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Purpose. Establishing prognostic gene signature to predict clinical outcomes and guide individualized adjuvant therapy is
necessary. Here, we aim to establish the prognostic efficacy of a gene signature that is closely related to tumor immune mi-
croenvironment (TIME). Methods and Results. There are 13,035 gene expression profiles from 130 tumor samples of the non-small
cell lung cancer (NSCLC) in the data set GSE103584. A 5-gene signature was identified by using univariate survival analysis and
Least Absolute Shrinkage and Selection Operator (LASSO) to build risk models. Then, we used the CIBERSORT method to
quantify the relative levels of different immune cell types in complex gene expression mixtures. It was found that the ratio of
dendritic cells (DCs) activated and mast cells (MCs) resting in the low-risk group was higher than that in the high-risk group, and
the difference was statistically significant (P <0.001 and P = 0.03). Pathway enrichment results which were obtained by per-
forming Gene Set Variation Analysis (GSVA) showed that the high-risk group identified by the 5-gene signature had metastatic-
related gene expression, resulting in lower survival rates. Kaplan-Meier survival results showed that patients of the high-risk
group had shorter disease-free survival (DFS) and overall survival (OS) than those of the low-risk group in the training set
(P =0.0012 and P <0.001). The sensitivity and specificity of the gene signature were better and more sensitive to prognosis than
TNM (tumor/lymph node/metastasis) staging, in spite of being not statistically significant (P = 0.154). Furthermore,
Kaplan-Meier survival showed that patients of the high-risk group had shorter OS and PFS than those of the low-risk group
(P =0.0035, P<0.001, and P < 0.001) in the validating set (GSE31210, GSE41271, and TCGA). At last, univariate and multivariate
Cox proportional hazard regression analyses were used to evaluate independent prognostic factors associated with survival, and
the gene signature, lymphovascular invasion, pleural invasion, chemotherapy, and radiation were employed as covariates. The 5-
gene signature was identified as an independent predictor of patient survival in the presence of clinical parameters in univariate
and multivariate analyses (P < 0.001) (hazard ratio (HR): 3.93, 95% confidence interval CI (2.17-7.1), P = 0.001, (HR) 5.18, 95% CI
(2.6995-9.945), P <0.001), respectively. Our 5-gene signature was also related to EGFR mutations (P = 0.0111), and EGFR
mutations were mainly enriched in low-risk group, indicating that EGFR mutations affect the survival rate of patients. Conclusion.
The 5-gene signature is a powerful and independent predictor that could predict the prognosis of NSCLC patients. In addition, our
gene signature is correlated with TIME parameters, such as DCs activated and MCs resting. Our findings suggest that the 5-gene
signature closely related to TIME could predict the prognosis of NSCLC patients and provide some reference for immunotherapy.
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1. Introduction

Lung cancer remains the leading cause of cancer morbidity
and mortality, with 2.1 million new lung cancer cases and
1.8 million deaths expected in 2018 [1]. NSCLC accounts
for up to 85% of all lung cancers and mainly comprises
adenocarcinoma (65%) and squamous cell carcinoma
(30%) histologies [2]. In the past few years, although
molecular diagnostics and new treatments (targeted
therapy, immunotherapy, etc.) have made much progress
and the 5-year survival rate of most patients has increased
slightly, the overall prospects have not been very large
(3, 4].

The current TNM staging system is the best predictor
of prognosis and the standard for guiding NSCLC treat-
ment decisions [5]. However, due to the heterogeneity of
the tumor itself and the complexity of the pathogenesis,
even patients with the same TNM stage and treatment may
exhibit various clinical outcomes [6]. Through microarray
gene expression profiling to analyze and screen gene ex-
pression characteristics and establish a prognostic gene
signature, it is better to predict clinical outcomes and guide
the adjuvant treatment of individual patients than TNM
staging. So far, several studies based on gene expression
signatures have been shown to classify various cancer
patients into different prognostic groups with different
clinical characteristics [7-11]. However, the gene signa-
tures closely related to TIME have not been found in
NSCLC.

The type, density, and location of immune cells in the
tumor microenvironment play an important role in the
development of the disease [12]. Therefore, immunological
structures based on the tumor microenvironment should
be used as a separate component in the classification
system [13]. Incorporating TIME parameters into gene
signature will be more conducive to individualized
treatment options [14]. However, regardless of the single
monoclonal antibody immunohistochemistry technique
or the flow cytometry of multiple antibodies, consistent
and accurate data on immune cell composition were not
obtained [15-20]. Therefore, the exact immune cell con-
tent in different tumors of NSCLC remains accurately
undetermined. Several reports indicated that the relative
levels of distinct immune cell types by the analytical
platform CIBERSORT could estimate the immune cell
composition in a tumor [21-23].

In this study, we used downloaded gene expression data
and identified a 5-gene signature using univariate survival
analysis and LASSO to distinguish between two prognostic
groups (low and high risk). Then, we used the CIBERSORT
method to quantify the relative levels of different immune
cell types in complex gene expression mixtures. Further-
more, the validity and reliability of the 5-gene signature
were further verified. Our findings suggest that the 5-gene
signature closely related to TIME could predict the
prognosis of lung cancer patients and provide some ref-
erence for immunotherapy.
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2. Materials and Methods

2.1. Data Source and Processing. Gene expression profiling
data of NSCLC patients were downloaded from Gene Ex-
pression Omnibus datasets (GEO; GSE103584, GSE31210,
GSE41271) and the Cancer Genome Atlas (TCGA, https://
tcga-data.nci.nih.gov/tcga/). Microarray analysis of 130
NSCLC patients in GSE103584 is based on Cancer SCAN
panel [24]. The dataset GSE103584 was used as a training set
for model construction, and data in GSE31210 [10],
GSE41271 [25], and TCGA were applied to verify the validity
of the model.

2.2. Screening for Prognosis-Related Genes and Building Risk
Models. The LASSO was a better high-dimensional re-
gression classifier and was used to select the key genes
influencing patient outcomes [26]. The LASSO 1000 itera-
tions were performed using the publicly available R package
glmnet [27]. Multiple genomes containing the optimal so-
lution were received after multiple dimensionality reduc-
tion. At the same time, for the stability and accuracy of the
results, a random sampling method of leave-one-out cross
validation (LOOCV) was used to select a set of genes to
construct a prognostic model [26].

According to the selected genetic model, a risk formula
of risk score was constructed to evaluate the high-risk and
low-risk groups. The formula for obtaining the score is
2w;x;, where w; and y; are the coeflicients and expressed
value of each gene. The risk score for each sample in the data
in the training set was calculated according to the formula,
and the best cutoff value was generated using X-tile plots
[28]. This threshold was set to classify patients: higher than
the best cutoft for the low-risk group and lower than the risk
score for the high-risk group.

2.3. Estimating the Composition of Immune Cells. To estimate
the immune cell composition in the sample, the analytical
platform CIBERSORT (https://cibersort.stanford.edu/) was
used to quantify the relative levels of distinct immune cell
types within a complex gene expression mixture [29]. The
analysis was performed with an arrangement of 100 default
statistical parameters. The activation and quiescence state of
the same type of immune cells were analyzed as a whole.
CIBERSORT’s deconvolution of gene expression data pro-
vides valuable information about the composition of im-
mune cells in a sample.

2.4. Analyzing Pathways with Differential Enrichment.
GSVA, a pathway enrichment method that estimated var-
iation of pathway activity over a sample population, was
used to analyze changes in a pathway in each sample. GSVA
was an open-source software package for R which forms part
of the Bioconductor project and could be downloaded at
http://www.bioconductor.org [30].

The prediction of the pathway under different disease
states was made by the signal value of the gene and the
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pathway in which the gene was located. Firstly, the enriched
score value of each sample was predicted by the signal value
of the gene, and then the enrichment difference between the
two groups was calculated, and the pathway with differential
enrichment in the two groups was obtained. The screening
standard P <0.05, and the FDR < 0.05.

2.5. Validation of the Validity and Reliability. Univariate
survival analysis of the gene signature was assessed by using
survival in R language (P < 0.05) [31]. Then survival receiver
operating characteristic curve (ROC) was used to complete
the area under the curve (AUC) of 5-gene signature and
TNM classification [32]. External data from GSE31210,
GSE41271, and TCGA were applied to verify the reliability of
the risk model’s impact on the prognosis of the patients.

Fisher exact was used to assess the correlation between
different gene mutation types and risk models. The uni-
variate and multivariate Cox proportional hazard regression
analyses were used to evaluate independent prognostic
factors associated with survival. Risk model, lymphovascular
invasion, pleural invasion, chemotherapy, and radiation
were employed as covariates.

3. Result

3.1. Screening Genes Associated with Prognosis and Building
Risk Models. There are 13,035 gene expression profiles from
130 tumor samples in the data set GSE103584 (Supple-
mentary material 1). First, the data of GSE103584 was
processed uniformly, and then the genes detected in more
than 50% of the samples were screened out and normalized.
We applied the LASSO Cox regression model to predict and
analyze the genes most relevant to prognosis in the 130
sample data. A random sampling method of 10-cross vali-
dation was used to construct a prognostic model containing
five genes (Figure 1(a)). Through calculation and verifica-
tion, it is found that the model constructed by 5 genes has the
lowest error rate (Figure 1(b)). Figure 1(c) shows the specific
information and coefficients of the five genes. Characteristics
of the patient in the training set (GSE103584) are given in
Table 1.

3.2. Estimating the Composition of Immune Cells. We used
CIBERSORT to estimate the immune cell composition of
130 samples and quantify the relative levels of different cell
types in a mixed cell population. All results were normalized
to proportions by cell type (Supplementary material 2). As
shown in Figures 2(a) and 2(b), we compared different types
of cells in the low-risk group and the high-risk group. It was
found that the ratio of dendritic cells activated and mast cells
resting in the low-risk group was higher than that in the
high-risk group, and the difference was statistically signif-
icant (P <0.001 and P = 0.03). The results suggested that the
immune cells in the low-risk group were better activated.

3.3. Analysis of Differential Pathways. By performing GSVA
analysis on the differential genes of the low-risk group and

the high-risk group, the changes in the relevant pathways in
different states were obtained. Figure 3 shows the changes in
the pathways of 130 samples in the low-risk and high-risk
groups. The result of the enrichment is SHEDDEN_-
LUNG_CANCER_GOOD_SURVIAL_A4, indicating that
the prognostic grouping of the data is consistent with other
data. LIAO_METASTASIS is gradually increasing in the
low-risk group and the high-risk group, indicating high
meta-expression of metastasis-related genes in the high-risk
group.

3.4. Validation of the Validity and Reliability. Survival
analysis in R language pack was applied to examine the
effects of different groups on the prognosis of NSCLC.
Kaplan-Meier survival curves for relapse-free survival
indicated the probability of recurrence in the high-risk
group and the low-risk group. The results showed that
patients in the high-risk group had shorter disease pro-
gression times than those in the low-risk group
(Figure 4(a), P = 0.0012). Kaplan-Meier survival curves
for overall survival were used to represent the survival
probabilities of the high-risk group and the low-risk group.
The results showed that patients in the high-risk group had
shorter overall survival than patients in the low-risk group
(Figure 4(b), P <0.001).

To further validate the accuracy of the risk prediction
model, we established a ROC plot of the hazard model and
TNM staging. As shown in Figure 4(c), we found that risk
prediction models could be more sensitive to prognosis than
TNM staging, in spite of being not statistically significant
(P = 0.154).

Furthermore, external data from GSE31210, GSE41271,
and TCGA were applied as a validating set to verify the
validity and reliability of the 5-gene signature impact on the
prognosis of the patients. Kaplan-Meier survival showed
that patients in the high-risk group had shorter overall
survival than patients in the low-risk group (Figure 5(a), P =
0.0035 and Figure 5(b), P <0.001) and patients in the high-
risk group had shorter progression-free survival than those
in the low-risk group (Figure 5(c), P <0.001).

3.5. Correlation with Mutant Genes and Clinical Information.
By observing the correlation between the predicted risk
model and different mutant genes, we found that EGFR
mutations were related to the risk model grouping
(P =0.011), and EGFR mutations were mainly enriched in
low-risk, indicating that EGFR mutations affect the sur-
vival rate of patients (Table 2). However, there was no
correlation between ALK and KRAS gene mutations and
risk models (P > 0.05). The univariate and multivariate Cox
proportional hazard regression analyses were used to
evaluate independent prognostic factors associated with
survival. Risk model, lymphovascular invasion, pleural
invasion, chemotherapy, and radiation were employed as
covariates. It was found that the risk model constructed by
the 5-gene signature was an independent risk factor for
prognosis (Table 3, P <0.001).



BioMed Research International

Gene Coefficient
140
] SLC04C1  0.076599572
2 120 |
% 1004 ™ ELAC1 0.002406076
o l
= .
_§ 80 HLF 0.007256909
g 601 il ZNF204P  0.036331089
S 40 4
£ ST3GAL5  0.029739516
<
A 20 A o
T T T T T
-6 -5 -4 -3 -2
Log (lambda)

(®) ()

FIGURE 1: Screening genes associated with prognosis and building risk models. (a) Trend graph of LASSO coeficients. (b) Partial likelihood
deviation map. (c) The name and coefficient of the 5-gene signature closely related to the immune system.

TasLE 1: Clinicopathological characteristics of NSCLC patients in

the training set.

Variables Number %
Age

<65 37 28.5

>65 93 71.5
Sex

Female 34 26.2

Male 96 73.8
Histology

Adenocarcinoma 96 73.8

Squamous 31 23.8
Other 3 2.3
T stage

Tis 5 3.8

T1 53 40.8

T2 49 37.7

T3 16 12.3

T4 7 5.4
N stage

NO 104 80

N1 12 9.2

N2 14 10.8
Radiation

Yes 14 10.8

No 116 89.2
Chemotherapy

Yes 37 28.5

No 93 71.5
EGEFR status

Yes 19 14.6

No 82 63.1

Unknown 29 22.3
ALK status

Yes 2 1.5

No 97 74.6

Unknown 31 23.8
KRAS status

Yes 24 18.5

No 77 59.2

Unknown 29 22.3

4. Discussion

Based on gene expression data and survival analysis tech-
niques, we screened a 5-gene signature for predicting the
prognosis of NSCLC patients. That is, differential expres-
sions of 5 genes among Solute carrier organic anion
transporter family member 4C1(SLCO4C1), ElaC ribonu-
cleaseZ1(ELAC1), Hepatic leukemia factor (HLF), Zinc
finger protein 204, pseudogene (ZNF204P), and ST3 beta-
galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5) will
influence progression-free survival and survival time of
NSCLC patients. External data from GSE31210, GSE41271,
and TCGA were applied to verify the reliability of the 5-gene
signature impact on the prognosis of the patients. To further
validate the accuracy of the 5-gene signature, we established
a ROC map of the hazard model and TNM staging. The
sensitivity and specificity of the gene signature were better
and more sensitive to prognosis than TNM staging, in spite
of being not statistically significant (P = 0.154).

We not only confirmed the stability and accuracy of the
5-gene signature, but also found it closely related to other
clinical information. The changes in the relevant pathways in
the differential genes of the low-risk group and the high-risk
group were obtained by performing GSVA analysis. The
results showed that the high-risk group identified by 5-gene
signature had metastatic-related gene expression, resulting
in lower survival rates. Our 5-gene signature was also related
to EGFR mutations (P = 0.011), and EGFR mutations were
mainly enriched in the low-risk group, indicating that EGFR
mutations affect the survival rate of patients. The univariate
and multivariate COX regression model analysis was used to
analyze the correlation between the 5-gene signature and
other clinical factors. The 5-gene signature is an independent
risk factor for prognosis (P <0.001). These results suggest
that our characteristics may contribute to clinical
management.

Infiltrating immune cells are an integral component of
the tumor microenvironment and play an important role in
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FIGURE 2: Estimating the composition of immune cells. (a) The ratio of dendritic cells activated in the high-risk and low-risk groups. (b) The

ratio of mast cells resting in the high-risk and low-risk groups.
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FIGURE 3: The changes in the pathways of 130 samples in the low-risk and high-risk groups.

increasing the effectiveness of immunotherapy [33]. This
infiltrating immune cell is usually a heterogeneous mixture
of immune cells, including cell types associated with activity
and inhibition [34]. Because of the need for different types
and subtypes of TIME to be identified in the immunotherapy
of tumors, their characteristics and differences are identified.
In order to make substantial progress, bioinformatics
techniques are used to assess the composition, functional
status, and cellular localization of immune cells. Based on
the gene signature, a more precise classification of patients

based on their TIME will better observe overall survival and
response to immunotherapeutic agents.

More importantly, we found that the 5-gene signature is
closely related to TIME parameters. The success of cancer
immunotherapy has revolutionized cancer treatment and
has used TIME parameters (immune cell composition and
proportion) as predictive immunotherapy markers [12].
Detailed characterization of immune cell composition in
tumors may be the basis for determining the prognostic and
predictive biomarkers of immunotherapy. Dendritic cells
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TaBLE 2: The correlation between the 5-gene signature and different
mutant genes.

Variables Low risk High risk P
EGEFR status 0.0112
Yes 18 1
No 54 28
ALK status 1
Yes 2 0
No 57 20
KRAS status 0.7944
Yes 17 7
No 68 29

(DCs) are one of the core components of the immune system
responsible for initiating an adaptive immune response that
penetrates tumors and processes and presents tumor-de-
rived antigens to naive T cells [35]. DC plays a key role in
eliciting antitumor T cell immunity and thus represents the

primary therapeutic target for cancer immunotherapy
[36, 37]. Mast cells (MC) are thought to be involved in the
regulation of innate and adaptive immune responses [38].
Furthermore, it is now recognized that MC is not only used
as an effector cell but also induces T cell activation, re-
cruitment, proliferation, and cytokine secretion in an an-
tigen-dependent manner and affects regulatory T cells [39].
At present, it is increasingly found that mast cells play an
important role in antitumor immunity [40]. We used
CIBERSORT to estimate the immune cell composition of
130 samples to quantify the relative levels of different cell
types in a mixed cell population and compared different
types of cells in the low-risk group and the high-risk group.
It was found that the ratio of dendritic cells activated and
mast cells resting in the low-risk group was higher than that
in the high-risk group, and the difference was statistically
significant (P <0.001 and P = 0.03). The results suggested
that the presence of immune cells was better activated and
the prognosis was better in the low-risk group. In summary,
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TaBLE 3: The univariate and multivariate Cox proportional hazard regression analyses between the 5-gene signature and other clinical

factors of NSCLC patients.

Univariable analysis

Multivariable analysis

Variables ] ]

HR Lower Higher P HR Lower Higher P
5-gene signature (high vs. low) 3.93 217 7.1 0 5.18 2.6995 9.945 <0.001
Lymphovascular invasion (yes vs. no) 1.37 0.58 3.26 0.476 1.03 0.4226 2.514 0.947
Pleural invasion (yes vs. no) 1.15 0.6 2.2 0.679 1.38 0.6977 2.745 0.352
Chemotherapy (yes vs. no) 1.1 0.59 2.05 0.76 0.94 0.4066 2.168 0.883
Radiation (yes vs. no) 1.26 0.56 2.84 0.579 1.42 0.4903 4.107 0.519
the 5-gene signature closely related to TIME parameters ~ Data Availability

could predict the prognosis of lung cancer patients and
provide some reference for immunotherapy.

Notably, among the 5-gene signature, only the gene
HLF is involved in tumor immunity and the gene
ST3GALS is involved in tumor invasion, migration, and
proliferation. There are two other genes (SLCOA4CI,
ELACI) that may have a relationship with the develop-
ment of tumors, but there is no clear report. The ZNF204P
gene has not been reported. SLCO4Cl1 is a key tumor
suppressor gene in head and neck cancer that can be
inactivated by “larger promoter” methylation and somatic
mutations [41]. Overexpression of the human kidney-
specific organic anion transporter SLCO4C1 in rat kidneys
reduces hypertension, cardiac hypertrophy, and inflam-
mation in renal failure [42]. Hepatic leukemia factor (HLF)
is a critical transcription factor that plays an important
regulatory role in many cancers, especially leukemia
[43, 44] and may be involved in therapeutically induced
immunogenic cell death [45]. HLF is a gene involved in the
transformation from El to E2, and its inhibition can
produce a more immunogenic microenvironment [46].
Overexpression of ST3GALS5 significantly promoted the
proliferation and invasion of hepatoma cells. In contrast,
knockdown of ST3GALS5 inhibited proliferation and me-
tastasis of hepatoma cells [47]. This indicates that
ST3GALS is closely related to the invasion and metastasis
of liver cancer. In addition, ST3GALS5 has been reported to
be positively associated with high risk of childhood acute
leukemia and is associated with multidrug resistance in
human acute myeloid leukemia, indicating the role of
ST3GALS in cancer development and progression [48, 49].
ELACI appears to correspond to the C-terminal half of
3'tRNase from ELAC2 and it was found that ELACI also
has 3’-tRNase activity, possibly encoding a candidate
prostate cancer susceptibility gene for tRNA 3’ processing
endoribonucleases [50]. From the above results, we can see
that our gene signature not only identifies new promising
biomarkers but also may provide a direction for the study
of TIME mechanisms.

Here, we identify that the 5-gene signature is a powerful
and independent predictor that could predict the prognosis
of lung cancer patients. In addition, our gene signature is
correlated with TIME parameters, such as DCs activated
and MCs resting. Our findings suggest that the 5-gene
signature closely related to TIME could predict the
prognosis of lung cancer patients and provide some ref-
erence for immunotherapy.

We declared that materials described in the manuscript,
including all relevant raw data, will be freely available to any
scientist wishing to use them for noncommercial purposes,
without breaching participant confidentiality.

Ethical Approval

This study was approved by the ethics committee of the
Shandong Cancer Hospital and Institute affiliated to
Shandong University and was consistent with the Helsinki
Declaration.

Consent

This study was mainly based on the Gene Expression
Omnibus datasets (GEO; GSE103584, GSE31210, GSE41271)
and the Cancer Genome Atlas (TCGA, https://tcga-data.nci.
nih.gov/tcga/), and personal privacy information was not
involved, so the informed consent was not needed.

Conflicts of Interest

All authors declare that there are no potential conflicts of
interest.

Authors’ Contributions

Jia Li and Huiyu Wang contributed equally to this study.

Supplementary Materials

Supplemental material 1: 13,035 gene expression profiles
from 130 tumor samples in data set GSE103584. We used
CBERSORT to estimate the immune cell composition of 130
samples and quantify the relative levels of different cell types
in a mixed cell population. Supplementary material 2: the
standardized relative proportion of all cell types. (Supple-
mentary Materials)

Acknowledgments

This study was supported jointly by special funds for Taishan
Scholars Project (grant no. tsqn201812149) and Academic
Promotion Programme of Shandong First Medical Uni-
versity (2019RC004).


https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://downloads.hindawi.com/journals/bmri/2020/2147397.f1.xlsx
http://downloads.hindawi.com/journals/bmri/2020/2147397.f1.xlsx

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers
in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394-424, 2018.

[2] W. Chen, R. Zheng, P. D. Baade et al., “Cancer statistics in
China, 2015, CA: A Cancer Journal for Clinicians, vol. 66,
no. 2, pp. 115-132, 2016.

[3] P. Song, X. Cui, L. Bai et al., “Molecular characterization of
clinical responses to PD-1/PD-L1 inhibitors in non-small cell
lung cancer: predictive value of multidimensional immuno-
marker detection for the efficacy of PD-1 inhibitors in Chinese
patients,” Thoracic Cancer, vol. 10, no. 5, pp. 1303-1309, 2019.

[4] C. Zhang, N. B. Leighl, Y. L. Wu, and W.-Z. Zhong,
“Emerging therapies for non-small cell lung cancer,” Journal
of Hematology & Oncology, vol. 12, no. 1, p. 45, 2019.

[5] K. Chansky, J.-P. Sculier, J. J. Crowley, D. Giroux,
J. Van Meerbeeck, and P. Goldstraw, “The international as-
sociation for the study of lung cancer staging project: prog-
nostic factors and pathologic TNM stage in surgically
managed non-small cell lung cancer,” Journal of Thoracic
Oncology, vol. 4, no. 7, pp. 792-801, 2009.

[6] P. Goldstraw, D. Ball, J. R. Jett et al., “Non-small-cell lung
cancer,” The Lancet, vol. 378, no. 9804, pp. 1727-1740, 2011.

[7] Y.Lu, W. Lemon, P.-Y. Liu et al,, “A gene expression signature
predicts survival of patients with stage I non-small cell lung
cancer,” PLoS Medicine, vol. 3, no. 12, p. e467, 2006.

[8] K. Shedden, J. M. Taylor, S. A. Enkemann et al., “Gene ex-
pression-based survival prediction in lung adenocarcinoma: a
multi-site, blinded validation study,” Nature Medicine, vol. 14,
no. 14, pp. 822-827, 2008.

[9] C.-Q. Zhu, K. Ding, D. Strumpf et al, “Prognostic and
predictive gene signature for adjuvant chemotherapy in
resected non-small-cell lung cancer,” Journal of Clinical
Oncology, vol. 28, no. 29, pp. 4417-4424, 2010.

[10] H. Okayama, T. Kohno, Y. Ishii et al., “Identification of genes
upregulated in ALK-positive and EGFR/KRAS/ALK-negative
lung adenocarcinomas,” Cancer Research, vol. 72, no. 1,
pp. 100-111, 2012.

[11] M. Shahid, T. G. Choi, M. N. Nguyen et al., “An 8-gene
signature for prediction of prognosis and chemoresponse in
non-small cell lung cancer,” Oncotarget, vol. 7, no. 52,
pp. 86561-86572, 2016.

[12] B. Stankovic, H. A. K. Bjerhovde, R. Skarshaug et al., “Im-
mune cell composition in human non-small cell lung cancer,”
Frontiers in Immunology, vol. 9, p. 3101, 2019.

[13] J. Galon, F. Pages, F. M. Marincola et al., “Cancer classification
using the immunoscore: a worldwide task force,” Journal of
Translational Medicine, vol. 10, no. 1, p. 205, 2012.

[14] J. Domagala-Kulawik, “The role of the immune system in
non-small cell lung carcinoma and potential for therapeutic
intervention,” Translational Lung Cancer Research, vol. 4,
no. 2, p. 177, 2015.

[15] T. Donnem, T. K. Kilvaer, S. Andersen et al., “Strategies for
clinical implementation of TNM-Immunoscore in resected
nonsmall-cell lung cancer,” Annals of Oncology, vol. 27, no. 2,
pp. 225-232, 2016.

[16] G. A. Banat, A. Tretyn, S. S. Pullamsetti et al., “Immune and
inflammatory cell composition of human lung cancer
stroma,” PLoS One, vol. 10, no. 9, Article ID e0139073, 2015.

BioMed Research International

[17] S.K.Johnson, K. M. Kerr, A. D. Chapman et al., “Immune cell
infiltrates and prognosis in primary carcinoma of the lung,”
Lung Cancer, vol. 27, no. 1, pp. 27-35, 2000.

[18] A.-P. Ganesan, M. Johansson, B. Ruffell et al., “Tumor-in-
filtrating regulatory T cells inhibit endogenous cytotoxic T cell
responses to lung adenocarcinoma,” The Journal of Immu-
nology, vol. 191, no. 4, pp. 2009-2017, 2013.

[19] P. H. Lizotte, E. V. Ivanova, M. M. Awad et al.,, “Multi-
parametric profiling of non-small-cell lung cancers reveals
distinct immunophenotypes,” JCI Insight, vol. 1, no. 14, Ar-
ticle ID e89014, 2016.

[20] J. Kargl, S. E. Busch, G. H. Yang et al., “Neutrophils dominate
the immune cell composition in non-small cell lung cancer,”
Nature Communications, vol. 8, p. 14381, 2017.

[21] Y. Xiong, L. Liu, Y. Xia et al., “Tumor infiltrating mast cells
determine oncogenic HIF-2a-conferred immune evasion in
clear cell renal cell carcinoma,” Cancer Immunology, Im-
munotherapy, vol. 68, no. 5, pp. 731-741, 2019.

[22] N. Rohr-Udilova, F. Klinglmiiller, R. Schulte-Hermann et al.,
“Deviations of the immune cell landscape between healthy
liver and hepatocellular carcinoma,” Scientific Reports, vol. 8,
no. 1, p. 6220, 2018.

[23] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, and
A. A. Alizadeh, “Profiling tumor infiltrating immune cells
with CIBERSORT,” Methods in Molecular Biology, vol. 1711,
pp. 243-259, 2018.

[24] S. Bakr, O. Gevaert, S. Echegaray et al., “A radio genomic
dataset of non-small cell lung cancer,” Scientific Data, vol. 16,
no. 5, p. 180202, 2018.

[25] M. Sato, J. E. Larsen, W. Lee et al., “Human lung epithelial
cells progressed to malignancy through specific oncogenic
manipulations,” Molecular Cancer Research, vol. 11, no. 6,
pp. 638-650, 2013.

[26] R. Tibshirani, “The lasso method for variable selection in the
Cox model,” Statistics in Medicine, vol. 16, no. 4, pp. 385-395,
1997.

[27] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1-22, 2010.

[28] R.L.Camp, M. Dolled-Filhart, and D. L. Rimm, “X-tile: a new
bio-informatics tool for biomarker assessment and outcome-
based cut-point optimization,” Clinical Cancer Research,
vol. 10, no. 21, pp. 7252-7259, 2004.

[29] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enu-
meration of cell subsets from tissue expression profiles,”
Nature Methods, vol. 12, no. 5, pp. 453-457, 2015.

[30] S. Hénzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[31] J. O’Quigley and T. Moreau, “Cox’s regression model:
computing a goodness of fit statistic,” Computer Methods and
Programs in Biomedicine, vol. 22, no. 3, pp. 253-256, 1986.

[32] P.J. Heagerty, T. Lumley, and M. S. Pepe, “Time-dependent
ROC curves for censored survival data and a diagnostic
marker,” Biometrics, vol. 56, no. 2, pp. 337-344, 2000.

[33] W. H. Fridman, F. Pages, C. Sautes-Fridman, and J. Galon,
“The immune contexture in human tumours: impact on
clinical outcome,” Nature Reviews Cancer, vol. 12, no. 4,
pp. 298-306, 2012.

[34] K. Wojas-Krawczyk, E. Kalinka, A. Grenda, P. Krawczyk, and
J. Milanowski, “Beyond PD-L1 markers for lung cancer im-
munotherapy,” International Journal of Molecular Sciences,
vol. 20, no. 8, p. 1915, 2019.



BioMed Research International

[35] B. Wylie, C. Macri, J. D. Mintern, and J. Waithman, “Den-
dritic cells and cancer: from biology to therapeutic inter-
vention,” Cancers, vol. 11, no. 4, p. 521, 2019.

[36] V. Koucky, J. Boucek, and A. Fialovd, “Immunology of
plasmacytoid dendritic cells in solid tumors: a brief review,”
Cancers, vol. 11, no. 4, p. 470, 2019.

[37] S. C. Funes, A. Manrique de Lara, M. J. Altamirano-Lagos,
J. P. Mackern-Oberti, J. Escobar-Vera, and A. M. Kalergis,
“Immune checkpoints and the regulation of tolerogenicity in
dendritic cells: implications for autoimmunity and immu-
notherapy,” Autoimmunity Reviews, vol. 18, no. 4, pp. 359-
368, 2019.

[38] S.J. Galli, S. Nakae, and M. Tsai, “Mast cells in the devel-
opment of adaptive immune responses,” Nature Immunology,
vol. 6, no. 2, pp. 135-142, 2005.

[39] S.Bulfone-Paus and R. Bahri, “Mast cells as regulators of T cell
responses,” Frontiers in Immunology, vol. 6, p. 349, 2015.

[40] S. A. Oldford and J. S. Marshall, “Mast cells as targets for
immunotherapy of solid tumors,” Molecular Immunology,
vol. 63, no. 1, pp. 113-124, 2015.

[41] R. Guerrero-Preston, C. Michailidi, L. Marchionni et al., “Key
tumor suppressor genes inactivated by “greater promoter”
methylation and somatic mutations in head and neck cancer,”
Epigenetics, vol. 9, no. 7, pp. 1031-1046, 2014.

[42] T. Toyohara, T. Suzuki, R. Morimoto et al, “SLCO4Cl
transporter eliminates uremic toxins and attenuates hyper-
tension and renal inflammation,” Journal of the American
Society of Nephrology, vol. 20, no. 12, pp. 2546-2555, 2009.

[43] J. Roychoudhury, J. P. Clark, G. Gracia-Maldonado et al,,
“MEIS1 regulates an HLF-oxidative stress axis in MLL-fusion
gene leukemia,” Blood, vol. 125, no. 16, pp. 2544-2552, 2015.

[44] J. Dang, T. Inukai, H. Kurosawa et al, “The E2A-HLF
oncoprotein activates Groucho-related genes and suppresses
Runx1,” Molecular and Cellular Biology, vol. 21, no. 17,
pp. 5935-5945, 2001.

[45] K. M. Waters, R. L. Sontag, and T. J. Weber, “Hepatic leu-
kemia factor promotes resistance to cell death: implications
for therapeutics and chronotherapy,” Toxicology and Applied
Pharmacology, vol. 268, no. 2, pp. 141-148, 2013.

[46] C. N. Falany, V. Krasnykh, and J. L. Falany, “Bacterial ex-
pression and characterization of a ¢cDNA for human liver
estrogen sulfotransferase,” The Journal of Steroid Biochemistry
and Molecular Biology, vol. 52, no. 6, pp. 529-539, 1995.

[47] H. Cai, H. Zhou, Y. Miao, N. Li, L. Zhao, and L. Jia, “MiRNA
expression profiles reveal the involvement of miR-26a, miR-
548] and miR-34a in hepatocellular carcinoma progression
through regulation of ST3GALS5,” Laboratory Investigation,
vol. 97, no. 5, pp. 530-542, 2017.

[48] S.Mondal, S. Chandra, and C. Mandal, “Elevated mRNA level
of hST6Gal I and hST3Gal V positively correlates with the
high risk of pediatric acute leukemia,” Leukemia Research,
vol. 34, no. 4, pp. 463-470, 2010.

[49] H. Ma, H. Zhou, X. Song, S. Shi, J. Zhang, and L. Jia,
“Modification of sialylation is associated with multidrug re-
sistance in human acute myeloid leukemia,” Oncogene,
vol. 34, no. 6, pp. 726-740, 2015.

[50] H. Takaku, A. Minagawa, M. Takagi et al, “A candidate
prostate cancer susceptibility gene encodes tRNA 3’ pro-
cessing endoribonuclease,” Nucleic Acids Research, vol. 31,
no. 9, pp. 2272-2278, 2003.



