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Abstract
Computational formulations for large strain, polyconvex, nearly incompressible elasticity have been extensively studied,
but research on enhancing solution schemes that offer better tradeoffs between accuracy, robustness, and computational
efficiency remains to be highly relevant. In this paper, we present two methods to overcome locking phenomena, one based
on a displacement-pressure formulation using a stable finite element pairing with bubble functions, and another one using a
simple pressure-projection stabilized P1 −P1 finite element pair. A key advantage is the versatility of the proposed methods:
with minor adjustments they are applicable to all kinds of finite elements and generalize easily to transient dynamics. The
proposed methods are compared to and verified with standard benchmarks previously reported in the literature. Benchmark
results demonstrate that both approaches provide a robust and computationally efficient way of simulating nearly and fully
incompressible materials.

Keywords Incompressible elasticity · Large strain elasticity · Mixed finite elements · Piecewise linear interpolation ·
Transient dynamics

1 Introduction

Locking phenomena, caused by ill-conditioned global stiff-
nessmatrices in finite element analyses, are an often observed
and extensively studied issue when modeling nearly incom-
pressible, hyperelastic materials [10,18,46,84,87]. Typically,
methods based onLagrangemultipliers are applied to enforce
incompressibility. A common approach is the split of the
deformation gradient into a volumetric and an isochoric
part [38]. Here, locking commonly arises when unstable
standard displacement formulations are used that rely on lin-
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ear shape functions to approximate the displacement field u
and piecewise-constant finite elements combined with static
condensation of the hydrostatic pressure p, e.g., P1−P0 ele-
ments. It is well known that in such cases solution algorithms
may exhibit very low convergence rates and that variables of
interest such as stresses can be inaccurate [41].

From mathematical theory it is well known that approx-
imation spaces for the primal variable u and p have to be
well chosen to fulfill the Ladyzhenskaya–Babuŝka–Brezzi
(LBB) or inf–sup condition [9,19,26] to guarantee stabil-
ity. A classical stable approximation pair is the Taylor–
Hood element [78], however, this requires quadratic ansatz
functions for the displacement part. For certain types of
problems higher order interpolations can improve efficiency
as higher accuracy is already reached with coarser dis-
cretizations [25,57]. In many applications though, where
geometries are fitted to, e.g., capture fine structural fea-
tures, this is not beneficial due to a possible increase in
degrees of freedom and consequently a higher computational
burden. Also for coupled problems such as electromechan-
ical or fluid–structure–interaction models high-resolution
grids for mechanical problems are sometimes required when
interpolations between grids are not desired [5,51]. As a
remedy for these kind of applications quasi Taylor–Hood

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-019-01760-w&domain=pdf
http://orcid.org/0000-0001-6341-4014


194 Computational Mechanics (2020) 65:193–215

elements with an order of 3
2 have been considered, see [62],

as well as equal order linear pairs of ansatz functions
which has been a field of intensive research in the last
decades, see [6,48] and references therein. Unfortunately,
equal order pairings do not fulfill the LBB conditions and
hence a stabilization of the element is of crucial impor-
tance. There is a significant body of literature devoted to
stabilized finite elements for the Stokes and Navier–Stokes
equations. Many of those methods were extended to incom-
pressible elasticity, amongst other approaches by Hughes,
Franca, Balestra, and collaborators [39,47]. Masud and co-
authors followed an idea by means of variational multiscale
(VMS) methods [58–60,85], a technique that was recently
extended to dynamic problems (D-VMS) [66,71]. Further
stabilizations of equal order finite elements include orthog-
onal sub-scale methods [24,27,30,54] and methods based
on pressure projections [33,86]. Different classes of meth-
ods to avoid locking for nearly incompressible elasticity
were conceived by introducing nonconforming finite ele-
ments such as the Crouzeix–Raviart element [32,37] and
Discontinuous Galerkin methods [49,80]. Enhanced strain
formulations [64,79] have been considered as well as formu-
lations based onmulti-field variational principles [17,68,69].

In this study we introduce a novel variant of the MINI
element for accurately solving nearly and fully incompress-
ible elasticity problems. The MINI element was originally
established for computational fluid dynamics problems [3]
and pure tetrahedral meshes and previously used in the large
strain regime, e.g. in [25,56]. We extend the MINI element
definition for hexahedral meshes by introducing two bubble
functions in the element and provide a novel proof of stability
and well-posedness in the case of linear elasticity. The sup-
port of the bubble functions is restricted to the element and
can thus be eliminated from the systemusing static condensa-
tion. This also allows for a straightforward inclusion in com-
bination with existing finite element codes since all required
implementations are purely on the element level. Addition-
ally, we introduce a pressure-projection stabilization method
originally published for the Stokes equations [14,33] and pre-
viously used for large strain nearly incompressible elasticity
in the field of particle finite element methods and plastic-
ity [22,65]. Due to its simplicity, this type of stabilization is
especially attractive from an implementation point of view.

Robustness and performance of both the MINI ele-
ment and the pressure-projection approach are verified and
compared to standard benchmarks reported previously in lit-
erature. A key advantage of the proposed methods is their
high versatility: first, they are readily applicable to nearly
and fully incompressible solid mechanics; second, with little
adjustments the stabilization techniques can be applied to all
kinds of finite elements, in this study we investigate the per-
formance for hexahedral and tetrahedral meshes; and third,
the methods generalize easily to transient dynamics.

Real world applications often require highly-resolved
meshes and thus efficient and massively parallel solution
algorithms for the linearized system of equations become
an important factor to deal with the resulting compu-
tational load. We solve the arising saddle-point systems
by using a GMRES method with a block preconditioner
based on an algebraic multigrid (AMG) approach. Extend-
ing our previous implementations [5] we performed the
numerical simulations with the software Cardiac Arrhyth-
mia Research Package (CARP) [82] which relies on the MPI
based library PETSc [12] and the incorporated solver suite
hypre/BoomerAMG [43]. The combination of these advanced
solving algorithms with the proposed stable elements which
only rely on linear shape functions proves to be very efficient
and renders feasible simulations on grids with high structural
detail.

The paper is outlined as follows: Sect. 2 summarizes in
brief the background on themethods. In Sect. 3, we introduce
the finite element discretization and discuss stability. Subse-
quently, Sect. 4 documents benchmark problems where our
proposed elements are applied and compared to results pub-
lished in the literature. Finally, Sect. 5 concludes the paper
with a discussion of the results and a brief summary.

2 Continuummechanics

2.1 Nearly incompressible nonlinear elasticity

Let Ω0 ⊂ R
3 denote the reference configuration and let

Ωt ⊂ R
3 denote the current configuration of the domain of

interest. Assume that the boundary ofΩ0 is decomposed into
∂Ω0 = ΓD,0 ∪ ΓN,0 with |ΓD,0| > 0. Here, ΓD,0 describes
the Dirichlet part of the boundary and ΓN,0 describes the
Neumann part of the boundary, respectively. Further, let n0
be the unit outward normal on ∂Ω0. The nonlinear mapping
φ : X ∈ Ω0 → x ∈ Ωt , defined by φ := X + u(X, t), with
displacement u, maps points in the reference configuration
to points in the current configuration. Following standard
notation we introduce the deformation gradient F and the
Jacobian J as

F := Grad φ = I + Grad u, J := det(F),

and the left Cauchy–Green tensor as C := F�F. Here,
Grad(•) denotes the gradient with respect to the reference
coordinates X ∈ Ω0. The displacement field u is sought as
infimizer of the functional

Π tot(u) := Π(u) + Πext(u), Π(u) :=
∫

Ω0

Ψ (F(u)) dX,

Πext(u) := −ρ0

∫

Ω0

f(x) · u dX −
∫

ΓN,0

h(x) · u dsX, (1)
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over all admissible fields u with u = gD on ΓD,0, where, Ψ
denotes the strain energy function; ρ0 denotes the material
density in reference configuration; f denotes a volumetric
body force; gD denotes a given boundary displacement; and
h denotes a given surface traction. For ease of presentation it
is assumed that ρ0 is constant and f , gD, and h do not depend
on u. Existence of infimizers is, under suitable assumptions,
guaranteed by the pioneering works of Ball, see [13].

In this study we consider nearly incompressible materials,
meaning that J ≈ 1. A possibility to model this behavior
was originally proposed by Flory [38] using a split of the
deformation gradient F such that

F = FvolF. (2)

Here, Fvol describes thevolumetric changewhile F describes

the isochoric change. By setting Fvol := J
1
3 I and F :=

J− 1
3 F we get det(F) = 1 and det(Fvol) = J . Analo-

gously, by setting Cvol := J
2
3 I and C := J− 2

3 C , we have
C = CvolC . Assuming a hyperelastic material, the Flory
split also postulates an additive decomposition of the strain
energy function

Ψ = Ψ (C) = Ψ (C) + κU (J ), (3)

where κ is the bulk modulus. The function U (J ) acts as a
penalization of incompressibility and we require that it is
strictly convex and twice continuously differentiable. Addi-
tionally, a constitutive model forU (J ) should fulfill that (i) it
vanishes in the reference configuration and that (ii) an infinite
amount of energy is required to shrink the body to a point or
to expand it indefinitely, i.e.,

(i) U (1) = 0, (ii) lim
J→0+ U (J ) = ∞, lim

J→∞ U (J ) = ∞.

For the remainder of this work we will focus on functions
U (J ) that can be written as

U (J ) := 1

2
(Θ(J ))2.

In the literature many different choices for the functionΘ(J )

are proposed, see, e.g., [34,42,66] for examples and related
discussion.

Aswe alsowant to study the case of full incompressibility,
meaning κ → ∞, we need a reformulation of the system.
In this work we will use a perturbed Lagrange-multiplier
functional, see [4,21,77] for details, and we introduce

ΠPL(u, q) :=
∫

Ω0

Ψ (C(u)) + qΘ(J (u)) − 1

2κ
q2 dX.

Wewill nowseek infimizers (u, p) ∈ VgD×Q of themodified
functional

Π tot(u, q) := ΠPL(u, q) + Πext(u). (4)

To guarantee that the discretization of (4) is well defined, we
assume that

VgD = {v ∈ [H1(Ω0)]3 : v|ΓD,0 = gD},

with H1(Ω0) being the standard Sobolev space consisting of
all square integrable functions with square integrable gradi-
ent, and Q = L2(Ω0). Existence of infimizers in VgD cannot
be guaranteed in general. However, assuming suitable growth
conditions on the strain energy functionΨ , and assuming that
the initial data keeps the material in the hyperelastic range,
one can conclude that the space V for the infimizeru contains
VgD as a subset, see [13] for details.

To solve for the infimizers of (4) we require to compute
the variations of (4) with respect to Δu and Δp

DΔvΠ
PL(u, p) =

∫

Ω0

(Sisc + pSvol) : Σ(u,Δv) dX

− ρ0

∫

Ω0

f · Δv dX −
∫

ΓN,0

h · Δv dsX,

(5)

DΔqΠPL(u, p) =
∫

Ω0

(
Θ(J ) − 1

κ
p

)
Δq dX, (6)

with abbreviations as, e.g., in [45]

Sisc := J− 2
3 Dev(S), where S := ∂Ψ (C)

∂C
(7)

Svol := π(J )C−1, with π(J ) := JΘ ′(J ), (8)

Σ(u, v) := sym(F�(u)Grad v). (9)

Next, with notations

aisc(u;Δv) :=
∫

Ω0

Sisc(u) : Σ(u,Δv) dX, (10)

avol(u, p;Δv) :=
∫

Ω0

pSvol(u) : Σ(u,Δv) dX, (11)

bvol(u;Δq) :=
∫

Ω0

Θ(J (u))Δq dX, (12)

c(p,Δq) := 1

κ

∫

Ω0

pΔq dX, (13)
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lbody(Δv) := ρ0

∫

Ω0

f · Δv dX, (14)

lsurface(Δv) :=
∫

ΓN,0

h · Δv dsX, (15)

Rupper(u, p;Δv) := aisc(u;Δv) + avol(u, p;Δv)

− lbody(Δv) − lsurface(Δv), (16)

Rlower(u, p;Δq) := bvol(u;Δq) − c(p,Δq), (17)

we formulate the mixed boundary value problem of nearly
incompressible nonlinear elasticity via a nonlinear system of
equations. This yields a nonlinear saddle-point problem, find
(u, p) ∈ VgD × Q such that

Rupper(u, p;Δv) = 0, (18)

Rlower(u, p;Δq) = 0, (19)

for all (Δv,Δq) ∈ V0 × Q.

2.2 Consistent linearization

To solve the nonlinear variational Eqs. (18) and (19), with
a finite element approach we first apply a Newton–Raphson
scheme, for details we refer to [31]. Given a nonlinear and
continuously differentiable operator F : X → Y a solution
to F(x) = 0 can be approximated by

xk+1 = xk + Δx,

∂ F

∂x

∣∣∣∣
x=xk

Δx = −F(xk),

which is looped until convergence. In our case, we have

X = VgD × Q, Y = R
2,Δx = (Δu,Δp)�, xk = (uk, pk)

�
,

and F = (Rupper, Rlower)
�. We obtain the following linear

saddle-point problem for each (uk, pk) ∈ VgD × Q, find
(Δu,Δp) ∈ V0 × Q such that

ak(Δu,Δv) + bk(Δp,Δv) = −Rupper(uk, pk;Δv), (20)

bk(Δq,Δu) − c(Δp,Δq) = −Rlower(uk, pk;Δq), (21)

where

ak(Δu,Δv) :=
∫

Ω0

GradΔvStot,k : GradΔu dX

+
∫

Ω0

Σ(uk,Δv) : Ctot,k : Σ(uk,Δu) dX,

bk(Δp,Δv) :=
∫

Ω0

Δpπ(Jk)F
−�
k : GradΔv dX,

with abbreviations

Fk := F(uk),

Jk := det(Fk),

Stot,k := Sisc|u=uk
+ pk Svol|u=uk

, (22)

Ctot,k := Cisc|u=uk
+ pk Cvol|u=uk

,

Cvol := k(J )C−1 ⊗ C−1 − 2π(J )C−1 � C−1,

k(J ) := J 2Θ ′′(J ) + JΘ ′(J ), (23)

where Cisc is given in (57). The derivation of the consistent
linearization is lengthy but standard, we refer to [45, Chapter
8] for details. The definition of the higher order tensor and
other abbreviations are given in “Appendix”.

2.3 Review on solvability of the linearized problem

Since (20) and (21) is a linear saddle-point problem for each
given (uk, pk)we can rely on the well-established Babuška–
Brezzi theory, see [15,36,67,70]. The crucial properties to
guarantee that the problem (20) and (21) is well-posed are
continuity of all involved bilinear forms and the following
three conditions:

(i) The inf–sup condition: there exists c1 > 0 such that

inf
q∈Q

sup
v∈V0

bk(q, v)
‖v‖V0

‖q‖Q
≥ c1. (24)

(ii) The coercivity on the kernel condition: there exists c2 >

0 such that

ak(v, v) ≥ c2‖v‖2V0
for all v ∈ ker B, (25)

where

ker B := {v ∈ V0 : bk(q, v) = 0 for all q ∈ Q} .

(iii) Positivity of c: it holds

c(q, q) ≥ 0 for all q ∈ Q. (26)

Upon observing that F−� : Grad v = div v, see [45], we
rewrite the bilinear form bk(q, v) as

bk(q, v) =
∫

Ω0

qπ(Jk)F
−�
k : Grad v dX

=
∫

Ω0

qπ(Jk) div v dX

=
∫

Ωt

qΘ ′(Jk) div v dx. (27)
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Assuming thatΘ ′(J ) ≥ 1, we can conclude the inf–sup con-
dition from standard arguments, see [83, Section 5.2]. The
positivity of the bilinear form c is always fulfilled. However,
it is not possible to show the coercivity condition (25) for
a general hyperelastic material or load configuration. Nev-
ertheless, for some special cases it is possible to establish a
result. We refer to [7,8,83] for a more detailed discussion.
Henceforth, we will assume that our given input data is such
that we stay in the range of stability of the problem. Exam-
ples for cases in which bilinear form ak lacks coercivity can
be found in [83, Chapter 9] and [7, Section 4].

3 Finite element approximation and
stabilization

Let Th be a finite element partitioning ofΩ into subdomains,
in our case either tetrahedral or convex hexahedral elements.
The partitioning is assumed to fulfill standard regularity con-
ditions, see [29]. Let K̂ be the reference element, and for
K ∈ Th denote by FK the affine, or trilinear mapping from
K̂ onto K . We assume that FK is a bijection. For a tetrahedral
element K this can be assuredwhenever K is non-degenerate,
however, for hexahedral elements this may not necessary be
the case, see [53] for details. Further, let V̂ and Ŷ denote two
polynomial spaces defined over K̂ . We denote by

Vh,0 :=
{
v ∈ H1

0 (Ω0) : v = v̂ ◦ F−1
K , v̂ ∈ [V̂]3,∀K ∈ Th

}
,

(28)

Qh :=
{

q ∈ L2(Ω0) : p = p̂ ◦ F−1
K , p̂ ∈ Ŷ,∀K ∈ Th

}
,

(29)

Vh,gD := H1
gD(Ω0) ∩ Vh,0, (30)

the spaces needed for further analysis in the following sec-
tions.

3.1 Nearly incompressible linear elasticity

See [16,72,73].
As a model problem we study the well-known equations

for nearly incompressible linear elasticity. In this case it is
assumed that Ω := Ω0 ≈ Ωt . Then, the linear elasticity
problem reads: find (u, p) ∈ VgD × Q such that

2μ
∫

Ω

ε(u) : ε(v) dx +
∫

Ω

p div v dx =
∫

Ω

f · v dx (31)

∫

Ω

div uq dx − 1

λ

∫

Ω

pq dx = 0 (32)

for all (v, q) ∈ V0 × Q. Here, μ > 0 and λ denote the Lamé
parameters, and ε(v) := sym(grad v).

The regularity of (31) and (32) is a classical result [75] and
follows with the same arguments as for the Stokes equations.
The discretized analogue of (31) and (32) is: find (uh, ph) ∈
Vh,gD × Qh such that

2μ
∫

Ω

ε(uh) : ε(vh) dx +
∫

Ω

ph div vh dx =
∫

Ω

f · vh dx

(33)∫

Ω

div uhqh dx − 1

λ

∫

Ω

phqh dx = 0 (34)

for all (vh, qh) ∈ Vh,0 × Qh . Coercivity on the kernel
condition (25) is a standard result for the case of nearly
incompressible linear elasticity posed in the form (31)–(32)
and (33)–(34). In the nonlinear case this is not true in gen-
eral and will be addressed in Sect. 3.4. The crucial point for
checking well-posedness of the discrete Eqs. (33) and (34)
is the fulfillment of the discrete inf–sup condition, reading

inf
qh∈Qh

sup
vh∈Vh,0

∫
Ω

qh div vh dx

‖vh‖V0
‖qh‖Q

> 0. (35)

The discrete inf–sup condition puts constraints on the choice
of the spaces Vh,0 and Qh . A finite element pairing ful-
filling (35) is called a stable pair. A classic example for
tetrahedral meshes would be the Taylor–Hood element. In
this paper, we will focus on two different finite element pair-
ings, the MINI element and a stabilized equal order element.
The stabilized equal order pairing has been used in this con-
text for pure tetrahedral meshes, see [22,65]. To the best of
the authors knowledge those elements have not been used in
the present context for general tesselations.

3.2 The pressure-projection stabilized equal order
pair

In the following, we present a stabilized lowest equal order
finite element pairing, adapted to nonlinear elasticity from the
pairing originally introduced by Dohrmann and Bochev [14,
33] for the Stokes equations.

We choose V̂ and Ŷ in (28) and (29) as the space of lin-
ear (or trilinear) functions over K̂ . This choice of spaces is a
textbook example of an unstable element, however, follow-
ing [33], we can introduce a stabilized formulation of (33)
and (34) by: find (uh, ph) ∈ Vh,gD × Qh such that

μ

∫

Ω

ε(uh) : ε(vh) dx +
∫

Ω

ph div vh dx =
∫

Ω

f · vh dx,

(36)
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∫

Ω

div uhqh dx − 1

λ

∫

Ω

phqh dx

− 1

μ∗ sh(ph, qh) = 0, (37)

for all (vh, qh) ∈ Vh,0 × Qh , where

sh(ph, qh) :=
∫

Ω

(ph − Πh ph)(qh − Πhqh) dx (38)

and μ∗ > 0 a suitable parameter. We note that the integral in
(38) has to be understood as sum over integrals of elements
of the tessellation. The projection operator Πh is defined
element-wise for each K ∈ Th

Πh ph |K := 1

|K |
∫

K

ph dx.

We can state the following results for this discrete problem:

Theorem 1 There exists a unique bounded solution to the
discrete problem (36).

Theorem 2 Assume that u ∈ [H1
gD

(Ω)]3 ∩ [H2(Ω)]3 and

p ∈ L2(Ω) ∩ H1(Ω) solve the problem (31) and (32). Fur-
ther, assume that (uh, ph) are the solutions to the stabilized
problem (36). Then there exists a constant c3 independent of
the mesh size h and it holds:

‖u − uh‖V + ‖p − ph‖Q ≤ c3h(‖u‖H2(Ω) + ‖p‖H1(Ω))

(39)

Proof Due to the similarity of the linear elasticity and the
Stokes problem the proof follows from [14, Theorem 4.1,
Theorem 5.1 and Corollary 5.2]. ��

3.3 Discretization with MINI-elements

3.3.1 Tetrahedral elements

One of the earliest strategies in constructing a stable finite
element pairing for discrete saddle-point problems arising
from Stokes Equations is the MINI-Element, dating back to
the works of Brezzi et al., see for example [3,20]. In the case
of Stokes the velocity ansatz space is enriched by suitable
polynomial bubble functions. More precisely, if we denote
by P̂1 the space of polynomials with degree ≤ 1 over the
reference tetrahedron K̂ , we will choose

V̂ = P̂1 ⊕ {ψ̂B},
Ŷ = P̂1,

ψ̂B := 256ξ0ξ1ξ2(1 − ξ0 − ξ1 − ξ2),

where (ξ0, ξ1, ξ2) ∈ K̂ , see also [15]. Classical results [15]
guarantee the stability of the MINI-Element for tetrahedral
meshes. Due to compact support of the bubble functions,
static condensation can be applied to remove the interior
degrees of freedom during assembly. A short review on the
static condensation process is given in “Appendix”. Hence,
these degrees of freedom are not needed to be considered
in the full global stiffness matrix assembly which is a key
advantage of the MINI element.

3.3.2 Hexahedral meshes

In the literature mostly two dimensional quadrilateral tes-
sellations, see for example [11,15,55], were considered for
MINI element discretizations. In this case, the proof of stabil-
ity relies on the so-called macro-element technique proposed
by Stenberg [76].

To motivate our novel ansatz for hexahedral bubble func-
tions,wewill first give an overviewof Stenbergsmain results.
A macro-element M is a connected set of elements in Th .
Moreover, two macro-elements M1 and M2 are said to be
equivalent if and only if they can be mapped continuously
onto each other. Additionally, for a macro element M we
define the spaces

V 0,M :=
{
v ∈ [H1

0 (M)]3 : v = v̂ ◦ F−1
K ,

v̂ ∈ [V̂]3, K ⊂ M
}

,

PM :=
{

p ∈ L2(M) : p = p̂ ◦ F−1
K , p̂ ∈ Ŷ, K ⊂ M

}
,

NM :=
⎧⎨
⎩p ∈ PM :

∫

M

p div v dx = 0,∀v ∈ V 0,M

⎫⎬
⎭ .

(40)

Denote by Γh the set of all edges in Th interior to Ω . The
macro-element partitionMh ofΩ then consists of a (not nec-
essarily disjoint) partitioning into macro-elements {Mi }M

i=1

with Ω = ⋃M
i=1 Mi . The macro element technique is then

described by the following theorem, see [76].

Theorem 3 Suppose that there is a fixed set of equivalence
classes E j , j = 1, . . . , q, of macro-elements, a positive inte-
ger L, and a macro-element partition Mh such that

(M1) for each Mi ∈ E j , j = 1, . . . , q, the space NM is one-
dimensional consisting of functions that are constant
on M;

(M2) each M ∈ Mh belongs to one of the classes Ei , i =
1, 2, . . . , q;

(M3) each K ∈ Th is contained in at least one and not more
than L macro-elements of Mh.
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Fig. 1 Macro-element definition for a mesh point xi

(M4) each E ∈ Γh is contained in the interior of at least
one and not more than L macro-elements of Mh.

Then the discrete inf–sup-condition (35) holds.

Conditions (M2)–(M4) are valid for a quasi-uniform tessel-
lation of Ω into hexahedral elements and, thus, it remains
to show (M1). To this end, we consider a macro-element
Mi ∈ Mh consisting of eight hexahedrons that share a com-
mon vertex xi ∈ Ω , see Fig. 1. Amacro-element partitioning
of this type fulfills conditions (M1)–(M3) from Theorem 3.
We will next show, that Assumption (M1) depends on the
choice of the bubble functions inside every K ∈ Mi . For ease
of presentation and with no loss of generality we will assume
that Mi is a parallelepiped. This means that the mapping FMi

from K̂ onto Mi is affine, so there exists an invertible matrix
J i ∈ R

3×3 such that

x = FMi (ξ) = J iξ + x0,

where ξ ∈ K̂ = [−1, 1]3 and x0 is a given node of Mi . The
case of Mi not being the image of an affinemapping of K̂ can
be handled analogously, however, there are constraints on the
invertibility of FMi , see [53]. Let {ψ j }8j=1 denote the stan-
dard trilinear basis functions on the unit hexahedron. These
functions will serve as a basis for PMi . For the space V 0,Mi

wewill chose one piecewise continuous trilinear ansatz func-
tion defined in xi and for each sub-hexahedron we will add
two bubble functions as degrees of freedom. The distribution

Fig. 2 Macro-element distributionof degrees of freedomforvh ∈ V 0,M
and qh ∈ PM. Small filled dots correspond to PM and bigger opaque
circles correspond to V 0,M

of the degrees of freedom is depicted in Fig. 2. On K̂ we will
define the following two bubble functions

φ̂1
B := (1 − ξ0)

2(1 − ξ1)
2(1 − ξ2)

2ψ̂α, (41)

φ̂2
B := (1 − ξ0)

2(1 − ξ1)
2(1 − ξ2)

2ψ̂β, (42)

where the indicesα, β are chosen such that ψ̂α and ψ̂β are two
ansatz functions belonging to two diagonally opposite nodes.
Having this, wewill form a basis forV 0,Mi by gluing together
the images of the basis functions of each sub-hexahedron. So
we can write a basis for V 0,Mi as

V0,Mi := span{ψxi , φ
1
B,1, φ

1
B,2, . . . , φ

8
B,1, φ

8
B,2},

V 0,Mi := [V0,Mi ]3. (43)

Here, ψxi corresponds to a piecewise trilinear ansatz func-
tion that has unit value in xi and zero in all other nodes
of Mi . Thus, we can calculate that dim(PMi ) = 27 and
dim(V 0,Mi ) = 51. For ease of presentation we will rename
the elements of (43) as {φi }17i=1. Now, for qh ∈ PMi and
vh ∈ V 0,Mi we can write

∫

Mi

qh div vh dx =
17∑

k=1

27∑
l=1

3∑
j=1

v
j
k ql

∫

Mi

gradx φk[ j]ψl dx.
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Next, we use the chain rule to get gradx φk = J−�
i

ˆgradξ and
a change of variables to obtain

17∑
k=1

27∑
l=1

3∑
j=1

v
j
k ql

∫

Mi

gradx φk[ j]ψl dx,

=
17∑

k=1

27∑
l=1

3∑
j=1

v
j
k ql

∫

K̂

J−�
i

ˆgradξ φ̂k[ j]ψ̂ j |det J i |dξ .

This means we can find a matrix D̃ ∈ R
27×51 such that

∫

Mi

qh div vh dx = q� D̃v,

where q and v encode the nodal values of qh and vh . The
following ordering will be employed for v

v =
(
v11, v

2
1, v

3
1, . . . , v

1
17, v

2
17, v

3
17

)�
.

To proof (M1) we need to show that the rank of the matrix
D̃ is 26. Due to the invertibility of J i the rank of the matrix
D̃ will remain unchanged by replacing Mi by K̂ . Thus, it
suffices to compute the rank of the matrix D whose j th row
is defined by

⎛
⎜⎝

∫

K̂

∂ξ1φ1ψ1dξ ,

∫

K̂

∂ξ2φ1ψ1dξ ,

∫

K̂

∂ξ3φ1ψ1dξ ,

, . . . ,

∫

K̂

∂ξ1φ17ψ jdξ ,

∫

K̂

∂ξ2φ17ψ jdξ ,

∫

K̂

∂ξ3φ17ψ jdξ

⎞
⎟⎠ .

By this formula the matrix D can be explicitly calculated,
e.g., by using software packages like MathematicaTM and
further analyzed. We can conclude that the rank of D is 26
and thus (M1) holds and we can apply Theorem 3. A Math-
ematicaTM notebook containing computations discussed in
this section is available upon request.

Remark 1 Contrary to the two-dimensional case studied
in [11,55] it is not sufficient to enrich the standard isopara-
metric finite element space for hexahedrons with only one
bubble function. In this case both the spaces V 0,Mi and PMi

have a dimension of 27, however, matrix D has only rank 24.

Remark 2 Although not mentioned explicity, the stability of
the MINI element holds also for mixed discretizations.

3.4 Changes and limitations in the nonlinear case

One of the main differences between the linear and nonlinear
case stems from the definition of the pressure p as remarked
in [16]. Consider, as an example, the strain energy function
for a nearly incompressible neo-Hookean material where

Ψ (C) := μ

2

(
tr(C) − 3

)
,

with μ > 0 a material parameter. Then, Stot and Ctot, evalu-
ated at (uk, pk) = (0, 0), are given by

Stot = 0, Ctot = 2μI � I − 2μ

3
I ⊗ I,

independent of the choice of Θ(J ). Assuming that Ω :=
Ω0 ≈ Ωt we obtain from Eqs. (20) and (21) the following
linear system

2μ
∫

Ω

εd(u) : εd(v) dx +
∫

Ω

p div v dx =
∫

Ω

f · v dx, (44)

∫

Ω

div uq dx − 1

κ

∫

Ω

pq dx = 0, (45)

where εd(u) := ε(u) − 1
3div(u)I . While the pressure in

formulation (31) and (32) is usually denoted as Herrmann
pressure [44], above formulation (44) and (45) uses the so-
called hydrostatic pressure.

The arguments to prove the inf–suf condition for this lin-
ear problem remains the same as for (31) and (32). For the
extension of the inf–suf condition to the nonlinear case we
already stated earlier in Eq. (27) that

bk(qh, vh) =
∫

Ωt,h

qhΘ ′(Jh) div vh dx.

Here,Ωt,h is the approximation of the real current configura-
tionΩt .Our conjecture is that stability of the chosen elements
is given provided sufficient fine discretizations and volumet-
ric functions Θ(J ) fulfilling Θ ′(J ) ≥ 1. However, we can
not offer a rigorous proof of this, and rely on our numerical
results which showed no sign of numerical instabilities.

Concerning well-posedness of (44)–(45), it was noted
in [16], that the coercivity on the kernel condition (25) does
not hold in general, whichmakes the formulationwith hydro-
static pressure notwell-posed in general. However, it remains
well-posed for strictly divergence-free finite elements or pure
Dirichlet boundary conditions. This has also been observed
by other authors, see [52,81]. Even if the coercivity on the
kernel condition can be shown for the hydrostatic, nearly
incompressible linear elastic case this result may not transfer
to the nonlinear case.Here, this condition is highly dependent
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on the chosen nonlinear material law and for the presented
benchmark examples (Sect. 4)we did not observe any numer-
ical instabilities.

For an in-depth discussion we refer the interested reader
to [7,8]. A detailed discussion on Herrmann-type pressure in
the nonlinear case is presented in [72,73].

To show well-posedness for the special case of the pre-
sented MINI element discretizations we rely on results given
in [16, Section 4]. There it is shown, that discrete coercivity
on the kernel holds, provided that a rigid body mode is the
only function that renders

a(uh, vh) :=
∫

Ωh

εd(uh) : εd(vh) dx

from (44) to (45) zero. We could obtain this result following
the same procedure outlined in [16] for both hexahedral and
tetrahedralMINI elements.AMathematicaTM notebookcon-
taining the computations discussed is available upon request.

In the case of the pressure-projection stabilization we will
modify Eq. (17) using the stabilization term (38)

Rlower(uh, ph;Δqh) := bvol(uh;Δqh) − c(ph,Δqh)

− 1

μ∗ sh(ph, qh).

Here, the stabilization parameter μ∗ > 0 is supposed to
be large enough and will be specifically defined for each
nonlinear material considered. Note, that by modifying the
definition of the lower residual, we introduced amesh depen-
dent perturbation of the original residual. An estimate of the
consistency error caused by this is not readily available and
will be the topic of future research. However, results and
comparisons to benchmarks in Sect. 4 suggest that this error
is negligible for the considered problems as long as μ∗ is
well-chosen. If not specified otherwise we chose

– μ∗ = μ for neo-Hookean materials and
– μ∗ = c1 for Mooney–Rivlin materials

in the results section. For the pressure-projection stabilized
equal order pair we can not transfer the results from the
linear elastic case to the non-linear case, as the proof of well-
posedness relies on the coercivity of ak(u, v) which can not
be concluded for this formulation. However, no convergence
issues occured in the numerical examples given in Sect. 4.

The considerable advantage of the MINI element is that
there are no modifications needed and that no additional sta-
bilization parameters are introduced into the system.

3.5 Changes and limitations in the transient case

The equations presented in Sect. 2 are not yet suitable for
transient simulations. To include this feature we modify the
nonlinear variational problem (18) in the following way:

Rtrans
upper(u, p;Δv) := ρ0

∫

Ω0

ü · Δv dx + Rupper(u, p;Δv),

(46)

Rtrans
lower(u, p;Δq) := Rlower(u, p;Δq). (47)

For time discretization we considered a generalized-α
method, see [28] and also the “Appendix” for a short sum-
mary. Due to the selected formulation, the resulting ODE
system turns out to be of degenerate hyperbolic type. Hence,
we implemented a variant of the generalized-α method as
proposed in [50] andusing thatwedid not observe anynumer-
ical issues in our simulations. Note, that other groups have
proposed a different treatment of the incompressibility con-
straints in the case of transient problems, see [66,71] for
details.

4 Numerical examples

While benchmark cases presented in this section are fairly
simple,mechanical applications often require highly resolved
meshes. Thus, efficient and massively parallel solution algo-
rithms for the linearized system of equations become an
important factor to deal with the resulting computational
load. After discretization, at each Newton–Raphson step a
block system of the form

(
K h B�

h
Bh Ch

) (
Δu
Δp

)
=

(−Rupper

−Rlower

)

has to be solved. In that regard, we used a generalized
minimal residual method (GMRES) and efficient precon-
ditioning based on the PCFIELDSPLIT1 package from
the library PETSc [12] and the incorporated solver suite
hypre/BoomerAMG [43]. By extending our previouswork [5]
we implemented the methods in the finite element code Car-
diac Arrhythmia Research Package (CARP) [82].

4.1 Analytic solution

To verify our implementation we consider a very simple uni-
axial tension test, see also [83, Sec. 10.1]. The computational
domain is described by one eighth part of a cylinder with

1 https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/
PC/PCFIELDSPLIT.html.
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Fig. 3 Analytic solution: geometry and boundary conditions
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Fig. 4 Analytic solution: a y-component of displacement and b pres-
sure at point P = (2, 0, 1)�. Simulation results of all proposed
formulations are in perfect alignment with the analytic solution printed
in blue. (Color figure online)

length L = 2mm, and radius R = 1mm

Ωcyl,0 :=
{
x ∈ [0, L] × [0, R]2 : y2 + z2 ≤ R

}
,

Fig. 5 Block under compression: geometry and boundary conditions

Table 1 Properties of cube meshes used in Sect. 4.2

Hexahedral meshes Tetrahedral meshes

� Elements Nodes � Elements Nodes

1 512 729 1 3072 729

2 4096 4913 2 24, 576 4913

3 32,768 35,937 3 196,608 35,937

4 262,144 274,625 4 1,572,864 274,625

5 2,097,152 2,146,689 5 12,582,912 2,146,689

see Fig. 3. This cylinder is stretched to a length of L + ΔL ,
with ΔL = 2mm.

We chose a neo-Hookean material

Ψ (C) = μ

2

(
tr(C) − 3

) + κ

2
ln(J )2,

with μ = 7.14MPa and impose full incompressiblity, i.e.,
1/κ = 0. For this special case, an analytic solution can be
computed by

u = (t x,ΔR(t)y,ΔR(t)z),

p(t) = μ

3

((
1 + tΔL

L

)2

−
(
1 + tΔL

L

)−1
)

,

ΔR(t) =
(
1 + tΔL

L

)− 1
2 − 1,

where t ∈ [0, 1] corresponds to the load increment. Two
meshes consisting of 5420 points and 4617 hexahedral or
27,702 tetrahedral elements were used. We performed 20
incremental load steps with respect to ΔL . In Fig. 4 it is
shown that the results of the numerical simulations render
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(a) (b) (c) (d)

Fig. 6 Block under compression: deformed meshes of hexahedral (a, b) and tetrahedral (c, d) elements for the � = 2 mesh in Table 1 at load level
p = 320MPa (a, c) and load level p = 640MPa (b, d)
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Fig. 7 Block under compression: vertical displacement at point A ver-
sus number of degrees of freedom in a logarithmic scale at load level a
p0 = 320MPa and b p0 = 640MPa. Results for theMINI element and
the pressure-projection stabilization are compared to classical choices
of elements, i.e., Q1 − P0 hexahedral elements, P1 − P0 tetrahedral
elements, and Taylor–Hood (P2 − P1) tetrahedral elements. For case b
the choice of Q1 − P0 and P1 − P0 elements did not give reasonable
results and were thus omitted

identical results for all the chosen setups and are in perfect
agreement with the exact solution plotted in blue.

4.2 Block under compression

The computational domain, studied by multiple authors, see,
e.g., [23,58,63], consists of a cube loaded by an applied pres-

Table 2 Block under compression: comparison of computational times
for different discretizations. Timings were obtained using (a) 48cores
and (b) 192cores onARCHER, UK. Coarser grids, see Table 1, are used
for Taylor–Hood elements P2 −P1 to compare computational times for
a similar number of degrees of freedom (DOF)

Discretization Grid DOF (Mio.) Tet. (s) Hex. (s)

(a)

Projection � = 4 1.098 330 438

MINI � = 4 1.098 873 655

P2 − P1 � = 3 0.860 1202 –

(b)

Projection � = 5 8.587 2488 2192

MINI � = 5 8.587 3505 4640

P2 − P1 � = 4 6.715 27,154 –

sure in the center of the top face; see Fig. 5. A quarter of the
cube is modeled, where symmetric Dirichlet boundary con-
ditions are applied to the vertical faces and the top face is
fixed in the horizontal plane.

The same neo-Hookean material model as in [58] is used:

Ψ (C) = 1

2
μ (tr(C) − 3) − μ ln J + λ

2
(ln J )2,

with material parameters λ = 400,889.806MPa, μ =
80.194MPa. To test mesh convergence the simulations were
computed on a series of uniformly refined tetrahedral and
hexahedralmeshes, see Table 1. Figure 6 shows the deformed
meshes for the level � = 2 with loads p0 = 320MPa
and p0 = 640MPa, respectively. In all cases discussed in
this section we used 10 loading steps to arrive at the tar-
get pressure p0. As a measure of the compression level the
vertical displacement of the node at the center of the top
surface, i.e. the edge point A of the quarter of the cube,
is plotted in Fig. 7. Small discrepancies can be attributed
to differences in the meshes for tetrahedral and hexahedral
grids, however, the different stabilization techniques yield
almost the same results for finer grids. Note, that the dis-
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(a.1) (b.1) (c.1) (d.1)

(a.2) (b.2) (c.2) (d.2)

Fig. 8 Block under compression: comparison of hexahedral (a, b) and tetrahedral (c, d) elements with bubble-based (a, c) and projection-based (b,
d) stabilization. Shown is the pressure contour on the deformed mesh at load level p = 320MPa in the first row and p = 640MPa in the second
row

placements at the edge point A obtained using the simple
Q1 − P0 hexahedral and P1 − P0 tetrahedral elements seem
to be in a similar range compared to the other approaches.
The overall displacement field, however, was totally inaccu-
rate rendering Q1 − P0 and P1 − P0 elements an inadequate
choice for this benchmark problem. The solution for Taylor–
Hood (P2 − P1) tetrahedral elements was obtained using
the FEniCS project [2]. Here, as a linear solver, we used
a GMRES solver with preconditioning similar to the MINI
and projection-based approach, see first paragraph of Sect. 4.
ThePCFIELDSPLIT and hypre/BoomerAMG settingswere
slightly adapted to optimize computational performance for
quadratic ansatz functions. We comparing simulations with
about the same number of degrees of freedom, not accu-
racy as, e.g., in [25]. For coarser grids computational times
were in the same time range for all approaches; see, e.g.,
the cases with approximately 106 degrees of freedom and
target pressure of p0 = 320mmHg in Table 2(a). For
the simulations with the finest grids with approximately
107 degrees of freedom, however, we could not find a set-
ting for the Taylor–Hood elements that was competitive
to MINI and pressure-projection stabilizations. The com-
putational times to arrive at the target pressure of p0 =
320mmHg using 192 cores on ARCHER, UK were about
10 times higher for Taylor–Hood elements using FEniCS,
see Table 2(b). We attribute that to a higher communication
load and higher memory requirements of the Taylor–Hood
elements: memory to store the block stiffness matrices was

approximately 2.5 times higher for Taylor–Hood elements
compared to MINI and projection-stabilization approaches
(measured using the MatGetInfo2 function provided by
PETSc). Note, that although we used the same linear solvers,
the time comparisons are not totally just as results were
obtained using two different finite element solvers, CARP
and FEniCS. Note also, that timings are usually very problem
dependent and for this block under compression benchmark
high accuracy was already achieved with coarse grids for
hexahedral and Taylor–Hood discretizations.

For a further analysis regarding computational costs of the
MINI element and the pressure-projection stabilization, see
Sect. 4.4.

In Fig. 8 the hydrostatic pressure is plotted for the MINI
element and the projection-based stabilization. These results
are very smooth in all cases and agree well with those pub-
lished in [23,35,58,63].

4.3 Cook-type cantilever problem

In this section, we analyze the same Cook-type cantilever
beam problem presented in [17,69], see also Fig. 9. Dis-
placements at the plane x = 0mm are fixed. At the plane
x = 48mm a parabolic load, which takes its maximum at
t0 = 300 kPa, is applied. Note, that this in-plane shear force

2 https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/
Mat/MatGetInfo.html.
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Fig. 9 Cook-type cantilever problem: geometry and boundary condi-
tions

Table 3 Properties of cantilever meshes used in Sect. 4.3

Hexahedral meshes Tetrahedral meshes

� Elements Nodes � Elements Nodes

1 324 500 1 1944 500

2 2592 3249 2 15, 552 3249

3 20,736 23,273 3 124,416 23,273

4 165,888 175,857 4 995,328 175,857

in y-direction is considered as a dead load in the deforma-
tion process. To compare to results in [69] the same isotropic
strain energy function was chosen

Ψ iso(C) = c1(tr C)2 + c2((tr C)2 − tr(C2))
2 − γ ln(J ),

with material properties c1 = 21 kPa, c2 = 42 kPa, and γ =
12c1+24c2 to satisfy the condition of a stress-free reference
geometry.

We chose a fully incompressible material, hence,

Ψ vol(C) = κ

2
(J − 1)2,

with 1/κ = 0. First, mesh convergence with respect
to resulting displacements is analyzed for the tetrahedral
and hexahedral meshes with discretization details given in
Table 3.
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Fig. 10 Cook-type cantilever problem: displacements ux , uy , and uz at
point C versus the number of degrees of freedom in a logarithmic scale
using the fully incompressible formulation

Displacements ux , uy , and uz at point C are shown in
Fig. 10. The proposed stabilization techniques give compa-
rable displacements in all three directions and also match
results published in [17,69]. Mesh convergence can also be
observed for the stresses σxx at point A and B and σyy at
point B, see Fig. 11. Again, results match well those pre-
sented in [17,69]. Small discrepancies can be attributed to
the fully incompressible formulation used in our work and
differences in grid construction.
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Fig. 11 Cook-type cantilever problem: stresses σxx at (left) point A
and (middle) point B and σyy at (right) point B versus the number of
degrees of freedom in a logarithmic scale using the fully incompressible
formulation

In Figs. 12 and 13a the distribution of J = det(F)

is shown to provide an estimate of how accurately the
incompressibility constraint is fulfilled by the proposed sta-
bilization techniques. For most parts of the computational
domains the values of J are close to 1, however, hexahedral
meshes and here in particular the MINI element maintain the
condition of J ≈ 1 more accurately on the element level.
Note, that for all discretizations the overall volume of the
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Fig. 12 Cook-type cantilever problem: boxplots showing the distri-
bution of J = det(F) for a hexahedral and b tetrahedral elements.
Additionally, the minimal and maximal value, as well as the mean (μ)
and the standard deviation (σ ) is given for each setting

cantilever remained unchanged at 14,400mm3, rendering the
material fully incompressible on the domain level.

Figure 13 gives a comparison of several computed values
in the deformed configuration of Cook’s cantilever for the
finest grids (� = 4). Slight pressure oscillations in Fig. 13b
on the domain boundary for the MINI element are to be
expected, see [74]; this also affects the distribution of J in
Fig. 13a. A similar checkerboard pattern is present for the
projection based stabilization.

In the third row of Fig. 13 we compare the stresses σxx for
the different stabilization techniques. We can observe slight
oscillations for the the projection-based approach, whereas
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(a.1) (b.1) (c.1) (d.1)

(a.3) (b.3) (c.3) (d.3)

(a.2) (b.2) (c.2) (d.2)

Fig. 13 Cook-type cantilever problem: comparison of hexahedral (a, c)
and tetrahedral (b, d) elements with bubble-based (a, b) and projection-
based (c, d) stabilization. Shown is the distribution of J = det(F) (first

row); distribution of the hydrostatic pressure p (second row) in kPa;
and the distribution of the stress σxx (third row) in kPa for the fully
incompressible formulation
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Fig. 14 Twisting column test: geometry and boundary conditions

the MINI element gives a smoother solution. Compared to
results in [69, Figure 10] the σxx stresses have a similar con-
tour but are slightly higher. As before, we attribute that to the
fully incompressible formulation in our paper compared to
the quasi-incompressible formulation in [69].

4.4 Twisting column test

Finally, we show the applicability of our stabilization tech-
niques for the transient problem of a twisting column [1,
40,71]. The initial configuration of the geometry is depicted
in Fig. 14. There is no load prescribed and the column is
restrained against motion at its base. A twisting motion is
applied to the domain by means of the following initial con-
dition on the velocity

v(x, 0) = v(x, y, z, 0) = 100 sin
(π y

12

)
(z, 0,−x)� m/s,

for y ∈ [0, 6] m. To avoid symmetries in the problem the
column is rotated about the z-axes by an angle of θ = 5.2◦.

We chose the neo-Hookean strain-energy

Ψ (C) = μ

2

(
tr(C) − 3

) + κ

2
(J − 1)2,

with parameters μ = 5704.7 kPa and κ = 283,333 kPa
for the nearly incompressible and 1/κ = 0 for the truly
incompressible case. For the results presented, we consid-
ered hexahedral and tetrahedral meshes with five levels of
refinement, respectively; for discretization details of the col-
umn meshes see Table 4. In Fig. 15, mesh convergence
with respect to tip displacement (ux , uy, uz) at point D is

Table 4 Properties of column meshes used in Sect. 4.4

Hexahedral meshes Tetrahedral meshes

� Elements Nodes � Elements Nodes

1 48 117 1 240 117

2 384 625 2 1920 625

3 3072 3969 3 15,360 3969

4 24,576 28,033 4 122,880 28,033

5 196,608 210,177 5 983,040 210,177

analyzed. While differences at lower levels of refinement
� = 1, 2 are severe, the displacements converge for higher
levels of refinement � = 3, 4, 5. For finer grids the curves
for tetrahedral and hexahedral elements are almost indis-
tinguishable, see also Fig. 16, and the results are in good
agreement with those presented in [71]. While this figure
was produced using MINI elements we also observed a sim-
ilar behavior of mesh convergence for the projection-based
stabilization. In fact, for the finest grid, all the proposed sta-
bilization techniques and elements gave virtually identical
results, see Fig. 16. Further, as already observed by Scovazzi
et al. [71], the fully and nearly incompressible formulations
gave almost identical deformations, see Fig. 17.

In Fig. 18 stress σyy and pressure p contours are plotted
on the deformed configuration for the incompressible case
at time instant t = 0.3 s. Minor pressure oscillations can be
observed for tetrahedral elements. Again, results match well
those presented in [71, Figure 22].

Finally, in Fig. 19, we compare the magnitude of velocity
and acceleration at time instant t = 0.3 s. Results for these
variables are very smooth and hardly distinguishable for all
the different approaches.

The computational costs for this nonlinear elasticity prob-
lem were significant due to the required solution of a
saddle-point problem in each Newton step and a large num-
ber of time steps. However, this challenge can be addressed
by using a massively parallel iterative solving method and
exploiting potential of modern HPC hardware. The most
expensive simulations were the fully incompressible cases
for the finest grids with a total of 840,708 degrees of freedom
and 400 time steps. These computations were executed at
the national HPC computing facility ARCHER in the United
Kingdom using 96cores. Computational times were as fol-
lows: 239min for tetrahedral meshes and projection-based
stabilization; 283min for tetrahedral meshes and MINI ele-
ments; 449min for hexahedral meshes and projection-based
stabilization; and 752.5min for hexahedralmeshes andMINI
elements. Simulation times for nearly incompressible prob-
lems were lower, ranging from 177 to 492min. This is due to
the additionalmatrix on the lower-right side of the block stiff-
nessmatrixwhich led to a smaller number of linear iterations.

123



Computational Mechanics (2020) 65:193–215 209

(a)

0.0 0.1 0.2 0.3 0.4
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

x-
di

sp
la

ce
m

en
t

at
tip

D
[m

]

= 1
= 2
= 3
= 4
= 5

0.0 0.1 0.2 0.3 0.4
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y-
di

sp
la

ce
m

en
t

at
tip

D
[m

]

= 1
= 2
= 3
= 4
= 5

0.0 0.1 0.2 0.3 0.4
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

z-
di

sp
la

ce
m

en
t

at
tip

D
[m

]

= 1
= 2
= 3
= 4
= 5

(b)

0.0 0.1 0.2 0.3 0.4
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

x-
di

sp
la

ce
m

en
t

at
tip

D
[m

]

= 1
= 2
= 3
= 4
= 5

0.0 0.1 0.2 0.3 0.4
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y-
di

sp
la

ce
m

en
t

at
tip

D
[m

]

= 1
= 2
= 3
= 4
= 5

0.0 0.1 0.2 0.3 0.4
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

z-
di

sp
la

ce
m

en
t

at
tip

D
[m

]

= 1
= 2
= 3
= 4
= 5

Fig. 15 Twisting column test: mesh convergence for a hexahedral and
b tetrahedral elements. Shown are displacements ux , uy , and uz at tip
D versus time. For experiments depicted the incompressible formu-

lation with MINI elements was chosen. At finer levels of refinement
� = 3, 4, 5 (in black) results converge to a solution for each displace-
ment direction
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Fig. 16 Twisting column test: comparison of stabilization techniques
for the finest grids (� = 5). Shown are displacements ux , uy , and uz
at tip D versus time. Both MINI elements (dashed line) and projection-

based stabilization (dashed lines) render almost identical results for
hexahedral (in gray) and tetrahedral elements (in black)
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Fig. 17 Twisting column test: comparison of nearly and fully incompressible formulation for the finest tetrahedral grids (� = 5) andMINI elements.
Displacements ux , uy , and uz are almost identical for the whole simulation duration of 0.4 s
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(a.1) (b.1) (c.1) (d.1) (a.2) (b.2) (c.2) (d.2)

Fig. 18 Twisting column test: a stress σyy and b hydrostatic pressure p contours at time instant t = 0.3 s for the different grids and stabilization
techniques

(a.1) (b.1) (c.1) (d.1) (a.2) (b.2) (c.2) (d.2)

Fig. 19 Twisting column test: magnitude of a velocity v and b acceleration a at time instant t = 0.3 s for the different grids and stabilization
techniques

Simulations with hexahedral meshes were, in general, com-
putationally more expensive compared to simulations with
tetrahedral grids; the reason beingmainly a higher number of
linear iterations. Computational burden for MINI elements
was larger due to higher matrix assembly times. However,
this assembly time is highly scalable as there is almost no
communication cost involved in this process.

5 Conclusion

In this study we described methodology for modeling nearly
and fully incompressible solid mechanics for a large variety
of different scenarios. A stable MINI element was presented
which can serve as an excellent choice for applied problems

where the use of higher order element types is not desired,
e.g., due to fitting accuracy of the problem domain. We
also proposed an easily implementable and computation-
ally cheap technique based on a local pressure projection.
Both approaches can be applied to stationary as well as tran-
sient problems without modifications and perform excellent
with both hexahedral and tetrahedral grids. Both approaches
allow a straightforward inclusion in combination with exist-
ing finite element codes since all required implementations
are purely on the element level and are well-suited for simple
single-core simulations as well as HPC computing. Numer-
ical results demonstrate the robustness of the formulations,
exhibiting a great accuracy for selected benchmark problems
from the literature.
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While the proposed projection method works well for rel-
atively stiff materials as considered in this paper, the setting
of the parameterμ∗ has to be adjusted for soft materials such
as biological tissues. A further limitation is that both formu-
lations render the need of solving a block system, which is
computationally more demanding and suitable precondition-
ing is not trivial. However, theMINI element approach can be
used without further tweaking of artificial stabilization coef-
ficients and preliminary results suggested robustness, even
for very soft materials. Consistent linearization as presented
ensures that quadratic convergence of the Newton–Raphson
algorithmwas achieved for all the problems considered. Note
that all computations for forming the tangent matrices and
also the right hand side residual vectors are kept local to each
element. This benefits scaling properties of parallel codes
and also enables seamless implementation in standard finite
element software.

The excellent performance of themethods alongwith their
high versatility ensure that this framework serves as a solid
platform for simulating nearly and fully incompressible phe-
nomena in stationary and transient solid mechanics. In future
studies, we plan to extend the formulation to anisotropic
materials with stiff fibers as they appear for example in the
simulation of cardiac tissue and arterial walls.
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Appendix

Generalized-˛ time integration

After spatial discretization of (46) and (47) we get the fol-
lowing degenerate hyperbolic system

ρ0Mh ü(t) + Ch u̇(t) + Rupper(u(t),p(t)) = 0,

Rlower(u(t),p(t)) = 0,

u(0) = u0,

u̇(0) = u0,

where Mh denotes the mass matrix; Ch denotes an optional
damping matrix; ü(t) denote the unknown nodal accel-
erations; u̇(t) denote the unknown nodal velocities; u(t)
denote the unknown nodal displacements; and p(t) denote
the unknown nodal pressure values. We will use the modi-
fied generalized-α method proposed in [50]. To this end we
introduce the auxiliary velocity v = u̇. Then, applying the
standard generalized-α integrator from [28] we obtain

Mh u̇n+αm − Mhvn+αf = 0, (48)

ρ0Mh v̇n+αm + Chvn+αf + Rn+αf
upper = 0, (49)

Rn+αf
lower = 0, (50)

where

Rn+αf
upper := αfRupper(un+1,pn+1),

+ (1 − αf)Rupper(un,pn),

Rn+αf
lower := αfRlower(un+1,pn+1),

+ (1 − αf)Rlower(dn,pn),

and

u̇n+αm := αmu̇n+1 + (1 − αm)u̇n, (51)

v̇n+αm := αmv̇n+1 + (1 − αm)v̇n, (52)

vn+αf := αfvn+1 + (1 − αf) vn . (53)

Moreover, we employ Newmark’s approximations, [61],

u̇n+1 = 1

γΔt
(un+1 − un) + γ − 1

γ
u̇n, (54)

vn+1 = 1

γΔt
(vn+1 − vn) + γ − 1

γ
v̇n (55)

Using (48) we observe

u̇n+αm = vn+αf

and combining this with (49)–(55) we conclude

vn+1 = αm

αfγΔt
(un+1 − un) + γ − αm

γαf
u̇n + αf − 1

αf
vn,

v̇n+1 = αm

αfγ 2Δt2
(un+1 − un) − 1

αfγΔt
vn + γ − 1

γ
v̇n

+ γ − αm

αfγ 2Δt
u̇n .

Thus, a dependence of vn+1 and v̇n+1 on un+1 can be estab-
lished. Having this the unknown values un+1,pn+1 can be
computed with the Newton–Raphson method. Based on [50]
we set the parameters depending only on ρ∞ ∈ [0, 1) by

αf := 1

1 + ρ∞
,
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αm := 3 − ρ∞
2(1 + ρ∞)

,

γ := 1

2
+ αm − αf .

In all our simulations we used a value of ρ∞ = 0.5.

Remark on the implementation of the
pressure-projection stabilized equal order pair

Considering the bilinear form sh(ph, qh) defined in (38) we
can rewrite this with a simple calculation into

sh(ph, qh) :=
nel∑
l=1

⎛
⎜⎝

∫

Kl

phqh dx − 1

|τl |
∫

Kl

ph dx
∫

Kl

qh dx

⎞
⎟⎠ .

Denoting by {φi }n
i=1 the chosen ansatz functions the element

contribution for an arbitrary element K to the matrix Ch is
given by

∫

K

φiφ j dx − 1

|K |
∫

K

φi dx
∫

K

φ j dx.

This corresponds to an elementmassmatrixminus a rank-one
correction.

Static condensation

For completeness we provide a summary for the static con-
densation used for the MINI element. Consider a finite
element K ∈ Th with a local ordering of the unknowns u

u =
(

u1
x , u1

y, u1
z , . . . , undofsN

x , undofsN
y , undofsN

z ,

u1
x,B, u1

y,B, u1
z,B, . . . , undofsB

x,B , undofsB
y,B , undofsB

z,B

)

and p as

p =
(

p1, p2, . . . , pndofsN
)

.

Here, ndofsN corresponds to the nodal degrees of freedomper
element and ndofsB to the bubble degrees of freedom (one for
tetrahedral elements and two for hexahedral elements). Then
the element contribution to the global saddle-point system
can be written as

⎛
⎜⎜⎝
KNN KNB B�

N

KBN KBB B�
B

BN BB CN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ΔuN

ΔuB

Δp

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−Rupper
N

−Rupper
B

−Rlower
N

⎞
⎟⎟⎠ .

The bubble part of the stiffnessmatrix, KBB is local to the ele-
ment and can be directly inverted. This gives the condensed
system

(
K eff BT

eff
Beff Ceff

) (
ΔuN
Δp

)
=

(−Rupper
eff

−Rlower
eff

)
,

where the effective matrices and vectors are given as

K eff := KNN − KNBK
−1
BBKBN

Beff := BN − BBK
−1
BBKBN,

Ceff := CN − BBK
−1
BBB

�
B ,

Rupper
eff := Rupper

N − KNBK
−1
BBR

upper
B ,

Rlower
eff := Rlower

N − BBK
−1
BBR

upper
B .

The effectivematrices and vectors can then be assembled in a
standard way into the global system. The bubble update con-
tributions can be calculated onceΔuN andΔpN are know as

ΔuB = −K−1
BB

(
Rupper
B + KBNΔuN + B�

BΔpN
)

.

Tensor calculus

We use the following results from tensor calculus, for more
details we refer to, e.g., [45,84].

∂C
∂C

= J− 2
3P = J− 2

3

(
I − 1

3
C−1 ⊗ C

)
,

∂C−1

∂C
= −C−1 � C−1,

(A � A)i jkl := 1

2

(
Aik A jl + Ail A jk

)
.

For symmetric A it holds

P : A = Dev(A) = A − 1

3
(A : C)C−1.

The isochoric part of the secondPiola–Kirchhoff stress tensor
as well as the isochoric part of the fourth order elasticity
tensor are given as

Sisc := 2
∂Ψ (C)

∂C
= J− 2

3 Dev(S),

S := 2
∂Ψ (C)

∂C
, (56)

Cisc := 4
Ψ (C)

∂C∂C

= J− 4
3PCP

� + J− 2
3
2

3
tr(CS)̃P

− 4

3
Sisc

S⊗ C−1,

123



Computational Mechanics (2020) 65:193–215 213

C := 4
∂Ψ (C)

∂C∂C
,

P̃ := C−1 � C−1 − 1

3
C−1 ⊗ C−1,

A
S⊗ B := 1

2
(A ⊗ B + B ⊗ A) . (57)
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