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Abstract:

RNA silencing refers to gene silencing pathways mediated by small non-coding

RNAs, including microRNAs. Piwi-interacting RNAs (piRNAs) constitute the largest class of small
non-coding RN As in animal gonads, which repress transposons to protect the germline genome from
the selfish invasion of transposons. Deterioration of the system causes DNA damage, leading to
severe defects in gametogenesis and infertility. Studies using Drosophila ovaries show that piRNAs
originate from specific genomic loci, termed piRNA clusters, and that in piRNA biogenesis, cluster
transcripts are processed into mature piRNAs via three distinct pathways: initiator or responder for
ping-pong piRNAs and trailing for phased piRNAs. piRNAs then assemble with PIWI members of
the Argonaute family of proteins to form piRNA-induced RNA silencing complexes (piRISCs), the
core engine of the piRNA-mediated silencing pathway. Upon piRISC assembly, the PIWI member,
Piwi, is translocated to the nucleus and represses transposons co-transcriptionally by inducing local
heterochromatin formation at target transposon loci.

Keywords:

Introduction

Piwi-interacting RNAs (piRNAs) are a germ-
line-specific class of small regulatory RNAs that
repress transposons to maintain genome integri-
ty.)7% Transposons move around the host genome
through either copy-and-paste or cut-and-paste
mechanisms.”) When this happens in the germline,
it causes DNA damage, leading to defects in gameto-
genesis and infertility. Therefore, piRNA-mediated
transposon silencing is crucial for the succession of
life.})6)

piRNAs originate from intergenic loci known as
piRNA clusters that are rich in transposon rem-
nants.”? Therefore, piRNAs arising from the
clusters are able to act as antisense oligonucleotides
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to transposon transcripts.”™ piRNAs, however,
have no enzyme activity, and instead assemble into
piRNA-induced silencing complexes (piRISCs) with
PIWI proteins, germline-specific members of the
Argonaute family, to acquire silencing activity.'?)16)

piRISCs repress transposons co-transcriptionally
or post-transcriptionally.'” 2 In the co-transcrip-
tional silencing of transposons, piRISCs impact the
chromatin state, inducing heterochromatinization at
target loci.'® 20 Post-transcriptionally, transposon
transcripts are cleaved by the endonuclease (Slicer)
activity that PIWI possesses.'¥™%) The cleaved
products are then degraded in the cellular environ-
ment, resulting in transposon silencing that is similar
to that in the RNAi pathway. However, in the
piRNA pathway, PIWI cleavage products also serve
as precursors to produce new sets of piRNAs.”"1%) In
this regard, piRNA-mediated post-transcriptional
silencing can be considered an RNA recycling
mechanism.”%)

The piRNA pathway is highly conserved in
animals, but the underlying mechanism has been
most extensively studied in the Drosophila ovary.
Detailed analysis showed that the piRNA pathway in
ovarian germ cells and somatic cells is not identical
mechanistically.®'” For instance, the piRNA clus-
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ters used in the two cells are different; ovarian
somatic cells exclusively use so called uni-strand
clusters, whereas germ cells predominantly use
dual-strand clusters.” 1317 The number of PIWI
members expressed is also different; of three PTWI
members, Piwi is expressed in both cell types but
two others, Aubergine (Aub) and AGO3, are
specifically expressed in germ cells. In addition,
piRNA biogenesis factors sometimes show cell
specificity.)®1917)  Nonetheless, the biogenesis
products, namely piRNAs, are not easily distinguish-
able between germ cells and ovarian somatic cells;
piRNAs in both cells are in a similar size range, 23—30
nucleotides (nt) long, and are phosphorylated
and 2’-O-methylated at the 5" and 3’ ends, respec-
tively.?-21)-23)

In this review, we summarize the mechanisms
of the piRNA pathway in Drosophila ovarian germ
cells and somatic cells by discussing recent findings.
We divide the pathway into “piRNA biogenesis” and
“mode of action of piRNA-mediated silencing”.
piRNA biogenesis is further divided into three steps;
transcription of piRNA clusters, nuclear processing
of piRNA precursors, and piRNA maturation. The
piRNA amplification pathway, also known as the
ping-pong cycle, that operates in germ cells has well
been documented in previous reviews and so is only
briefly described in this review.

The piRNA pathway in ovarian germ cells

piRNA biogenesis: transcription of piRNA
clusters. The piRNA clusters used in ovarian germ
cells are predominantly dual-strand piRNA clus-
ters. )11 Well-known clusters are 42AB, 38C,
and 80F. The factor that specifies clusters is Piwi.
For cluster specification, Piwi deposits a repressive
histone mark, histone H3 lysine 9 trimethyl
(H3K9me3), on loci.?)

The dual-strand piRNA clusters lack their own
promoters.?)20)-28) However, transcription occurs in
both directions, as the name suggests, and starts
internally from the sites where RNA polymerase 11
(RNA Pol II) is positioned. Rhino (Rhi, also known as
HP1d), a paralog of heterochromatin protein, HP1a,
plays a crucial role in determining transcription
initiation sites by associating with H3K9me3.20)-2%)

Rhi then associates with two co-factors, Dead-
lock (Del) and Cutoff (Cuff), to assemble a trimeric
complex, termed the RDC.?®) Del in the complex
subsequently recruits Moonshiner (Moon), a paralog
of transcription factor TFIIA-L, its co-factor TFIIA-
S, and TRF2, a TATA box-binding protein-related
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Fig. 1. piRNA production from dual-strand piRNA clusters in

Drosophila germ cells. Rhi binds to H3K9me3 and forms the
RDC complex with Del and Cuff, which then recruits a basic
transcriptional factor consisting of Moon/TFIIA-S/TRF2 to
initiate transcription of the cluster. Cuff regulates processing of
the cluster transcripts by preventing splicing and termination
of the precursors. Nxf3-Nxt1 heterodimer, Boot, and TREX/
UAPS56 regulate export of the cluster transcripts.

transcription factor IID core variant, to drive RNA
Pol II-dependent transcription (Fig. 1).2) The tran-
scription start sites may be rich in pyrimidine/purine
(YR) dinucleotides. However, the high-ordered com-
plex can form anywhere on a cluster; therefore, the
RNA transcripts (i.e., piRNA precursors) vary in
length.?”) The RNA transcripts lack 3’-poly (A)
tailed, a unique feature of RNAs arising from dual-
strand clusters.??)

piRNA biogenesis: nuclear processing of
piRNA precursors.  Cuff belongs to the Rail/
DXO family, which is characterized by members
having a 5'-cap-binding pocket.?® Cuff is proposed
to bind the 5’-end of dual-strand cluster-originated
piRNA precursors for stabilization and splicing
inhibition (Fig. 1).2239732) In this context, UAP56,
a component of the TRanscription-EXport (TREX)
mRNA export complex,®) associates with Cuff to
encourage splicing inhibition.*® 3’-end processing by
the cleavage and polyadenylation specificity factor is
also blocked by Cuff.??) Therefore, piRNA precursors
are long, unspliced, and lack a poly(A) tail, thereby
raising the sequence diversity in piRNA pools. The
TREX complex binds piRNA precursors to export
them to the cytoplasm and to accumulate them in



34 K. SATO and M. C. StomI1

nuage, a perinuclear membrane-less organelle known
as the piRNA biogenesis center in germ cells.?¥)

Germ-specific nuclear RNA export factor 3
(Nxf3) and its partner Nxt1/pl5 also play important
roles in nuclear processing and the export of piRNA
precursors (Fig. 1).%”3% Nxf3 has an RNA-recogni-
tion motif and leucine-rich repeat (LRR) domain, an
NTF2-like domain, and a leucine-rich nuclear export
signal. Therefore, piRNA precursors bound to Nxf3-
Nxt1/pl5 are exported to the cytoplasm by Crml,
the nuclear export factor dedicated to leucine-rich
nuclear localization signal (NLS)-containing car-
g0s.%®) The nucleo-cytoplasmic shuttling property of
Nxf3 is used to ensure the translocation of piRNA
precursors from the transcription site to nuage.35)’36>
The Nxf3-Nxt1/pl5 heterodimer and the TREX
component, UAP56, are recruited to the transcrip-
tion sites on the clusters through physical interaction
between Del and Bootlegger (Boot).?)30)

piRNA biogenesis: piRNA maturation. In
germ cells, piRNA maturation occurs in nuage
through three pathways; the de novo biogenesis
pathway, the ping-pong cycle (i.e., piIRNA amplifi-
cation pathway), and phasing.”:8):17):37-39) The mo-
lecular mechanism underlying the de novo pathway
remains obscure. The ping-pong cycle mechanism has
been mainly studied using Drosophila ovaries and
cultured BmN4 cells, which are ovarian germ cells
originating from silkworm (Bombyzr mori) ova-
ries.*4) In BmN4 cells, two PIWI members, Siwi
and AGO3, are expressed, which are the homologs of
Aub and AGO3 in Drosophila, respectively. Because
of this, in this review, the ping-pong mechanism will
be described using “Aub” and “AGO3”, although some
findings were made in BmN4 cells.

The ping-pong pathway is initiated with Aub-
loaded piRNAs produced through the de novo path-
way. 194040 Because Aub-bound piRNAs are
predominantly antisense to transposon mRNAs,
Aub directs cleavage of transposon mRNAs and
splits them into two fragments. The DEAD-box RNA
helicase Vasa then displaces the products from Aub
and helps to load the 3’ fragment of the two frag-
ments onto AGO3.4Y*?) The 3’ end of the fragment is
then processed further by 3’-to-5" exoribonuclease to
produce a mature piRNA (Fig. 2).%37%) Subse-
quently, AGO3 directs cleavage of complementary
(antisense) transposon transcripts.”'?404) An as
yet unidentified Vasa-like DEAD-box RNA helicase
then loads the 3’ fragment of the two fragments
produced by AGO3 cleavage onto Aub, leading to
Aub-piRISC production. Aub and AGO3 then
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continue these reciprocal Slicer-dependent reactions,
to realize a constant production of piRNAs from
transposon transcripts.

The N-terminal regions of Aub and AGO3
contain symmetrical dimethylarginines (sDMAs).
The factor responsible for this post-translational
modification is the arginine methyltransferase
PRMTS5 (also known as Dart5 or Capsuléen).!6)-1%)
Aub and AGO3 sDMA modification is necessary
for piRNA production.*®*® A Tudor-domain pro-
tein, Krimper, exclusively associates with piRNA-free
AGO3 and promotes AGO3-sDMA modification and
AGO3-piRNA production.*? In parallel, AGO3
triggers phased piRNA production.?®)9)51:52) In this
pathway, the trailer sequences of AGO3 cleavage
products are processed by Zucchini (Zuc) and
assemble into piRISCs with Piwi (Fig. 2).%%):39:51)52)
Piwi may bind de novo piRNAs as Aub does but the
abundance of de novo piRNAs with Piwi is much
lower than that of phased piRNAs.”"%2) Zuc is an
endonuclease that localizes to the outer membrane of
mitochondria and defines both 5’ and 3’ ends of
phased piRNAs through the enzyme reaction noted
above.?8):39):53)54) On the mitochondrial surface, the
RNA helicase, Armi, relaxes piRNA precursors using
its ATP-dependent, RNA unwinding activity to
facilitate the Zuc reaction.’ %)

Mode of action of piRNA-mediated silenc-
ing. As noted above, Aub and AGO3 silence
transposons post-transcriptionally by cleaving trans-
poson transcripts in sense and antisense orientations,
respectively, in the ping-pong cycle. In this regard,
the ping-pong cycle is considered to be a coupled
event of piRNA biogenesis and transposon silenc-
ing.51>’52)

Piwi does not exhibit Slicer activity and
silences transposons co-transcriptionally in the nu-
cleus.18720)37) The nuclear localization of Piwi is
strictly regulated by its piRNA loading.?":%%):%%)
Studies on Piwi-piRISC-mediated co-transcriptional
silencing have been conducted using cultured ovarian
somatic cells (OSCs). Therefore, the details of this
silencing are described below in the section “The
piRNA pathway in ovarian somatic cells”.

The piRNA pathway in ovarian somatic cells

piRNA biogenesis: transcription of piRNA
clusters.  OSCs, both in ovaries and in culture,
rely on uni-strand piRNA clusters to produce
piRNAs.838) A representative cluster is flamenco
(flam).%) The uni-strand piRNA clusters such as
flam have their own promoters (Fig. 3).9?%-61) The
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piRNA biogenesis pathways in the Drosophila ovarian soma (left panel) and germ cell (right panel). In the soma, Yb assembles

Piwi/Armi/SoYb/Vret in a Yb body. Piwi and Armi then translocate onto mitochondria, where Zuc/Gasz/Daed process the Piwi-
bound piRNA production. In the germ cell, the ping-pong cycle operates in nuage. Upon slicing by Aub, piRNA precursors bound to
AGO3 are unwound by Vasa and then trimmed by Nuclease. Phased piRNA production is induced by the ping-pong cycle.

cluster bodies are rich in H3K9me3 but the promoter
regions are highly occupied by H3K4me2, a tran-
scription-competent histone mark that enables RNA
Pol II to transcribe the clusters.?»?0=2%) Rhi is not
expressed in OSCs and so does not contribute to
transcription initiation.?6)?”) Because Rhi is absent,
the dual-strand clusters might not be used in OSCs.
The flam promoter contains an initiator motif (Inr)
and a downstream promoter element (DPE) but
lacks a TATA-box (Fig. 3).)) The flam promoter
also harbors the binding site of Cubitus interruptus
(Ci), a Zn-finger family transcription factor. The Ci
binding region is —515 to —356 upstream of the
transcription start site.5")

Uni-strand clusters are transcribed in one fixed
direction. The direction of transcription opposes the
direction of transposon fragments inserted in the

clusters; thereby, mature piRNAs arising from the
transcripts are mostly antisense to transposon
mRNAs.

piRNA biogenesis: nuclear processing of
piRNA precursors. The RNA transcripts of uni-
strand piRNA clusters are 5’-capped and 3’-poly-
adenylated and undergo alternative splicing, similar
to canonical mMRNAs produced by RNA Pol 1LY The
first exon of flam transcripts is common to all splice
variants®"-62) but final spliced versions of flam RNAs
have not been comprehensively determined. The
mRNA export complex consisting of Nxfl/Tap and
Nxt1/pl5 then exports flam transcripts to the
cytoplasm and accumulates them in Flam bodies
(see below) (Fig. 3).9 Mago nashi (Mago) and
Tsunagi (Tsu/Y14) in the exon junction complex
(EJC), as well as the EJC accessory proteins, RNA-
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The flam promoter harbors an Inr-DPE motif and a Ci-binding
site. The flam transcripts are processed by 5'-capping, splicing,
and 3’-poly-A tailing. Nxf1-Nxt1 heterodimer, EJC, and UAP56
regulate export of the cluster transcripts.
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Fig. 4. Piwi-piRISCs trigger co-transcriptional gene silencing of
transposons. Piwi-piRISCs trigger formation of PPNP/PICTS/
SFINX consisting of Panx/Nxf2/Nxtl to recruit dSetdbl for
H3K9me3 deposition on targets. Gtsfl is involved in the
pathway. Mael blocks transcription in an H3K9me3-independent
manner. HP1la and H1 lead to heterochromatin formation.

binding protein S1 (RnpS1) and Acinus (Acn), are
required to release flam RNAs from the transcription
sites of flam. Depletion of the EJC factors; however,
has little effect on flam splicing and expression
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levels.?)61)-63) UAP56, an EJC interactor, is also
required for flam RNA export.5?)

piRNA biogenesis: piRNA maturation. flam
RNAs accumulate at cytoplasmic Flam bodies upon
export and serve as piRNA precursors for piRNA
maturation (Fig. 2).%6Y) The precursors are first
processed at Yb bodies into intermediates, whose
sizes are estimated to be 200-500nt. Yb bodies are
perinuclear membrane-less organelles located close
to Flam bodies (Fig. 3).5759)69) The piRNA factors
localized to Yb bodies include three Tudor domain-
containing proteins, female sterile (1) Yb (Yb),
Vreteno (Vret), and Sister of Yb (SoYb), and a
DEAD-box protein Armitage (Armi). Shutdown
(Shu), a co-chaperone associated with HSP83, might
also be localized to Yb bodies.?)58).65)-70)

Yb body assembly depends on the RNA-
binding activity and self-assembly of Yb
(Fig. 2).59):58)69-66)7) Yh has three functional do-
mains, Helicase-C (Hel-C), RNA helicase, and
extended Tudor (eTud) domains.™ The RNA-bind-
ing activity of Yb is conferred by the two C-terminal
domains, RNA helicase and eTud, while self-assem-
bly is conferred by the N-terminal Hel-C' domain.™
YD interacts with flam transcripts and other piRNA
sources, including genic piRNA precursors, through
cis-regulatory elements embedded in the RNAs.™)
Yb body assembly requires both protein—protein
(Yb-Yb) and protein—RNA (Yb-flam RNA) inter-
actions.? Furthermore, Yb bodies show sensitivity
to 1,6-hexandiol, a small compound that disrupts
intracellular structures formed through liquid—liquid
phase separation.”™ Thus, Yb bodies are considered
to be multivalent condensates produced through
liquid phase separation.”™

Armi is localized to Yb bodies by associating
with Yb.5:69.66) At Yb bodies, Armi binds flam
RNAs. Without Yb (i.e., without Yb bodies), Armi
can bind cellular RNAs in a random fashion in the
cytosol and produce piRNAs from bound RNAs.?):7)
This aberrant action greatly decreases the abundance
of transposon-repressing flam-piRNAs. As a result,
transposons are desilenced. Based on these findings,
Yb is considered to be the determiner of bona fide
piRNA precursors (as the trans-acting factor binding
to cis-elements) whereas Armi is the inducer of
piRNA production in OSCs.5®)-7):72)

Upon binding to flam-piRNA precursors at Yb
bodies, Armi then translocates to mitochondria,
where the RNAs are processed into mature piRNAs
(see below) (Fig. 2).%3)75%8):.5) During the inter-organ-
elle translocation, piRNA intermediates are also
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bound with Piwi.?¥ The departure of Armi from Yb
bodies depends on the Piwi-piRNA intermediate
complex.”” %) Of note, Yb body departure of the
Piwi-piRNA intermediate complex also depends on
Armi.’"*) This mutual dependency between Armi
and Piwi ensures piRNA maturation from flam
RNAs but not from other cellular RNAs (excluding
genic piRNA sources).57)*58)

Gasz, Minotaur (Mino), and Daedalus (Daed)
are piRNA factors localized on the outer surface of
mitochondria.” ™) Gasz and Daed interact with
each other and act as the platform for Zuc-dependent
piRNA maturation.” Armi, upon translocation from
Yb bodies with the Piwi-piRNA intermediate, binds
with mitochondrial Gasz and Daed, and unwinds the
piRNA intermediate to facilitate Zuc cleavage.™
Mino is a member of the glycerol-3-phosphate O-
acetyltransferase (GPAT) family but the GPAT
activity is dispensable for piRNA biogenesis. The
function of Mino in piRNA biogenesis per se remains
unknown.”™)

Zuc cleavage of piRNA intermediates gives
rise to phased piRNAs, which are loaded onto
Piwi.?®)3951:52) Recombinant Zuc showed no strong
sequence bias in RNA cleavage.?” However, Piwi-
bound phased piRNAs predominantly have uracil
(U) at the 5" end (1U).”*7) This could be because of a
property of Zuc to preferentially digest RNAs at U
and a property of Piwi to preferentially bind RNAs
harboring 1U.3%):39):72)

Mode of action of piRNA-mediated silenc-
ing. Piwi has a classical bipartite NLS at the N-
terminus. However, Piwi does not localize to the
nucleus before piRNA loading.*”%”59 This regu-
lation depends largely on a structural change to
Piwi; the NLS is not available for the import
factor, Importina, to bind unless both 5" and 3’
ends of a piRNA fit into the binding pockets of
Piwi, through the MID and PAZ domains, respec-
tively.??)

Upon translocation to the nucleus, Piwi-piRISCs
scan nascent transcripts in the nucleus, including
protein-coding mRNAs.” Upon encountering genu-
ine target transcripts, which depends on RNA—RNA
complementary between piRNAs and target RNAs,
Piwi induces co-transcriptional silencing of the target
genes (Fig. 4).”)™) Most transposons targeted by
Piwi are inserted in euchromatic regions and are,
therefore, transcriptionally active before silencing.'®)
Even upon silencing, continuous Piwi supply is
necessary to maintain the silenced status.'® This
means that even in conditions where Piwi represses
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transposons, weak transcription occurs from the
target loci.'®)

Piwi binding to target RNAs is sufficient to
induce transposon co-transcriptional silencing. The
trimeric complex composed of Panoramix/Silencio
(Panx), Nxf2, and Nxt1/p15, named PPNP, PICTS,
Pandas, or SFiNX,"?) should bind Piwi and target
RNAs simultaneously to enforce the Piwi-target
RNA binding, triggering co-transcriptional repres-
sion, prior to heterochromatin formation in the
nuclear piRNA pathway (Fig. 4).39%) Panx has
no known functional domains. Nxf2 has two LRR
regions, an NTF2-like domain, and a UBA domain at
the C-terminus.®”) Nxf2 within the complex interacts
directly with target RNA transcripts via the first
LRR.%

Asterix/Gametocyte-specific factor 1 (Gtsfl)
can also be found in the vicinity of PPNP.84:8%)
Gtsfl has two CHHC zinc finger motifs known to
function as RNA-binding modules.3¥#") Mutations
introduced in the CHHC motifs of Gtsfl abrogated
piRNA-mediated transposon silencing but not piR-
NA biogenesis.®¥*%) Thus, the RNA-binding activity
of Gtsf1 is essential in piRNA-mediated co-transcrip-
tional silencing although the function of the protein
remains elusive.

Piwi-piRISCs deposit H3K9me3 marks on target
loci by recruiting a H3K9 methyltransferase Eggless/
SETDBI (Egg) (Fig. 4).'87%) Egg is post-transla-
tionally monoubiquitinated in the nucleus, which is
required for its own catalytic activity and the
piRNA-mediated transposon repression.®9 %) Wind-
ei (Wde), the Drosophila homolog of mAM/MCAF1/
ATFTIP, recruits Egg to the chromatin at target
gene silencing loci.?987)%9) Bidirectional spreading of
H3K9me3 into neighboring genes involves Su(var)3-
9, one of two other histone methyltransferases in
Drosophila.™ The deposition of H3K9me3 marks
is followed by chromatin compaction involving
heterochromatin protein HPla and linker histone
H1.18).78),90)

Maelstrom (Mael) contains an HMG-box motif
and an MAEL domain, the latter of which is required
for Piwi-mediated co-transcriptional transposon si-
lencing (Fig. 4).°7*Y) The MAEL domain exhibits
endonuclease activity for single-stranded RNAs
in vitro.” Loss of Mael in OSCs increases RNA
Pol IT occupancy at target loci, leading to transposon
derepression; however, the level of H3K9me3 was
only mildly affected by the treatment'® and the
mechanism underlying this remains elusive. Notably,
recent studies show that Mael represses canonical,
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promoter-dependent transcription of transposons
inserted in dual-strand piRNA clusters.”? Mael may
help Rhi drive transcription of piRNA clusters by
preventing the production of mature transcripts from
transposons potentially encoding active transposable
proteins.??)

Perspectives

Since the discovery of piRNAs in the early 2000s,
they have been identified in both vertebrates and
invertebrates, and it is estimated that there are many
hundreds of thousands of different sequences; for
example, more than 13,000 and 50,000 unique piRNA
sequences have been discovered in fly and mouse,
respectively.) ™% The study of piRNA biology
essentially started in 2003'") and has since revealed
essential features, such as piRNA clusters, piRNA
biogenesis pathways, and silencing modes. Impor-
tantly, most piRNA factors and features for host
genome defense are evolutionally well conserved
between species. Understanding the modes of piRNA
actions has progressed greatly and has largely been
established from the findings of genetic and high-
performance computational experiments. However,
many underlying molecular mechanisms remain
elusive; e.g., How does Rhi recognize the dual strand
clusters? How does Piwi precisely find the target
transposons and repress transcription by RNA Pol 11
prior to heterochromatin formation? And more
importantly, a number of piRNA factor candidates
has been found by genetic screening,™9%9) but
their functions in piRNA pathways still remain
elusive. Therefore, biochemical dissection of the
piRNA pathways is crucial to gain mechanistic
insights into these mechanisms and to further
progress piRNA biology.
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