 4b2–b8, 6b1, b2). As J0 is

increased from J�l , hhPðbÞ
i iir increases rapidly to a maxi-

mum ð’ 0:591Þ for J0 ’ 4:0 (i.e., the degree of 3-cluster

burst synchronization increases rapidly after its appear-

ance). Then, for J0 [ 4 it decreases to zero at the higher

transition point J�hð’ 17:8Þ (i.e., decrease in hhPðbÞ
i iir

begins a little before break-up of 3-cluster burst synchro-

nization for J0 ¼ J�m, and then hhPðbÞ
i iir decreases smoothly

to zero, due to complete overlap of sparse bursting stripes).

Through averaging product of the occupation and the

pacing degrees of burst onset times over sufficiently large

number of bursting stripes in each realization, the statisti-

cal-mechanical bursting measure hMbir is obtained. Since

the variation in hhOðbÞ
i iir is small, hMbir behaves like the

case of hhPðbÞ
i iir. With increasing J0 from J�l , hMbir

increases rapidly to a maximum ð’ 0:197Þ for J0 ’ 4:0;

and then, for J0 [ 4 it decreases slowly to zero at the

higher transition point J�h

Effects of stochastic noise on cluster burst
synchronization

In this section, we study the effects of stochastic noise on

burst synchronization by changing the noise intensity D.

First, we obtain the state diagram in the J0 � D plane,

which is shown in Fig. 8. Four types of population states

exist. 3-cluster states appear in the gray region, denoted by

C, on the left side. Also, burst synchronization occurs in the

dark gray region, represented by BS, on the right side. In

the intersection region, shaded in black and denoted by

C � BS; between the cluster and the burst synchronization

regions, 3-cluster burst synchronization occurs. On the

other hand, in the remaining regions of the cluster and the

burst synchronization regions, cluster desynchronization

and non-cluster burst synchronization occurs, respectively;

these remaining regions are denoted by C � DS and NC �
BS; respectively. Outside these cluster and burst synchro-

nization regions, non-cluster desynchronization occurs in a

region denoted by NC � DS.

Next, we investigate the effects of noise on 3-cluster

burst synchronization and intercluster hoppings (studied in

the above section for D ¼ 0) by increasing the noise

intensity D along the 3 routes for J0 ¼3, 4.5, and 10,

(a)

(c)

(b)

Fig. 7 Characterization of burst synchronization. Plots of a the average occupation degree hhOðbÞ
i iir , b the average pacing degree hhPðbÞ

i iir , and c
the statistical-mechanical bursting measure hMbir versus the average coupling strength J0
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denoted by vertical arrows (I, II, and III) in the state

diagram of Fig. 8.

Effects of noise in the route I:
C - BS ! C -DS ! NC -DS

Figure 9 shows results on the noise effects in the 1st route I

for J0 ¼ 3. For D ¼ 0 a 3-cluster burst synchronization

(C � BS) occurs. As D is increased and passes a lower

threshold D�
l ð’ 0:093Þ, a transition to desynchronization

occurs, which may be described in terms of the bursting

order parameter Ob of Eq. (10). Figure 9a shows a plot of

log10hObir versus D. With increasing N, the bursting order

parameter hObir approaches a non-zero limit value for

0	D\D�
l , and hence burst synchronization occurs. On the

other hand, when passing D�
l a transition to desynchro-

nization occurs, because hObir tends to zero, as N is

increased. Consequently, for D[D�
l desynchronized states

appear due to a destructive role of noise to spoil the burst

synchronization.

This kind of transition from 3-cluster burst synchro-

nization to 3-cluster desynchronization (C � DS) may also

be well seen in the raster plots of burst onset times in the

whole population and in the Ith clusters ðI ¼1, 2, and 3).

Figure 9b1–b5 show such raster plots for D ¼0, 0.04, 0.06,

0.08, and 0.12, respectively. Their corresponding IWPBR

RwðtÞ and the ISPBR R
ðIÞ
s ðtÞ are also given in Fig. 9c1–c5

when D ¼0, 0.04, 0.06, 0.08, and 0.12, respectively. For

D ¼ 0, bursting stripes (representing burst synchroniza-

tion) appear successively in the raster plot in the whole

population (see the top panel of Fig. 9b1), and the corre-

sponding IWPBR RwðtÞ exhibits a slow-wave oscillation

with the whole-population frequency f
ðwÞ
b ð’ 5:2 Hz), as

shown in the top panel of Fig. 9c1. The whole population is

segregated into 3 clusters (I ¼1, 2, and 3), which is well

seen in the raster plots for the clusters (see the I ¼ 1, 2, and

3 panels in Fig. 9b1). We note that bursting stripes in each

cluster appear successively every 3rd cycle of RwðtÞ, and

the corresponding ISPBR R
ðIÞ
s ðtÞ exhibits a regular oscil-

lation with the sub-population frequency f
ðIÞ
b ð’ f

ðwÞ
b

3
Þ. In this

way, 3-cluster burst synchronization appears for D ¼ 0. In

this case, a single peak appears at 3TG [TGð’ 193:4 msec):

global period of RwðtÞ] in the IBI histogram, as shown in

Fig. 9f1.

As D is increased from 0, the 3-cluster burst synchro-

nization for D ¼ 0 persists, but its degree becomes more

and more worse due to a destructive role of noise to spoil

the burst synchronization. As shown in Fig. 9b2–b4, with

increasing D, bursting stripes in the whole population and

in each Ith (I ¼ 1, 2, and 3) cluster become smeared more

and more. Hence, amplitudes of RwðtÞ and R
ðIÞ
s ðtÞ also

decrease, as D is increased (see Fig. 9c2–c4). Peaks in the

IBI histograms also become broader (along with decrease

in their heights), with increasing D (see Fig. 9f2–f4).

Eventually, when passing a lower threshold

D�
l ð’ 0:093Þ, a transition to 3-cluster desynchronization

occurs. Consequently, desynchronized 3-cluster states

appear for D[D�
l . As an example, see the raster plots in

Fig. 9b5 and the IWPBR RwðtÞ and the ISPBR R
ðIÞ
s ðtÞ in

Fig. 9c5 for D ¼ 0:12. Burst onset times in the raster plot

in the whole population seem to be completely scattered,

and the corresponding IWPBR RwðtÞ is nearly stationary.

However, we note that, for D ¼ 0:12 bursting bands in the

raster plot in each cluster are preserved (i.e., 3-clusters are

preserved). For each cluster, burst onset times in each

bursting band are nearly completely scattered (i.e., nearly

desynchronized), and hence a square-wave-like oscillation

occurs in each ISPBR R
ðIÞ
s ðtÞ. During the ‘‘silent’’ part

(without burstings) for about 2P
3

, R
ðIÞ
s ðtÞ ¼ 0 (which corre-

sponds to the bottom part), while in the bursting band for

about P
3
, R

ðIÞ
s ðtÞ rapidly increases to the nearly flat top, and

then decreases rapidly; Pð’ 572:5 msec) corresponds to

the average period of the square-wave oscillation. Through

repetition of this process R
ðIÞ
s ðtÞ exhibits a square-wave-like

oscillation. In this case, the IBI histogram in Fig. 9f5

becomes broader in comparison with those in the cases of

burst synchronization, and its peak appears at Tpeak ’
572:5 msec (corresponding to the period P of the square-

wave oscillation).

To examine the square-wave-like behavior more clearly,

the number of HR neurons is increased from N ¼ 103 to

104. In this case, raster plots in the whole population and

the clusters and their corresponding IWPBR RwðtÞ and the

Fig. 8 State diagram in the J0 � D plane. Four types of population

states exist. 3-cluster burst synchronization occurs in the black region,

denoted by C � BS; while non-cluster burst synchronization occurs in

the dark gray region, represented by NC � BS: Cluster desynchro-

nization appears in the gray region, denoted by C � DS; while non-

cluster desynchronization appears in the remaining white region,

represented by NC � DS: Vertical arrows (I, II, and III) represent

routes for J0 ¼ 3, 4.5, and 10 where effects of stochastic noise are

studied
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(a)

(b1)

(c1) (c2) (c3) (c4) (c5)

(b2) (b3) (b4) (b5)

(d) (e) (f1)

(f5)

(f2) (f3) (f4)

(g)

(h1)

(i1) (i2) (i3)

(h2) (h3)

(j1)

(j2)

(j3)

Fig. 9 Noise effect in the 1st route for J0 ¼ 3. a Plots of

thermodynamic bursting order parameter hObir versus the noise

intensity D. b1–b5 Raster plots of burst onset times in the whole

population and in the I th cluster (I ¼ 1, 2, and 3) for various values

of D. c1–c5 IWPBRs RwðtÞ of the whole population and ISPBRs

RðIÞ
s ðtÞ of the Ith cluster (I ¼ 1; 2, and 3) for various values of D.

D ¼ 0:12 and N ¼ 104: d raster plots of burst onset times in the

whole population and in the I th cluster (I ¼ 1, 2, and 3) and e

IWPBR RwðtÞ of the whole population and ISPBRs RðIÞ
s ðtÞ of the Ith

cluster (I ¼ 1; 2, and 3). f1–f5 IBI histograms for various values of D.

Vertical dotted lines in (f1–f4) and in f5 denote integer multiples of

the global period TG of RwðtÞ and the cluster period Tc, respectively.

D ¼ 0:17: g delocalized IBI histogram for D ¼ 0:17, sequential long-

term raster plots of burst onset times in the whole population and in

the Ith cluster (I ¼1, 2, and 3) in h1 the early, h2 the intermediate,

and h3 the final stages, and IWPBR RwðtÞ of the whole population and

ISPBR RðIÞ
s ðtÞ of the Ith cluster (I ¼1, 2, and 3) in the i1 early, i2 the

intermediate, and i3 the final stages. Plots of j1 the average

occupation degree hhOðbÞ
i iir , j2 the average pacing degree hhPðbÞ

i iir ,
and j3 the statistical-mechanical bursting measure hMbir versus D
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(a1) (b1) (b2)(a2)

(c1)

(d1)

(e1)

(f1)

(i1) (i2) (i3)

(g) (h1)

(h2)(f2)

(e2) (e3)

(d2) (d3)

(c2) (c3) (c4) (c5)

Fig. 10 Noise effect in the 2nd route for J0 ¼ 4:5. Raster plots of burst

onset times in the whole population and in the Ith cluster (I ¼ 1, 2,

and 3) when D ¼ a1 0 and a2 0.04. IWPBR RwðtÞ of the whole

population and ISPBR RðIÞ
s ðtÞ of the Ith cluster (I ¼ 1; 2, and 3) for

D ¼ b1 0 and b2 0.04. c1–c5 IBI histograms for various values of D.

Vertical dotted lines in c1–c4 denote the integer multiples of the

global period TG of RwðtÞ. D ¼ 0:06: sequential long-term raster plots

of burst onset times for the whole population and the clusters in d1 the

early, d2 the intermediate, and d3 the final stages, and RwðtÞ of the

whole population and RðIÞ
s ðtÞ of the clusters in the e1 early, e2 the

intermediate, and e3 the final stages. D ¼ 0:09: f1 raster plot of burst

onset times in the whole population and f2 RwðtÞ of the whole

population. g Plots of thermodynamic bursting order parameter hObir
versus the noise intensity D. For D ¼ 0:13; h1 raster plot of burst

onset times in the whole population and h2 RwðtÞ of the whole

population. Plots of i1 the average occupation degree hhOðbÞ
i iir , i2 the

average pacing degree hhPðbÞ
i iir , and i3 the statistical-mechanical

bursting measure hMbir versus D
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ISPBR R
ðIÞ
s ðtÞ are shown in Fig. 9d, e, respectively. For the

whole population, burst onset times are more completely

scattered, and hence the corresponding IWPBR RwðtÞ is

more stationary. Moreover, for each cluster bursting bands

in the raster plot show clearly the clustering structure, and

hence the corresponding ISPBR R
ðIÞ
s ðtÞ shows square-wave

oscillations more clearly. Thus, for each cluster burst onset

times in bursting bands are completely scattered, and they

show a desynchronized state. In this way, 3-cluster

desynchronization appears, as D passes D�
l .

However, as D is further increased and passes a higher

threshold D�
hð’ 0:15Þ, clusters are broken up via inter-

cluster hoppings due to another destructive role of noise to

break up the clusters. Hence, for D[D�
h non-cluster

desynchronized states appear. As an example, we consider

the case of D ¼ 0:17. In this case, the IBI histogram is

shown in Fig. 9g. Its peak is located at Tpeakð’ 572.5

msec). We note that some fraction of IBIs with larger than

4Tc (Tc : cluster period corresponding to Tpeak=3) appear

(i.e., late burstings occur), as clearly shown in the inset of

Fig. 9g. Thus, delocalization of IBIs occurs by crossing the

right boundary (corresponding to 4Tc), which is in contrast

to all the cases of cluster burst synchronization where IBIs

are localized in a range of 2Tc\IBI\4Tc (see Fig. 9f1–

f5).

Due to appearance of delocalized IBIs larger than 4Tc
(i.e., because of occurrence of late burstings), forward

intercluster hoppings between the 3 clusters occur, which

leads to break-up of 3 clusters. Similar to the case of J0 ¼
0:13 in the absence of noise (D ¼ 0) (see Fig. 3b1–b3),

intercluster hoppings between the 3 clusters may be well

seen in sequential long-term raster plots of burst onset

times in the whole population and in the Ith (I ¼ 1, 2, and

3) clusters. Figure 9h1–h3 show such raster plots, corre-

sponding to (h1) the early, (h2) the intermediate, and (h3)

the final stages. As the time t is increased, forward inter-

cluster hoppings occur in a cyclic way [I ! I þ 1 ! I þ 2

! I] due to occurrence of late burstings. In the final stage

after a sufficiently long time, intercluster hoppings between

clusters are more and more intensified, which leads to

complete break-up of clusters. Consequently, burst onset

times in the raster plots are completely scattered in a nearly

uniform way, independently of I ¼ 1; 2, and 3, as shown in

Fig. 9h3. Figure 9i1–i3 also show the IWPBR RwðtÞ and

the ISPBR R
ðIÞ
s ðtÞ (I = 1, 2, and 3), corresponding to the

above raster plots in Fig. 9h1–h3. With increase in the time

t, the initial square-wave oscillations in R
ðIÞ
s ðtÞ are trans-

formed into nearly stationary ones, independently of I (see

the final stage in Fig. 9i3). Thus, non-cluster desynchro-

nized state appears for D ¼ 0:17.

Figure 9j1–j3 show the average occupation degree

hhOðbÞ
i iir of Eq. (12) (representing the average density of

bursting stripes), the average pacing degree hhPðbÞ
i iir of

Eq. (13) (denoting the average degree of phase coherence

in bursting stripes), and the statistical-mechanical bursting

measure hMbir of Eq. (14) (given by the product of occu-

pation and pacing degrees), respectively, in the range of

0	D\D�
l where 3-cluster burst synchronization occurs.

Obviously, hhOðbÞ
i iir ¼ 1

3
; because 3-clusters persist for

0	D\D�
l . Due to a destructive role of noise to spoil the

burst synchronization, as D is increased from 0 to D�
l ;

hhPðbÞ
i iir decreases smoothly from 0.581 to zero. Then, the

statistical-mechanical bursting measure hMbir also makes a

smooth decrease from 0.194 to 0, as in the case of hhPðbÞ
i iir,

because hhOðbÞ
i iir is constant.

Effects of noise in the route II:
C - BS ! NC -BS ! NC -DS

As J0 is increased and passes a threshold J��ð’ 3:7Þ, break-

up of clusters in the desynchronized states (e.g., the above

case of the route I case for J0 ¼ 3) no longer occurs.

Instead, before a transition to desynchronization, break-up

of clusters occurs in the burst-synchronized states. As an

example, see the route II for J0 ¼ 4:5 in Fig. 8. Figure 10

shows results on the noise effects in the 2nd route II for

J0 ¼ 4:5. With increasing D, noise first breaks up clusters,

and then a transition to desynchronization occurs due to

another destructive role of noise to spoil the burst syn-

chronization. Hence, the destructive roles of D is similar to

those of J0, shown in Fig. 5 in the absence of noise

(D ¼ 0).

As in the 1st route I for J0 ¼ 3, when D ¼ 0 appearance

of 3-cluster burst synchronization (C � BS) is well shown

in the raster plots in the whole population and the clusters

(I ¼ 1, 2, and 3) (see Fig. 10a1) and their corresponding

IWPBR RwðtÞ and the ISPBR R
ðIÞ
s ðtÞ (see Fig. 10b1). For

each cluster, bursting stripes appear every 3rd cycle of

RwðtÞ, which results in emergence of 3-cluster burst syn-

chronization. In this case, the IBI histogram has a single

peak at 3TG [TG : global period of RwðtÞ], as shown in

Fig. 10c1. As D is increased, bursting stripes in the raster

plots become smeared, due to a destructive role of noise to

spoil the burst synchronization, and hence amplitudes of

RwðtÞ and R
ðIÞ
s ðtÞ are decreased (e.g., see Figs. 10a2, b2 for

D ¼ 0:04). In this case, the IBI histogram has a broad

single peak with lower height at 3TG, as shown in

Fig. 10c2.

Eventually, as D passes a lower threshold D��
l ð’ 0:05Þ,

the IBI histogram begins to have a new minor peak at 4TG;
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in addition to the major peak at 3TG, as shown in Fig. 10c3

for D ¼ 0:06. Hence, individual HR neurons begin to

exhibit burstings intermittently at a 4th cycle of RwðtÞ via

burst skipping at its 3rd cycle. Due to occurrence of late

burstings via burst skippings, clusters become broken up

via forward intercluster hoppings, as in the case of Fig. 5

for J0 ¼ 10 in the absence of noise (D ¼ 0). As a result,

non-cluster burst synchronization (NC � BS) without

dynamical clusterings appears in the whole population. As

an example, we consider the case of D ¼ 0:06. Similar to

the case in Fig. 5c1–c3, d1–d3, intercluster hoppings for

D ¼ 0:06 are well seen in sequential long-term raster plots

of burst onset times in the whole population and in the Ith

(I ¼ 1, 2, and 3) clusters (see Fig. 10d1–d3) and in the

corresponding IWPBR RwðtÞ of the whole population and

the ISPBR R
ðIÞ
s ðtÞ of the clusters (see Figs. 10e1–e3). Here,

Fig. 10d1, e1, , d2, e2, d3, e3 show the initial, the

intermediate, and the final stages, respectively. With

increasing the stage, intercluster hoppings are more and

more intensified due to burst skippings, which results in

complete break-up of clusters. Thus, after a sufficiently

long time, raster plots in the clusters (I ¼ 1, 2, and 3) are

essentially the same, irrespectively of I. Although clusters

are broken up, bursting stripes persist, and hence burst

synchronization without dynamical clusterings occurs in

the whole population.

With increasing D from 0.06, the degree of burst syn-

chronization is decreased due to a destructive role of noise

to spoil the burst synchronization. In the IBI histogram for

D ¼ 0:09, the height of the peak at 3TG is decreased, while

the height of the peak at 4TG increases a little (see

Fig. 10c4). Thus, the IBI histogram becomes broader, and

burst skippings are enhanced. Consequently, intercluster

hoppings are more intensified. Figure 10f1, f2 show the

(a)

(b1) (b2) (b3) (b4)

(c1)

(d1)

(e1) (e2) (e3)

(d2) (d3) (d4)

(c2) (c3) (c4)

Fig. 11 Noise effect in the 3rd route for J0 ¼ 10. a Plots of

thermodynamic bursting order parameter hObir versus the noise

intensity D. IBI histograms for D ¼ b1 0, b2 0.05, b3 0.07, and b4 0.1.

Vertical dotted lines in (b1–b3) represent integer multiples of the

global period TG of RwðtÞ. Raster plots of burst onset times in the

whole population when D ¼ c1 0, c2 0.05, c3 0.07, and c4 0.1.

IWPBR kernel estimates RwðtÞ of the whole population for D ¼ d1 0,

d2 0.05, d3 0.07, and d4 0.1. Plots of e1 the average occupation

degree hhOðbÞ
i iir , e2 the average pacing degree hhPðbÞ

i iir , and e3 the

statistical-mechanical bursting measure hMbir versus D
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raster plot and the corresponding IWPBR RwðtÞ for

D ¼ 0:09, respectively. In comparison with the case of

D ¼ 0:06, bursting stripes are more smeared and ampli-

tudes of RwðtÞ are decreased. Eventually, when passing a

higher threshold D��
h ð’ 0:105Þ, a transition from non-

cluster burst synchronization to desynchronization

(NC � DS) occurs.

The bursting order parameter Ob of Eq. (10) may

describe well a transition from burst synchronization to

desynchronization. Figure 10g shows a plot of log10hObir
versus D. As N is increased, the bursting order parameter

hObir approaches a non-zero limit value for

0	D\D��
h ð’ 0:105Þ, and hence burst synchronization

occurs. In contrast, when passing D��
h a transition to

desynchronization occurs, because hObir tends to zero,

with increasing N. Consequently, for D[D��
h desynchro-

nized states appear due to a destructive role of noise to

spoil the burst synchronization. As an example of desyn-

chronized state, we consider the case of D ¼ 0:13. With

increasing D the two peaks in the IBI histogram for D ¼
0:09 are merged, and then it has a broad single maximum,

as shown in Fig. 10c5 for D ¼ 0:13. In this case, burst

onset times are completely scattered in the raster plot, and

the corresponding IWPBR RwðtÞ is nearly stationary (see

Figs. 10h1, h2).

Figure 10i1–i3 show the average occupation degree

hhOðbÞ
i iir (denoting the average density of bursting stripes),

the average pacing degree hhPðbÞ
i iir (representing the

average degree of phase coherence in bursting stripes), and

the statistical-mechanical bursting measure hMbir (given

by the product of occupation and pacing degrees),

respectively, in the range of 0	D\D��
h where burst syn-

chronization occurs. In the range of 0	D\D��
l , 3-cluster

burst synchronization appears, and hence hhOðbÞ
i iir ¼ 1

3
:

However, as a result of break-up of clusters, for D[D��
l ;

hhOðbÞ
i iir decreases slowly to a limit value (’ 0:291Þ for

D ¼ D��
h , due to bursting skippings. With increasing D

from 0 to D��
h ; bursting stripes become more and more

smeared due to a destructive role of noise to spoil the burst

synchronization, and eventually they become completely

overlapped for D ¼ D��
h . Hence, in the range of

0	D\D��
h , hhPðbÞ

i iir decreases smoothly from 0.587 to

zero. Then, through product of the occupation and pacing

degrees of burst onset times, the statistical-mechanical

bursting measure hMbir also makes a smooth decrease from

0.196 to 0, like the case of hhPðbÞ
i iir, because variations in

hhOðbÞ
i iir are small.

Effects of noise in the route III:
NC - BS ! NC -DS

Finally, we consider the route III for J0 ¼ 10 in Fig. 8.

Unlike the above cases of routes I and II, in the absence of

noise (D ¼ 0) clusters are broken up due to burst skippings,

and hence non-cluster burst synchronization (NC � BS)

without dynamical clusterings appears. In this case, we

investigate the noise effect on the non-cluster burst syn-

chronization by increasing D, and due to destructive roles

of noise, both intensified intercluster hoppings via burst

skippings and smearing of bursting stripes are thus found.

As shown in the above cases, a transition from burst

synchronization to desynchronization may be well descri-

bed in terms of the bursting order parameter Ob. Fig-

ure 11a shows a plot of log10hObir versus D. With

increasing N, the bursting order parameter hObir converges

to a non-zero limit value for 0	D\D���ð’ 0:082Þ. Con-

sequently, burst synchronization occurs. On the other hand,

when passing D��� a transition to desynchronization

occurs, because hObir tends to zero, as N is increased.

Accordingly, for D[D��� desynchronized states

(NC � DS) appear due to a destructive role of noise to spoil

the burst synchronization.

Figure 11b1–b4 show the IBI histograms for D ¼0,

0.05, 0.07, and 0.1, respectively. For D ¼ 0, a minor peak

appears at 4TG, in addition to the major peak at 3TG.

Hence, individual HR neurons exhibit burstings intermit-

tently at a 4th cycle of RwðtÞ via burst skipping at its 3rd

cycle. Due to this type of burst skippings, intercluster

hoppings occur between clusters, and the clusters become

broken up. Thus, for D ¼ 0 non-cluster burst synchro-

nization without dynamical clusterings appears, in contrast

to the above two cases.

With increasing D, the height of the peak at 4TG is

increased, while the height of the peak at 3TG decreases.

Furthermore, a small peak also appears at 5TG, as shown in

Fig. 11b2 for D ¼ 0:05. Hence, intercluster hoppings

become intensified due to enhanced burst skippings. With

further increase in D, these 3 peaks begin to show a ten-

dency of merging (e.g., see Fig. 11b3 for D ¼ 0:07). In the

desynchronized case of D ¼ 0:1, these peaks are com-

pletely merged, and then the IBI histogram has a broad

single peak.

Figure 11c1–c4 show raster plots for D ¼ 0, 0.05, 0.07,

and 0.1, respectively, and their corresponding IWPBR

RwðtÞ are also shown in Fig. 11d1–d4, respectively. As D is

increased from 0, bursting stripes in the raster plots become

more and more smeared, and amplitudes of RwðtÞ also are

decreased. Hence, with increasing D the degree of burst

synchronization becomes worse, due to a destructive role

of noise to spoil the burst synchronization.
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Figure 11e1–e3 show the average occupation degree

hhOðbÞ
i iir, the average pacing degree hhPðbÞ

i iir, and the

statistical-mechanical bursting measure hMbir respectively,

in the range of 0	D\D��� where burst synchronization

(without dynamical clusterings) occurs. As D is increased

from 0 to D���, burst skippings become intensified, and

hence hhOðbÞ
i iir decreases smoothly from 0.289 (for D ¼ 0)

to 0.241 (for D ¼ D���). With increasing D from 0 to D���;
bursting stripes become more and more smeared due to a

destructive role of noise to spoil the burst synchronization,

and eventually they become completely overlapped for

D ¼ D���. Hence, in the range of 0	D\D���, hhPðbÞ
i iir

decreases smoothly from 0.516 to zero. Then, through

product of the occupation and pacing degrees of burst onset

times, the statistical-mechanical bursting measure hMbir
also makes a smooth decrease from 0.149 to 0, as in the

case of hhPðbÞ
i iir, because variations in hhOðbÞ

i iir are small.

Summary and discussion

We investigated coupling-induced cluster burst synchro-

nization by changing the average coupling strength J0 in an

inhibitory Barabási-Albert SFN of HR bursting neurons.

For sufficiently small J0, non-cluster desynchronized states

exist. But, when passing a critical point J�c ð’ 0:16Þ, the

whole population has been found to be segregated into 3

clusters via a constructive role of synaptic inhibition to

stimulate dynamical clusterings between individual burst-

ings, and thus 3-cluster desynchronized states appear. Our

SFN has no internal symmetries, and hence occurrence of

clusters in our case has no relation with network topology,

in contrast to the case of occurrence of clusters in networks

with a certain degree of internal symmetries (Belykh and

Hasler 2011).

We also note that, in the presence of 3 clusters, IBIs of

individual HR neurons are localized in a region of

2Tc\IBI\4Tc [Tc : cluster period (i.e., average time

interval between appearance of successive clusters)]. Thus,

we suggest the following criterion, based on the IBI his-

togram, for emergence of 3-cluster state. The cluster period

Tc is given by Tpeak=3; the peak of the IBI histogram

appears at Tpeak. Localization of IBIs in a region of

2Tc\IBI\4Tc leads to occurrence of 3-cluster state. For

J0\J�c , delocalization of IBIs has been found to occur via

crossing the right and/or the left boundaries (corresponding

to 4Tc and 2Tc; respectively), and thus late and/or early

burstings appear. Through appearance of the late and/or

early burstings, forward and/or backward intercluster

hoppings have been found to occur, which leads to break-

up of the 3 clusters.

As J0 is further increased and passes a lower threshold

J�l ð’ 0:78), a transition to 3-cluster burst synchronization

has been found to occur due to another constructive role of

synaptic inhibition to favor population synchronization. In

each cluster, HR neurons make burstings every 3rd cycle of

the IWPBR RwðtÞ. Therefore, a single peak has been found

to appear at 3TG [TG : global period of RwðtÞ] in the IBI

histogram; in this case, TG ¼ Tc. Furthermore, these

burstings in each cluster have been found to exhibit burst

synchronization. In this way, 3-cluster burst synchroniza-

tion has been found to emerge. Burst synchronization in the

whole population may be well visualized in the raster plot

of burst onset times where bursting stripes appear in a

regular and successive way, and the corresponding IWPBR

RwðtÞ shows regular oscillations with the whole-population

bursting frequency f
ðwÞ
b . Moreover, cluster burst synchro-

nization may also be seen well in the raster plot of burst

onset times in each cluster, along with the corresponding

ISPBR R
ðIÞ
s ðtÞ ðI ¼1, 2, and 3) of the sub-populations.

Bursting stripes in each cluster appear every 3rd cycle of

RwðtÞ, and the corresponding ISPBR R
ðIÞ
s ðtÞ exhibits regular

oscillations with the sub-population bursting frequency

f
ðIÞ
b ð’ f

ðwÞ
b

3
Þ.

However, with increase in J0 and passing an interme-

diate threshold J�mð’ 5:2Þ, a new peak has been found to

appear at 4TG in the IBI histogram, in addition to the main

peak at 3TG. In this case, delocalization of IBIs occurs

through crossing the right boundary (corresponding to 4Tc),

and thus late burstings appear. Hence, HR neurons have

been found to exhibit intermittent forward hoppings

between the 3 clusters, since they intermittently fire

burstings at a 4th cycle of RwðtÞ due to burst skipping

rather than at its 3rd cycle. As a result of the intermittent

forward intercluster hoppings, the 3 clusters have been

found to be integrated into a single one, which was well

shown in sequential long-term raster plots of burst onset

times. Although the 3 clusters are broken up, burst syn-

chronization has been found to persist in the whole popu-

lation. As J0 is further increased, forward intercluster

hoppings have been found to be intensified due to enhanced

burst skippings (e.g., for J0 ¼ 15 a 3rd peak appears at 5TG
in the IBI histogram), and bursting stripes have also been

found to be smeared more and more because of a

destructive role of synaptic inhibition to spoil the burst

synchronization. Eventually, as a higher threshold J�hð’
17:8Þ is passed, a transition to desynchronization has been

found to occur. Then, burst onset times are completely

scattered in the raster plot due to complete overlap between

the bursting stripes, and the IWPBR RwðtÞ becomes nearly

stationary.
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We also give a brief summary on the mechanism for

cluster burst synchronization (explained above in details)

by focusing on the role of synaptic inhibition. As the

average coupling strength J0 passes a critical point J�c
ð’ 0:16Þ, a 3-cluster state appears due to a constructive

role of synaptic inhibition to stimulate dynamical cluster-

ing (i.e., segregation of the whole population into 3 clus-

ters) between individual burstings. In this case of 3-cluster

state, IBIs of individual HR neurons are localized in a

region between 2Tc and 4Tc (Tc : cluster period). However,

when passing an intermediate threshold value J�m ð’ 5:2),

the 3 clusters are integrated into a single one due to a

destructive role of synaptic inhibition to break up dynam-

ical clustering. In this case, delocalization of IBIs occurs

via crossing the right boundary (i.e., 4Tc), which leads to

intermittent hoppings between the 3 clusters. Conse-

quently, the 3-cluster state disappears. In this way, a 3-

cluster state exists in an intermediate range of synaptic

inhibition (i.e., J�c\J0\J�m) through competition between

constructive and destructive roles of synaptic inhibition.

Next, we consider appearance of burst synchronization.

When passing a lower threshold J�l (’ 0:78), burst syn-

chronization occurs due to a constructive role of synaptic

inhibition to stimulate coherence between individual

burstings (i.e., to favor population burst synchronization).

However, when a higher threshold J�h (’ 17:8), a desyn-

chronized state appears due to a destructive role of synaptic

inhibition to break up coherence between individual

burstings (i.e., to spoil burst synchronization). Thus, burst

synchronization appears in an intermediate range of

synaptic inhibition in an intermediate range of synaptic

inhibition (i.e., J�l \J0\J�h) through competition between

constructive and destructive roles of synaptic inhibition.

Particularly, in the overlapped interval of J�l \J0\J�m (i.e.,

the interval for D ¼ 0 in the region, denoted C � BS, in

Fig. 8), 3-cluster burst synchronization emerges (i.e., bust

synchronization in each cluster occurs).

We have also studied the effects of stochastic noise on

burst synchronization, and obtained a state diagram in the

J0 � D plane. By increasing the noise intensity D, we

investigated the noise effects along the 3 routes I, II, and

III for J0 ¼ 3, 4.5, and 10, respectively. For J�l \J0\J�m
(where 3-cluster burst synchronization occurs for D ¼ 0),

two cases have been found to appear; the 1st (2nd) case

occurs when J0\ð[ ÞJ��ð’ 3:7Þ. As the 1st example, we

considered the 1st route I for J0 ¼ 3. With increasing D,

bursting stripes become just smeared (without intercluster

hoppings) due to a destructive role of noise to spoil the

cluster burst synchronization. Eventually when passing a

lower threshold D�
l ð’ 0:093Þ, a transition from the 3-

cluster burst synchronization to desynchronization has been

found to occur via complete overlap between the bursting

stripes. As a result, desynchronized 3-cluster states appear

for D[D�
l . In the presence of 3 clusters, IBIs have been

found to be localized in a range of 2Tc\IBI\4Tc, inde-

pendently of whether they are synchronized or desyn-

chronized. However, as D is further increased and passes a

higher threshold D�
hð’ 0:15Þ, delocalization has been

found to occur via crossing the right boundary (corre-

sponding to 4Tc), and thus late burstings appear. Due to

appearance of such late burstings, forward intercluster

hoppings have been found to occur between the 3 clusters,

which results in break-up of the 3 clusters. As a result,

(non-cluster) desynchronized states without dynamical

clusterings appear for D[D�
h.

On the other hand, in the 2nd route II for J0 ¼ 4:5,

intercluster hoppings have been found to occur before

desynchronization when passing a lower threshold

D��
l ð’ 0:05Þ, in contrast to the case of the 1st route. For

D[D��
l , delocalization of IBIs has been found to occur

because the IBI histogram has a new minor peak at 4TG; in

addition to the major peak at 3TG. In this case, individual

HR neurons exhibit burstings intermittently at a 4th cycle

of RwðtÞ via burst skipping at its 3rd cycle. Due to occur-

rence of late burstings via burst skippings, clusters has been

found to become broken up via forward intercluster hop-

pings between the 3 clusters, as in the case of J0 ¼ 10 in

the absence of noise (D ¼ 0). As a result, non-cluster burst

synchronization without dynamical clusterings persists in

the whole population, in contrast to the above 1st example.

Then, a transition to (non-cluster) desynchronization has

also been found to occur when passing a higher threshold

D��
h ð’ 0:105Þ, due to a destructive role of noise to spoil the

burst synchronization. As a 3rd example, we considered the

3rd route III for J0 ¼ 10 (where (non-cluster) burst syn-

chronization without dynamical clusterings exists for

D ¼ 0). With increasing D from 0, both smearing and

intercluster hoppings have been found to be intensified due

to a destructive role of noise, and when passing a threshold

D���ð’ 0:082Þ, (non-cluster) desynchronized states have

been found to occur.

As shown in these 3 examples, the stochastic noise plays

destructive dual roles to spoil the burst synchronization and

to break up clusters. We also note that, in the present work

in a population of (self-firing) suprathreshold bursting

neurons, noise makes just destructive effects on population

states without showing any constructive role. These noise

effects in the suprathreshold case are in contrast to those in

previous works (Kim and Lim 2015a, 2018) on stochastic

burst synchronization (SBS) in a population of (non-self-

firing) subthreshold bursting neurons where SBS was found

to appear in an intermediate range of noise intensity via

competition between the constructive and the destructive

roles of noise.
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As a complex network, we also considered another

Watts-Strogatz small-world network of inhibitory HR

neurons (Watts and Strogatz 1998), and found emergence

of cluster burst synchronization, as in the case of SFN.

Hence, this kind of cluster burst synchronization seems to

occur, independently of network architecture. In addition to

the HR model of spike-driven burstings, we considered the

Plant model of slow-wave burstings (Plant 1981; Longtin

1997). In the SFN of inhibitory Plant neurons, 2-cluster

burst synchronization has also been found to occur. The

number of clusters varies depending on the type of indi-

vidual burstings. In the case of spike-driven burstings for

the HR neurons, rapid hyperpolarization follows the active

bursting phase of repetitive spikes (see Fig. 1c), and hence

nearly whole silent phase may become available for

burstings of HR neurons belonging to the other two clus-

ters. On the other hand, in the case of slow-wave burstings

for the Plant neurons, hyperpolarization occurs near the

middle of the silent phase [see Fig. 1(a) in (Longtin 1997)],

and thus burstings belonging to only one additional cluster

may occur during the silent phase. In this way, occurrence

of cluster burst synchronization in inhibitory networks

seems to be generic, independently of types of constituent

bursting neurons, although the number of clusters depend

on specific types of individual burstings. We also consid-

ered an SFN of excitatory HR neurons. In the case of

phase-attractive synaptic excitation, we found only full

synchronization (i.e., all bursting neurons exhibit burstings

in each bursting stripes) without any dynamical clusterings,

in contrast to the case of phase-repulsive synaptic inhibi-

tion which is an essential factor for emergence of clusters.

Finally, we make a brief discussion on biological

implications of cluster burst synchronization along with

suggestion of a future experimental research direction. As

is well known, burst synchronization is associated with

neural information processes in health and disease. For

example, large-scale burst synchronization emerges in the

sleep spindle, related to memory consolidation, in the

thalamus during the early stage of slow-wave sleep. Also,

burst synchronization appears in abnormal pathological

rhythms, associated with neural diseases (e.g., Parkinson’s

disease, essential tremor, and epileptic seizure). In addition

to burst synchronization, cluster synchronization (i.e., the

whole population is segregated into synchronous clusters)

has also been found in previous experimental, numerical or

theoretical works in diverse coupled oscillators. It is

expected that our results on cluster burst synchronization,

associated with the above neural information processes in

health and disease, would make some contributions for

understanding mechanisms of emergence and break-up of

cluster burst synchronization and effects of stochastic noise

on cluster burst synchronization. Moreover, we hope a

future experimental work to be performed in real neural

systems for confirmation of our above expectations.
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