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Introduction
Cancer is a collection of  related diseases that develop as a result of  the accumulation of  somatic mutations 
and other genetic alterations leading to abnormal cell proliferation and eventually tumorigenesis (1–4). 
Although cancer can start nearly anywhere in the human body, tissues are substantially different in their 
susceptibility to certain oncogenic events that cause tumor formation (5–8). Only a handful of  genes are 
associated with tumorigenesis in a wide variety of  tissues, whereas alteration of  others is linked only to 
very few cancer types (7, 8). For example, oncogenic KRAS-induced development of  cancer is limited to 
specific tissues in mice, such as the pancreas and lung, but most other tissues are resistant to transformation 
by this oncogene (7, 9–12). Likewise, BRCA1 functions in all cell types to help preserve genomic stabili-
ty, but oncogenesis is restricted to only a few tissues, notably ovary and breast (7, 13–16). How and why 
distinct genetic alterations promote cancer in one tissue but not another remain important and challeng-
ing questions in cancer research. Understanding the underlying molecular mechanisms should lead to an 
improvement in risk prediction, early detection, and prevention of  cancers.

Tissue specificity in cancer is not only associated with tumorigenesis but also associated with therapeutic 
responses and the development of resistance, which are linked to distinct cancer types (7, 8). Traditionally, 
tumors from the same anatomical site are treated as one tumor entity. In the last decade, large-scale cancer 

Clinical and preclinical studies show tissue-specific differences in tumorigenesis. Tissue specificity 
is controlled by differential gene expression. We prioritized genes that encode secreted proteins 
according to their preferential expression in normal lungs to identify candidates associated with 
lung cancer. Indeed, most of the lung-enriched genes identified in our analysis have known or 
suspected roles in lung cancer. We focused on the gene encoding neuron-derived neurotrophic 
factor (NDNF), which had not yet been associated with lung cancer. We determined that NDNF 
was preferentially expressed in the normal adult lung and that its expression was decreased in 
human lung adenocarcinoma and a mouse model of this cancer. Higher expression of NDNF was 
associated with better clinical outcome of patients with lung adenocarcinoma. Purified NDNF 
inhibited proliferation of lung cancer cells, whereas silencing NDNF promoted tumor cell growth 
in culture and in xenograft models. We determined that NDNF is downregulated through DNA 
hypermethylation near CpG island shores in human lung adenocarcinoma. Furthermore, the lung 
cancer–related DNA hypermethylation sites corresponded to the methylation sites that occurred 
in tissues with low NDNF expression. Thus, by analyzing the tissue-specific secretome, we 
identified a tumor-suppressive factor, NDNF, which is associated with patient outcomes in lung 
adenocarcinoma.
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genomics profiling revealed that similar cancer driver mutations initially discovered in a single tumor entity 
are also present in tumors of other anatomical sites (17–20), which led to the classification of cancers accord-
ing to molecular alterations shared by tumors across different tissue types (21–23). This new classification 
supplements the traditional classifications of cancers based on the tissue or organ of origin for the purposes 
of treatment strategy and led to the proposal of generalized use of targeted drugs across anatomically distinct 
cancer types after initial proof of efficacy in 1 tumor type (24–28). However, several recent umbrella or basket 
trials showed that off-label use of targeted therapies across tumors from different tissues was not superior to 
standard of care (21, 22, 26, 29). Thus, driver mutations may have different effects in tumors in diverse tissues, 
yielding tissue-specific therapeutic responsiveness because of tissue-specific organization of oncogenic signal-
ing pathways (7). Thus, understanding tissue specificity in cancer will provide new candidates for therapeutic 
intervention and lead to enhanced therapeutic strategies in precision oncology.

Tissue specificity is ultimately controlled by the differential expression of  genes across normal tissues. 
Genes preferentially expressed in one tissue or a small number of  tissues often play critical roles in tissue-spe-
cific biological processes, physiological conditions, and pathological states. Furthermore, disease-associated 
genes tend to be expressed in a limited number of  normal tissues where their defective function causes 
pathology (30–33). Indeed, the identification of  genes with tissue-selective expression has provided a deeper 
molecular understanding in many areas, including, but not limited to, tissue function, pathogenic mech-
anism, diagnosis, and organ-specific therapeutic applications (31, 33–38). Using the gene expression data 
sets in public repositories, studies show that many tumor suppressor genes and proto-oncogenes had their 
highest expression level in the tissue susceptible to their oncogenic effect (39, 40). Thus, it is worthwhile to 
test whether, and to what extent, tissue-enriched genes possess cancer-promoting or cancer-suppressing func-
tions. We predicted that mutations or alterations in the expression levels of  such tissue-enriched genes with 
tumor-suppressive or oncogenic functions are likely contributors to tumorigenesis or cancer progression in 
a tissue-specific manner. Therefore, systematic annotation and characterization of  the tissue-enriched genes 
not only should lead to valuable insights about how cancers develop in different tissues but also could be 
used to identify new therapeutic targets associated with cancers originating from the same tissue.

Here, we focused on genes encoding secreted proteins, which mediate key communication between cells 
and are essential contributors to tumorigenesis and cancer progression (41–43). We prioritized genes encoding 
secreted proteins that are preferentially expressed in both mouse and human lung to identify candidates asso-
ciated with lung cancer. Lung cancer remains a leading cause of  cancer-related mortality worldwide and has a 
5-year survival rate (18.6%), which is much lower than that of  many other cancers (44). Although it may seem 
counterintuitive to seek cancer-associated genes in normal tissue, by starting with normal tissue, we could 
identify tissue-enriched (a) tumor-suppressing genes for which reduced expression contributes to cancer, (b) 
oncogenic genes for which increased expression contributes to cancer, and (c) tumor-enabling genes for which 
expression is permissive for but is not a driver of  the development and progression of  cancer.

Our lung secretome analysis led us to investigate the gene encoding neuron-derived neurotrophic 
factor (NDNF in human, Ndnf in mouse). We experimentally determined that NDNF is preferentially 
expressed in the normal adult lung but that its expression is decreased in human lung adenocarcino-
ma and a mouse model of  lung adenocarcinoma. Higher expression of  NDNF is associated with better 
clinical outcome of  patients with lung adenocarcinoma, indicating that NDNF functions as a tumor 
suppressor. We experimentally confirmed the cancer-suppressing effects of  NDNF, and, with data in 
The Cancer Genome Atlas (TCGA) database (45), we determined that NDNF is downregulated through 
DNA hypermethylation at CpG island shores in lung adenocarcinoma. Thus, our study showed that 
analysis of  tissue-enriched genes can identify previously unknown cancer-associated genes and resulted 
in the identification of  a secreted tumor-suppressing protein relevant to lung cancer.

Results
Identification of  genes encoding secreted proteins that are preferentially expressed in normal adult mouse and human 
lung. Proteins secreted from the cells (the secretome) regulate cell behavior and are clinically relevant in 
cancer, because they are a rich source of  biomarkers and are targets of  approved cancer treatments (41–43).  
Therefore, we focused on genes encoding secreted proteins, which we refer to as sGenes, to identify those 
preferentially expressed in the normal adult lungs of  mice and humans (referred to hereafter as sLungGenes). 
We collected and curated 2591 orthologous human and mouse sGenes from 2 representative secreted pro-
tein databases: the secretome from the Human Protein Atlas (HPA) (46) and the Metazoa (Human/Animal)  
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Secretome and Subcellular Proteome KnowledgeBase (MetazSecKB) (47). For these 2591 sGenes, we per-
formed gene expression analyses using 3 available data sources: HPA database with expression data from 
37 adult human tissue types, Genotype-Tissue Expression (GTEx) with expression data from 30 adult 
human tissue types (48), and Encyclopedia of  DNA Elements Consortium (ENCODE) with expression 
data from 12 tissue types in 10-week-old C57BL/6J mice (49).

For each of  the 2591 orthologous human and mouse sGenes, the lung-preferential expression scores 
(hPLung_HPA, hPLung_GTEx, and mPLung) across the available tissue types from the 3 databases were independently 
calculated. The preferential expression scores (hPLung_HPA, hPLung_GTEx, and mPLung) were converted to Z scores 
(Z-hPLung_HPA, Z-hPLung_GTEx, and Z-mPLung) (see Methods and Supplemental Table 1; supplemental materi-
al available online with this article; https://doi.org/10.1172/jci.insight.129344DS1). We selected the 
top-ranking sLungGenes by setting the threshold of  Z-hPLung (Z-hPLung_HPA and Z-hPLung_GTEx) and Z-mPLung val-
ues as 4.0 and 2.0, respectively (Figure 1). We selected the top-ranking sLungGenes overlapped by at least 
2 tissue-specific gene expression resources to ensure the reliability of  their preferential expression in the 
lung (Figure 1). For these high-confidence sLungGenes, we performed a literature query in PubMed and 
found most had literature evidence supporting relevance to lung cancer (29/31) or indicating that their 
activity restricts cancer cell growth (25/31) (Figure 1 and Supplemental Table 2). These results suggested 
that the sGenes preferentially expressed in the lung likely contribute to the tissue specificity of  lung cancer. 
We followed up on the one gene that had not been previously reported as relevant to lung cancer, NDNF.

Verification of  lung-specific expression of  NDNF in normal adult mouse and human lung. NDNF, also known 
as A930038C07Rik, C4orf31, Epidermacan, and NORD, is the one top-ranking sLungGene without known 
functions in lung cancer (Figure 1 and Supplemental Table 2). We investigated its expression and potential 
function in lung cancer.

Previously, mouse Ndnf has been reportedly expressed in the developing and adult central nervous 
system (50–54), as well as in ischemic skeletal muscle and the heart upon myocardial infarction (55, 56). 
Human NDNF expression was reported in neocortex, umbilical cord blood, and bone marrow multipotent 

Figure 1. Identification of genes encoding secreted proteins preferentially expressed in both mouse and human lung. (A) 3D scatter plot of the 
lung-preferential expression Z score of 2591 orthologous sGenes in human and mouse. Each dot indicates a cross-species conserved sGene (see Supple-
mental Table 1). Top-ranking sLungGenes, selected by setting the threshold of Z-hPLung (Z-hPLung_HPA and Z-hPLung_GTEx) as 4.0 and Z-mPLung values as 2.0, were 
highlighted with a color reflecting their amount of overlap among all 3 data sets as shown in B. (B) Summary of the top-ranking sLungGenes overlapped 
by at least 2 tissue-specific gene expression resources. sGene, genes encoding secreted proteins; sLungGenes, genes encoding secreted proteins that are 
preferentially expressed in the adult lung; z-PLung, lung-preferential expression Z score.
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mesenchymal stromal cells (57, 58). Our analysis of  the human and mouse tissue databases indicated pref-
erential expression of  Ndnf in the normal adult lung in humans (Figure 1 and Supplemental Figures 1 and 
2) and mice (Figure 1 and Supplemental Figure 3), which we validated using several approaches. We mea-
sured Ndnf transcripts by quantitative real-time reverse transcriptase PCR (RT-qPCR), which showed that 
Ndnf was preferentially expressed in the lung compared with other mouse tissues (Figure 2A). Along with 
the differential expression of  Ndnf mRNA, we detected Ndnf proteins by Western blotting predominantly in 
the adult mouse lung with much lower or barely detectable amounts in the other examined tissues (Figure 
2B and Supplemental Figure 4). Furthermore, we detected NDNF mRNA by in situ hybridization in both the 
normal adult mouse and human lung (Figure 2, C and D, Supplemental Figure 5). NDNF mRNA was not 
detected in several other human tissues including breast, liver, and spleen (Supplemental Figure 6). Consis-
tent with the information from the HPA and MetazSecKB resources, as well as the previous reports (50, 55, 
59), we confirmed that both mouse Ndnf and human NDNF were secreted when ectopically expressed in 
HEK293T cells (Supplemental Figure 7). Together, we experimentally confirmed that NDNF/Ndnf (human/
mouse) encode secreted proteins and are preferentially expressed in the normal adult mouse and human lung.

Figure 2. NDNF is detected predominantly in normal mouse and human lung. (A) RT-qPCR analysis of Ndnf mRNA levels in the lung and other indicated 
tissues of 10-week-old C57BL/6N mice (n = 3). (B) Western blot analysis of Ndnf protein levels in the lung and other tissues collected from 10-week-old 
C57BL/6N mice. A representative image is shown for 1 mouse with quantitative data from n = 3 mice shown below. Band intensity was quantified using 
ImageJ (NIH), and Ndnf abundance in each tissue was normalized to GAPDH. The relative Ndnf abundances were plotted. Box plots show 25th to 75th per-
centile; whiskers extend to the minimum and maximum values. One-way ANOVA was used for statistical analysis. ****P < 0.0001. (C and D) RNAscope in 
situ hybridization detection of NDNF/Ndnf mRNA (red) expression in the normal adult mouse (C) and human (D) lung. Cell nuclei are counterstained with 
hematoxylin (blue). Note that NDNF/Ndnf mRNA is mainly detected in the alveolar epithelium, whereas much less is found in the bronchial epithelium. 
Sense probes that served as negative controls are shown in Supplemental Figure 5. Scale bar: 100 μm.
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Figure 3. NDNF expression is decreased in lung adenocarcinoma and associated with better clinical outcome of patients. (A) NDNF mRNA in 
tumor (n = 517) and normal lung tissues (n = 59) from TCGA lung adenocarcinoma database. Box plots show 25th to 75th percentile; whiskers extend 
to the minimum and maximum values. The 2-tailed Mann-Whitney U test was used for statistical analysis. ****P < 0.0001. (B) Ndnf mRNA in 
tumor and matched normal lung tissue adjacent to the tumor (NAT) from K-rasLA1 mice (n = 10). Transcript abundance was determined by RT-qPCR 
analysis. The 2-tailed paired t test was used for statistical analysis. ****P < 0.0001. (C) Western blot analysis of Ndnf in tumor (T) and matched 
normal lung tissue adjacent to the tumor (NAT) from K-rasLA1 mice (n = 8). (D–F) Kaplan-Meier curves showing the correlation between NDNF 
expression and clinical outcome, as analyzed for overall survival (OS), progression-free survival (PFS), and postprogression survival (PPS) of lung 
adenocarcinoma patients. (G–I) Kaplan-Meier curves showing the correlation between NDNF expression and OS of lung adenocarcinoma patients 
at indicated stages. Number of samples in the high- and low-NDNF groups and a corresponding log-rank P value are indicated on each graph. 
Kaplan-Meier curves were created using the Kaplan-Meier Plotter (www.kmplot.com) with lung adenocarcinoma patients grouped according to the 
median expression value of NDNF. Information of lung adenocarcinoma patients involved in the survival analysis is in Supplemental Table 3.
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Decreased NDNF expression in lung adenocarcinoma and association with better clinical outcome of  patients. The 
alveolar epithelium contains lung stem or progenitor cells and constitutes the major cell type responsible for 
lung adenocarcinoma, which is the most prevalent form of lung cancer and arises from the alveoli throughout 
the lungs (60–62). Intriguingly, in situ hybridization in the normal human and mouse lung revealed that NDNF/
Ndnf were expressed mainly by the alveolar epithelial cells (Figure 2, C and D). We thus evaluated whether 

Figure 4. NDNF transcript abundance negatively correlates with progression of human lung adenocarcinoma. (A) NDNF mRNA in matched normal lung 
tissue adjacent to the tumor (NAT) and tumor tissues (n = 57). (B–D) NDNF mRNA in normal adjacent lung tissues and tumor tissues with different pri-
mary tumor size and extent (B), different tumor-node-metastasis (TNM) stages (C), and different lymph node metastasis status (D). In A–D, analysis was 
performed with data in TCGA for lung adenocarcinoma. Box plots show 25th to 75th percentile; whiskers extend to the minimum and maximum values. 
(E–J) NDNF mRNA expression from human lung adenocarcinoma microarrays. Representative images of NDNF mRNA (red) detected by RNAscope ISH in 
matched normal adjacent lung tissues (NAT) and tumor tissues with different primary tumor size and extent (E), different TNM stages (G) and different 
lymph node metastasis status (I). Scale bar, 100 μm. Quantitative analysis of NDNF expression detected by RNAscope ISH (NDNF ISH score; see Methods) 
from lung adenocarcinoma with different primary tumor size and extent (F), different TNM stages (H), and different lymph node metastasis status (J). 
Data are shown as mean ± SD. The 2-tailed paired t test (A) or 1-way ANOVA followed by Holm-Šídák multiple-comparisons test (B–D, F, H, and J) was 
used for statistical analysis. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Figure 5. Tumor-suppressive properties of NDNF in mouse and human lung cancer cell lines. (A–C) Effect of purified Ndnf protein on the growth of human 
and mouse lung cancer cell lines. Quantitative analysis of cell viability using the CCK-8 assay (A), of colony formation (B), and of growth in soft agar (C) of the 
A549 and LLC1 cells with or without purified Ndnf (200 ng/mL). Representative images from the colony formation assay and soft agar assay are shown in B 
and C. (D–F) Effect of shRNA-based knockdown of NDNF on the growth of human A549 cells and knockdown of Ndnf on LLC1 cells. Knockdown efficiency of 
shRNA targeting human NDNF and mouse Ndnf is shown in Supplemental Figure 10. Quantitative analysis of cell viability using the CCK-8 assay (D), of colony 
formation (E), and of growth in soft agar (F) of the indicated cells stably expressing shRNA targeting NDNF or Ndnf as appropriate or control scrambled shRNA 
of cells with or without purified Ndnf (200 ng/mL). In A and D, data are shown as mean ± SD of n > 3 replicates of a single experiment. Data are representa-
tive of n ≥ 3 experiments. In B, C, E, and F, data are shown as box-and-whiskers plots of n ≥ 6 replicates from n ≥ 3 experiments. Box plots show 25th to 75th 
percentile; whiskers extend to the minimum and maximum values. The 2-tailed Mann-Whitney U test (A–C) or 1-way ANOVA followed by Holm-Šídák mul-
tiple-comparisons test (D–F) was used for statistical analysis. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Representative images of the colony 
formation assay (E) and soft agar assay (F) are shown in Supplemental Figure 11.
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NDNF has clinical relevance in lung adenocarcinoma. We examined the expression of NDNF in tumor and 
normal samples using the lung adenocarcinoma data set in TCGA. When compared with histologically nor-
mal lung tissues adjacent to the tumor, expression of NDNF was significantly reduced in lung adenocarcinoma 
(Figure 3A). Expression of Ndnf in lung adenocarcinoma was also examined using the K-rasLA1 mouse model. 
The K-rasLA1 mice develop lung adenocarcinoma through somatic activation of a K-ras allele carrying an acti-
vating mutation in codon 12 (G12D) (9). Both RT-qPCR analysis and Western blots showed that Ndnf mRNA 
and protein were decreased in K-rasG12D–induced adenocarcinoma when compared with paired surrounding 
nontumor lung tissues (Figure 3, B and C). Thus, we found that NDNF was downregulated in human lung 
adenocarcinoma and in a murine model of this cancer.

We evaluated whether the expression level of  NDNF has any predictive value for survival of  lung adeno-
carcinoma patients by performing Kaplan-Meier analyses (63). We found patients with higher NDNF expres-
sion had better overall survival than those with lower expression (Figure 3D, Supplemental Figure 8, and 
Supplemental Tables 3 and 4). Lung adenocarcinoma patients with high NDNF also showed significantly 
better progression-free survival and postprogression survival compared with those with low levels of  NDNF 
(Figure 3, E and F). In addition, the higher expression of  NDNF was better associated with overall surviv-
al of  patients with stage I, when compared with stages II and III, lung adenocarcinoma (Figure 3, G–I). 

Figure 6. Tumor-suppressive properties of NDNF in the xenograft model. Human lung cancer A549 cells (A–C) or mouse lung cancer LLC1 cells (D–F) 
stably expressing shRNA targeting NDNF gene or control scrambled shRNA were injected into nude mice. (A and D) Tumor volume was measured at the 
indicated time points. Data are shown as mean ± SD for tumors from n = 6 mice at each time point. (B and E) Mice injected with A549 cells were sacrificed 
on day 32 after injection and those injected with LLC1 cells on day 23 after injection. Tumors were removed and photographed. Tumor volumes and weights 
were measured. (C and F) Proliferating cells were detected by Ki67 staining in tumors at day 32 (A549 cell tumors) or day 23 (LLC1 cell tumors). Represen-
tative images and quantitative analyses are shown. Scale bar: 20 μm. Data are shown as box-and-whiskers plots of tumors from 5 mice for each cell line 
from 20 images per tumor. Box plots show 25th to 75th percentile; whiskers extend to the minimum and maximum values. The 2-tailed Mann-Whitney U 
test was used for statistical analysis. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
 

https://doi.org/10.1172/jci.insight.129344
https://insight.jci.org/articles/view/129344#sd
https://insight.jci.org/articles/view/129344#sd


9insight.jci.org      https://doi.org/10.1172/jci.insight.129344

R E S E A R C H  A R T I C L E

Therefore, the aberrant expression of  NDNF/Ndnf in human and mouse lung adenocarcinoma, as well as 
the association of  NDNF mRNA level with patient survival, indicated that NDNF may serve as a prognostic 
biomarker for early-stage lung adenocarcinoma.

Negative correlation between NDNF expression and progression of  human lung adenocarcinoma. To further 
investigate the relevance of  NDNF expression level with human lung adenocarcinoma, we performed a 
detailed analysis of  RNA-Seq data from TCGA. In addition to a significantly lower amount of  NDNF in 

Figure 7. Cancer-related DNA methylation sites correspond to those associated with tissue-specific expression of NDNF. (A) Schematic diagram of the 
human NDNF locus. The 16 available CpG sites in the NDNF promoter region from Infinium HumanMethylation450 microarray are indicated as vertical lines. 
Black boxes, exons; blue box, CpG island; green text, CpG island shore methylation sites. (B) Methylation levels at the 16 CpG sites in tumor (red) compared 
with that in normal lung tissue adjacent to the tumor (black) using lung adenocarcinoma data from TCGA database. (C) Scatter plot and correlation between 
NDNF mRNA abundance and the average methylation level across 16 CpG sites in the NDNF promoter region in lung adenocarcinoma samples (n = 422, red 
dots) and normal lung tissue adjacent to the tumor (n = 21, black dots) from TCGA database. (D) Methylation level averaged across the 16 CpG sites in normal 
tissue from bladder, breast, kidney, and prostate (blue) compared with that in normal lung tissue (black). Data are from samples adjacent to tumor tissue from 
TCGA database (Supplemental Table 8). (E) Scatter plot and correlation between NDNF mRNA abundance and the average methylation level across all the 16 
CpG sites in the NDNF promoter region in samples from normal lung, bladder, breast, kidney, and prostate tissues adjacent to tumor from TCGA. Lung samples 
shown as black dots, all others as blue dots. (F) Scatter plot and correlation between alterations in tissue-specific DNA methylation and alterations in cancer-
specific methylation at each of the 16 CpG sites in the NDNF promoter region. Each circle represents a CpG site: green circle, CpG island shore; black circle, CpG 
island. Tissue-specific DNA methylation alterations were calculated as the difference in DNA methylation (ΔM) between the average methylation for 4 other 
tissues (bladder, breast, kidney, and prostate) and lung (from the averages in D); cancer-specific methylation alterations were calculated as the difference in 
DNA methylation between the average for lung adenocarcinoma tissues and the average for normal lung from tissue adjacent to tumors (from averages in B; 
Supplemental Figure 13). Spearman’s r and P values are indicated. Box plots show 25th to 75th percentile; whiskers extend to the minimum and maximum 
values. The 2-tailed Mann-Whitney U test was used for statistical analysis. n.s., not significant; *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001. 
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tumor tissues compared with matched normal surrounding tissues (Figure 4A), we found that patients with 
larger tumors (T3–T4) had substantially less NDNF expression compared with patients with small tumors 
(T1–T2) (Figure 4B). We observed a similar relationship between NDNF expression and TNM stages: sam-
ples at advanced stage (II and III) had lower NDNF expression than samples at early stage (I) (Figure 4C). 
Moreover, lung adenocarcinoma patients with lymph node metastasis expressed less NDNF than those 
without lymph node metastasis (Figure 4D).

We evaluated this negative correlation between NDNF mRNA level and lung adenocarcinoma progres-
sion by in situ hybridization using tissue microarrays from 4 independent human lung adenocarcinoma 
cohorts consisting of  30 normal lung tissue and 207 adenocarcinoma samples covering distinct pathological 
stages (Supplemental Table 5). Consistent with the results from TCGA database analysis, we observed that 
NDNF mRNA detected by in situ hybridization (ISH) was markedly lower (for ISH scores, see Methods) 
in lung adenocarcinoma tumor tissues than in the matched normal adjacent samples (Figure 4, E–J). Spe-
cifically, lower levels of  NDNF were associated with larger tumor size (Figure 4, E and F), more advanced 
tumor stage (Figure 4, G and H), and further cancer progression (Figure 4, I and J). We applied χ2 testing, 
which established the significance of  the finding that reduced NDNF levels correlated with the higher clini-
cal grade and TNM classifications in patients with lung adenocarcinoma (Supplemental Table 5). Together, 
these data demonstrated that decreased NDNF expression occurred in patients with lung adenocarcinoma 
and was significantly correlated with tumor progression and poor prognosis.

Tumor-suppressive properties of  NDNF in mouse and human lung cancer cell lines. Little is known about 
the functional role of  NDNF in cancer. We explored the potential role of  NDNF in tumorigenesis by 
exposing A549 and LLC1, lung cancer cell lines from human and mouse, respectively, to purified Ndnf  
protein. The purified Ndnf  protein inhibited growth of  A549 and LLC1, as indicated by a reduced rate 
of  growth assessed using a Cell Counting Kit-8 (CCK-8) assay (Figure 5A). Likewise, ectopic expression 
of  NDNF/Ndnf  caused similar growth inhibition in A549/LLC1 lung cancer cells (Supplemental Figure 
9). Exogenous Ndnf  also impaired anchorage-dependent and anchorage-independent growth of  both cell 
lines (Figure 5, B and C). We also assessed the effects of  reduced NDNF expression in the growth of  A549 
and LLC1 lung cancer cells. Knockdown of  human NDNF in A549 cells with 2 shRNAs, 1 targeting the 
coding sequence and the other targeting the 3′-UTR of  NDNF, increased cell growth compared with that 
of  control cells expressing scrambled shRNA (Figure 5, D–F, and Supplemental Figure 10). Knockdown 
with 2 shRNAs targeting the mouse Ndnf gene, but not a scrambled sequence, produced similar results in 
LLC1 cells (Figure 5, D–F, and Supplemental Figure 10). In addition, purified Ndnf  protein attenuated 
the increased growth of  A549 and LLC1 cells resulting from NDNF (or Ndnf) knockdown (Figure 5, D–F, 
and Supplemental Figure 11). Collectively, these results indicated that NDNF plays an important role in 
limiting the growth and tumorigenic properties of  both mouse and human lung cancer cells.

Tumor-suppressive properties of  NDNF in the xenograft model. To assess the relevance of  NDNF in 
vivo, we generated subcutaneous xenograft tumors using the human A549 cells or mouse LLC1 cells in 
immune-compromised mice. We found that downregulation of  NDNF expression significantly promoted 
the growth of  A549 tumors (Figure 6A). Not only were the tumor sizes of  A549-NDNF-shRNA–derived 
xenografts notably larger than those of  xenografts originating from A549-scramble-shRNA cells at day 32 
after injection (Figure 6B), but the tumor weights of  A549-NDNF-shRNA–derived xenografts were also 
much higher than those of  xenografts originating from A549-scramble-shRNA cells at day 32 (Figure 
6B). Moreover, the percentage of  cells positive for Ki67, a marker of  proliferating cells, was greater in 
the NDNF-shRNA–derived xenografts compared with the percentage in the scramble-shRNA–derived xeno-
grafts (Figure 6C). NDNF knockdown had similar effects on LLC1-derived tumors (Figure 6, D–F). These 
results are consistent with the observation that NDNF expression levels negatively correlated with Ki67 
expression (Spearman’s r = –0.3915) and with the abundance of  transcripts of  other proliferation-related 
genes PCNA, CDC6, CDC45, and CDT1 (Supplemental Figure 12). Collectively, our in vitro and in vivo 
experiments support a tumor-suppressive role for NDNF in lung cancer.

Epigenetic silencing of  NDNF in lung adenocarcinoma. Tumor suppressor genes are often rendered dys-
functional through multiple mechanisms during the oncogenic processes. Such processes include mutation, 
deletion, genetic rearrangement, and epigenetic silencing of  transcription (64–66). Using data from cBio-
Portal (67, 68), we determined that reduced NDNF genomic DNA copy number or mutation of  the NDNF 
gene did not frequently occur in patients with lung adenocarcinoma. Thus, we explored other mechanisms 
of  lung cancer–associated downregulation of  NDNF.
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Epigenetic gene silencing associated with DNA methylation primarily in the promoter region is an import-
ant mechanism of gene inactivation in cancer (69). In lung cancer, hypermethylation inactivation of tumor sup-
pressor genes is common (70, 71). We investigated whether NDNF is epigenetically silenced through promoter 
methylation in lung adenocarcinoma. We analyzed 422 lung adenocarcinoma tissue samples with both gene 
expression data from RNA-Seq and matched DNA methylation data from Infinium HumanMethylation450 
microarray in TCGA database. Paired normal tissue was available for 21 of these samples. We compared the 
methylation level across the 16 CpG sites in the NDNF promoter region (Figure 7A). DNA methylation levels 
at 14 of the 16 CpG sites were significantly higher in tumor tissues than in normal tissues (Figure 7B). Further-
more, an inverse correlation (Spearman’s r = –0.6971) between NDNF expression and the average methylation 
level across all the 16 CpG sites in the NDNF promoter region was observed (Figure 7C). We also examined 
the magnitude of differential methylation across the 16 CpG sites. As reported previously (72), we found that 
the most dramatic DNA methylation alterations (ΔM) in lung adenocarcinoma preferentially occurred at CpG 
island shores, which are the relatively low CpG density regions flanking the traditional CpG island (Supple-
mental Figure 13). Consistently, the correlation between NDNF expression level and methylation level at indi-
vidual CpG sites located on each shore was greater than that within the traditional CpG islands (Supplemental 
Figure 14 and Supplemental Table 6). These data indicated that downregulation of NDNF can occur by epi-
genetic silencing in lung adenocarcinoma. Together, our results suggested that DNA methylation at the CpG 
island shores in the predicted promoter region contributes to NDNF silencing in lung adenocarcinoma.

Association between cancer-related DNA methylation sites and those for tissue-specific expression of  NDNF. DNA 
methylation is also a key epigenetic mechanism underlying tissue-specific gene expression (73, 74). Many 
of  the locations of  cancer-related methylation changes overlap with those that distinguish gene expression 
in normal tissues (72, 75–78). Thus, we analyzed histologically normal tissue samples adjacent to tumors 
across 5 tissue types — lung, bladder, breast, kidney, and prostate — with DNA methylation data in TCGA 
database. We found that methylation levels at most of  the 16 CpG sites in the NDNF promoter region 
were significantly lower in the lung when compared with the 4 other tissues in combination (Figure 7D) or 
individually (Supplemental Figure 15). Additionally, we observed an inverse correlation (Spearman’s r = 
–0.6363) between NDNF mRNA expression and the average methylation level across the 16 CpG sites in the 
samples from the 5 tissues with both gene expression data from RNA-Seq and matched DNA methylation 
data in TCGA database (Figure 7E). The greatest differences in tissue-specific DNA methylation (ΔM), as 
well as stronger correlations between NDNF expression level and the methylation level at individual CpG 
sites, occurred at CpG island shores (Supplemental Figures 16 and 17 and Supplemental Table 7). The ΔM 
values between either the combination or each of  the other 4 tissues individually and lung were highly cor-
related with that between lung adenocarcinoma tissues and normal lung tissue across the 16 CpG sites in 
the NDNF promoter region (Figure 7F and Supplemental Figure 18). Taken together, we demonstrated that 
lung cancer–related DNA methylation sites, predominantly occurring at CpG island shores, correspond to 
those associated with tissue-specific expression of  NDNF and contribute to NDNF silencing in lung cancer.

Discussion
Tissue-specific differences contribute to tumorigenesis, therapeutic responses, and the development of  resis-
tance that are associated with distinct cancer type (5–8). A thorough understanding of  these differences will 
improve prevention and early detection of  cancer, as well as inform the development and implementation of  
targeted cancer therapies. Our approach of  analyzing tissue-specific gene expression in normal tissue revealed 
both lung-enriched genes with well-known protumorigenic functions, such as WNT2, WNT3A, and RSPO4, 
as well as genes with previously recognized tumor-suppressive functions, such as ADAM metallopeptidase 
with thrombospondin type 1 motif  8 (ADAMTS8) and WNT inhibitor factor 1 (WIF1). An advantage of  
starting with normal tissue is the ability to identify both tissue-specific genes that may contribute to cancer 
through an increase in activity or expression and those that contribute following a decrease in expression. The 
latter are difficult to identify from studies starting with cancer tissue. For tumor-promoting sLungGenes, their 
contribution would depend on dysregulated activation of  the lung-enriched genes or their products, whereas 
inactivation of  sLungGenes with tumor-suppressive features may result in failure to restrain inappropriate cell 
proliferation, thus facilitating lung cancer progression. Together, our findings revealed the existence of  multi-
ple lung-enriched cancer-associated genes and suggested that the collective functions of  these factors may con-
tribute to the tissue specificity of  tumorigenesis and inform therapeutic intervention. Because NDNF is one 
of  the few top-ranking sLungGenes without any reported connection to lung cancer, we focused on this gene.
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Our analysis showed that NDNF exhibited tumor-suppressive features. Its expression was decreased 
in human lung adenocarcinoma and in a mouse model of  this cancer. Higher expression of  NDNF was 
significantly associated with better clinical outcome of  patients with lung adenocarcinoma (Figure 3, 
D–F). We determined that higher methylation of  the NDNF promoter at CpG island shores in lung ade-
nocarcinoma and in nonlung tissues was a mechanism for limiting the expression of  NDNF in cancer 
and physiologically to achieve tissue-specific expression. Exposing lung cancer cells in culture to purified 
Ndnf  reduced cell viability and decreased anchorage-dependent and -independent growth. NDNF or 
Ndnf knockdown enhanced the viability of  human and mouse lung cancer cell lines and promoted their 
anchorage-dependent and -independent growth. Knockdown of  human or mouse NDNF also enhanced 
growth of  tumors derived from these cell lines in xenograft models. Collectively, we demonstrate NDNF 
was preferentially expressed in both mouse and human lung and functioned as a secreted factor with 
tumor-suppressive features. Previous studies reported that NDNF promotes endothelial cell and cardio-
myocyte survival by activating AKT signaling (55, 56); however, we observed little or no effect of  exoge-
nously added Ndnf  on AKT signaling in A549 or LLC1 lung cancer cell lines (Supplemental Figure 19). 
Our analysis of  NDNF was limited by the antibody, which only recognized denatured protein and thus 
was useful for Western blot experiments but not for immunohistochemistry or depletion assays. Future 
studies and reagents are needed to uncover the mechanisms underlying the tumor-suppressive functions 
and the physiological roles of  NDNF in human and mouse lung.

Of note, most of  the top-ranking sLungGenes identified in our study are not exclusively expressed in the 
adult lung (Supplemental Figures 1–3), and these genes also have reported roles in other types of  cancer (Sup-
plemental Table 2). For example, ADAMTS8, which encodes a secreted protease with antiangiogenic prop-
erties, is a tumor suppressor that is silenced not only in lung carcinoma (79) but also in many other cancers, 
including brain tumors (80), breast carcinoma (81), head and neck squamous cell carcinoma (82), pancreatic 
cancer (83), and gastric or colorectal cancers (84). Likewise, WIF1 has been described as a tumor suppressor 
in lung cancer (85–88) and in osteosarcoma (89), kidney cancer (90), and pleomorphic adenoma (91). Indeed, 
a recent study of  renal carcinoma cells reported a role for NDNF in suppressing characteristics of  the epithe-
lial-mesenchymal transition (92). Thus, our study not only identified potentially tissue-specific cancer genes 
but also genes associated with cancers in multiple tissues. Tissue-specific cancer functions may arise through 
tissue-specific combinatorial effects of  the cancer-associated genes. Regardless, our study showed that analysis 
of  tissue-specific gene expression in normal tissue can provide insights into the molecular mechanisms of  
cancer (here, epigenetic gene silencing of  NDNF in lung cancer) and inform therapeutic approaches.

Methods
Generation of  sLungGenes gene list. The list of  predicted secreted proteins in human was downloaded from 
the HPA (https://www.proteinatlas.org/humanproteome/tissue/secretome) (46). The list of  predicted 
secreted proteins in mouse was downloaded from the curated database at MetazSecKB (http://proteomics.
ysu.edu/secretomes/animal/index.php) (47). Protein names were then converted to gene names according 
to UniProt database (http://www.uniprot.org) (93), yielding 3010 sGenes in human and 2833 sGenes in 
mouse. The sGene lists from human and mouse were merged, and 2591 orthologous genes conserved in 
human and mouse were selected for further analysis.

Gene expression data in adult human tissues were downloaded from 2 independent sources: the HPA 
database (37 tissue types) and the GTEx database (30 tissue types) (48). Gene expression data from 12 
tissue types in 10-week-old mice were downloaded from the ENCODE (49). For each gene, the median 
expression value (transcripts per million) from multiple samples of  each tissue was retrieved to represent 
the expression value in that tissue.

For each of  the orthologous human and mouse sGenes, the lung-preferential expression scores 
(hPLung_HPA, hPLung_GTEx, and mPLung) across available tissue types from 3 databases were independently cal-
culated using the following formula (94), where X is the gene expression level in each human or mouse 
tissue. The PLung scores are constrained between 0 and 1, where 0 indicates a gene not expressed and 1 
represents a gene that is expressed only in the lung.

	 (Equation 1)
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To mitigate possible bias caused by different numbers of  human and mouse tissues involved in the preferen-
tial expression scores calculation, the lung-preferential expression scores (hPLung_HPA, hPLung_GTEx, and mPLung) 
were then converted to lung-preferential expression Z scores (Supplemental Table 1) according to the fol-
lowing formula, where X is the lung-preferential expression score of  each gene and μ and σ are the mean 
and standard deviation of  the lung-preferential expression scores, respectively.

	 (Equation 2)
The 3D scatter plot was constructed using plot3D R package (http://CRAN.R-project.org/package=plot3D) 
by assigning the lung-preferential expression Z scores hPLung_HPA, hPLung_GTEx, and mPLung as the x axis, y axis, 
and z axis, respectively.

TCGA DNA methylation and gene expression data. DNA methylation array data, mRNA expression data, 
and corresponding clinical information (95) of  the lung adenocarcinoma data set were downloaded from 
TCGA data set available in Broad Institute GDAC FireBrowse portal (http://firebrowse.org). The platform 
for methylation array data was Illumina Infinium HumanMethylation450 BeadChip. The mRNA expres-
sion data were Illumina HiSeq rnaseqv2 Level 3 RSEM–normalized data

To study correlations between DNA methylation and NDNF expression in lung adenocarcinoma, 
DNA methylation array data from tumor tissues of  463 lung adenocarcinoma patients and mRNA 
expression data of  517 lung adenocarcinoma patients were downloaded. In addition, DNA methyl-
ation array data from 32 adjacent tumor tissues and mRNA expression data from 59 adjacent tumor 
tissues were also downloaded from the lung adenocarcinoma data set. Among these samples, 422 lung 
adenocarcinoma patients and 21 adjacent tumor tissues with both gene expression data and matched 
DNA methylation data were used to calculate the correlation between DNA methylation and NDNF 
expression in lung adenocarcinoma.

To study correlation between DNA methylation and NDNF expression in different tissues, we used 
DNA methylation array data and mRNA expression data from the adjacent normal tissues of  7 cancer 
types across 5 tissues (Supplemental Table 8).

Animal studies. All animal studies were approved by the Institutional Animal Care and Use Commit-
tee (IACUC) at George Washington University. All handling, transplantation, and infection procedures 
were conducted in a laminar flow biosafety hood. C57BL/6N mice were purchased from the Charles 
River Laboratories. K-rasLA1 mice were originally generated by Tyler Jacks at Massachusetts Institute 
of  Technology (9). Genotypes were confirmed by PCR. For xenograft experiments, female athymic 
(nu/nu) nude mice (The Jackson Laboratory), 6–8 weeks of  age and weighing 20–25 g, were housed in 
appropriate sterile filter-capped cages and provided food and water ad libitum.

Xenograft studies were performed as follows. Exponentially growing cultures of  A549 or LLC1 
cells were harvested, washed, and resuspended in DMEM. Viable A549 cells (5 × 106) or LLC1 cells (1 
× 105) were transplanted subcutaneously into both flanks of  the athymic mice. Tumor size was moni-
tored every 2–3 days and measured using a caliper. The tumor volume was calculated by the formula 
V (cm3) = (L × W2)/2, where L represents the longest dimension and W the shortest dimension of  the 
tumor. The mice were sacrificed at day 32 or day 23 to collect tumors.

RT-qPCR. Normal mouse tissues from lung, brain, ovary, heart ventricle, adipose tissue, back skin, 
spleen, stomach, thymus, bladder, liver, testis, muscle, kidney, pancreas, small intestine, and colon were dis-
sected from 10-week-old C57BL/6N mice. Tumor and matched normal lung tissue adjacent to tumor were 
dissected out from 20-week-old K-rasLA1 mice. Total RNA was isolated from freshly dissected mouse tissues 
using the mirVana RNA isolation kit (AM1560, Thermo Fisher Scientific) in accordance with the manu-
facturer’s instructions. Possible contamination of  genomic DNA was excluded by treatments of  DNAse I 
(AM2222, Thermo Fisher Scientific). RNA was reverse-transcribed to cDNA using Maxima Reverse Tran-
scriptase (EP0742, Thermo Fisher Scientific) with random hexamers. All samples within an experiment 
were reverse-transcribed at the same time; the resulting cDNA was stored in aliquots at –80°C until used.

cDNA was PCR-amplified using iQ SYBR Green Supermix (1708880; Bio-Rad). qPCR was carried 
out with an ABI PRISM 7700 Sequence Detection System (Applied Biosystems). Reactions were run in 
triplicate in 3 independent experiments. Expression data were normalized to the geometric mean of  house-
keeping gene GAPDH and were analyzed using the 2–ΔΔCT method (96). The primer sequences are pro-
vided in Supplemental Table 9.
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Protein extraction and immunoblotting. Normal mouse tissues from lung, heart ventricle, liver, thymus, kid-
ney, stomach, pancreas, small intestine, and colon were dissected from 10-week-old C57BL/6N mice (n = 3). 
Tumor and matched normal lung tissue adjacent to tumor were dissected out from 20-week-old K-rasLA1 mice (n 
= 8). Freshly dissect mouse tissues were lysed individually in RIPA buffer (50 mM Tris pH 8, 150 mM NaCl, 
1% Triton X-100, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate) supplemented with phospha-
tase (PhosSTOP, Roche) and protease (Complete, Roche) inhibitors. The lysate was clarified by centrifugation 
(18,000 g for 15 minutes at 4°C), and proteins were recovered directly in SDS-PAGE sample buffer. Proteins 
were separated by SDS-PAGE under reducing conditions and then transferred onto PVDF membranes (Milli-
poreSigma). After protein transfer, the membranes were blocked and then immunostained with primary anti-
bodies and HRP-conjugated secondary antibodies. Antibodies used were listed in Supplemental Table 9C. 
Blots were developed using Immobilon Forte Western HRP substrate (MilliporeSigma, WBLUF0100) with 
GeneSys Imaging System (Syngene).

RNAscope ISH. Human NDNF and mouse Ndnf mRNA were detected in tissue sections using the 
Advanced Cell Diagnostic RNAscope 2.5 HD Detection Reagent-RED kit (322350, Advanced Cell Diag-
nostics). The target probe sets were generated and supplied by the manufacturer (Supplemental Table 9). A 
reference RNAscope hybridization protocol provided by Advanced Cell Diagnostics (http://www.acdbio.
com/technical-support/user-manuals) was essentially followed. Briefly, prior to ISH, slides were baked 
for 1 hour at 60°C. Sections were treated with hydrogen peroxide for 10 minutes at room temperature to 
inhibit endogenous peroxidases. Target retrieval was carried out at boiling temperature for 15 minutes. The 
tissue sections were completely dried and treated with a broad-spectrum Protease Plus solution (322330, 
Advanced Cell Diagnostics) at 40°C for 30 minutes. The probes were then hybridized at 40°C for 2 hours. 
Probe hybridization was followed by serial amplification steps. All washing steps following hybridization 
and during amplification consisted of  3 incubations in washing buffer (provided with the kit) for 2 min-
utes at each step. A final hybridization step using an alkaline phosphatase–labeled probe was followed by 
incubation with Fast Red (322360, Advanced Cell Diagnostics) substrate that resulted in red precipitates 
(NDNF/Ndnf mRNA signal). Slides were washed in water and counterstained with 50% hematoxylin (Mil-
liporeSigma) for 2 minutes. Sections were dried at 60°C for at least 15 minutes, submerged in xylene, and 
covered with EcoMount mounting media (Biocare Medical).

Quantification of  NDNF mRNA expression. The analysis of  NDNF mRNA expression detected by RNA-
scope ISH in the tumor samples and normal lung samples (limited to the alveolar epithelium) was carried 
out using direct light microscopy in at least 5 fields at original magnification ×200. The ISH scores were 
determined independently by 2 investigators blinded to the patients’ clinical data. The NDNF mRNA 
expression detected by RNAscope ISH was scored following a semiquantitative scale according to the Fro-
mowitz standard (97). The staining intensity was scored as 0 (no staining), 1 (weak staining), 2 (moderate 
staining), and 3 (strong staining). The percentage of  positive cells was divided into 4 levels: 1 (0%–25% 
positive cells), 2 (26%–50% positive cells), 3 (51%–75% positive cells), and 4 (76%–100% positive cells). 
The multiplication of  the intensity and percentage was used to represent the final ISH score ranging from 
0 to 12. The total expression of  NDNF was determined as either low expression with ISH score less than 6 
or high expression with ISH score at least 6, which were taken for quantification in Supplemental Table 5.

Immunofluorescence. Xenograft tumor tissues were fixed overnight in 4% paraformaldehyde at 4°C. Tissues 
were cryoprotected in 30% sucrose overnight at 4°C and then embedded in O.C.T. (Tissue-Tek, Sakura Finetek). 
Tissue sections (6 μm) were dried for 30 minutes at room temperature (RT), and O.C.T. was removed by dilution 
in PBS. Sections were blocked with PBS, 10% BSA, 5% normal goat serum, and 0.3% Triton X-100 for 60 min-
utes at RT, followed by primary antibody overnight at 4°C in a humidified chamber. After rinsing 5 times with 
PBS containing 0.3% Triton X-100, sections were incubated with secondary antibody and DAPI (MilliporeSig-
ma) at RT for 2 hours. After rinsing 5 times with PBS containing 0.3% Triton X-100, sections were mounted 
(Vector Laboratories) for imaging. The primary and secondary antibodies are listed in Supplemental Table 9. 
Microscopy was performed on a Carl Zeiss Cell Observer spinning disk confocal microscope. Percentage of  
Ki67+ cells was calculated by dividing the number of Ki67+ cells by the total cell number recognized by DAPI 
per field. A total of 20 random fields were scored per tumor for each subcutaneous xenograft (n = 5).

Cell lines and tissue microarrays. HEK293T, A549, and LLC1 cells were purchased from American Type Cul-
ture Collection (ATCC) and maintained in complete medium: DMEM (Gibco, Thermo Fisher Scientific) con-
taining 10% heat-inactivated fetal bovine serum (Gibco, Thermo Fisher Scientific), 100 U/mL of penicillin, and 
100 μg/mL of streptomycin. All the cells were grown in a humidified atmosphere containing 5% CO2 at 37°C.
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Human lung adenocarcinoma tissue microarrays (BCS04017a, LC1005a, LC1501, and LC1921a) were 
purchased from US Biomax. Normal human lung (HuFPT131), breast (HuFPT127), spleen (HuFPT082), 
and liver (HuFPT074) were purchased from US Biomax. Antibodies and plasmids used in this study are 
listed in Supplemental Table 9.

Ndnf  protein purification. Ndnf  protein purification was carried out by GenScript: 293-6E cells were 
grown in serum-free FreeStyle 293 Expression Medium (12338018, Gibco, Thermo Fisher Scientific) and 
transiently transfected for expression of  mouse Ndnf  tagged with Myc and 6 × His (mNdnf-MycHis). The 
cell culture supernatant collected 5 days after transfection was used for protein purification. Cell culture 
supernatant was centrifuged at 10,000 g for 30 minutes at 4°C and loaded onto a HisTrap FF Crude histi-
dine-tagged protein purification column (11-0004-58, GE Healthcare) at 1.0 mL/min. After washing and 
elution, the eluted fractions were pooled, and the buffer was exchanged with PBS (pH 7.2). The purified 
protein was analyzed by SDS-PAGE and Western blot for yield and purity (>85%). The protein solutions 
were stored in aliquots at –80°C until used.

Generation of  Ndnf  antibody. Rabbit anti-mouse Ndnf  polyclonal antibody was generated by immuniza-
tion of  New Zealand rabbits with 6 × His–tagged full-length Ndnf  protein (amino acids 20–568) purified 
from E. coli. Rabbits were inoculated on days 0, 14, 28, and 56 using 0.5 mL of  bacterial cell suspension 
per animal per immunization. Sera were collected at day 0 (before immunization), day 38, day 66, and day 
87. After testing the specificity of  the antibody by ELISA, polyclonal IgG from the sera was purified by 
antigen-affinity columns. The eluate was extensively dialyzed against PBS and stored with 1 mg/mL carrier 
BSA. Immunization and antibody purification were carried out by GenScript.

Cell proliferation assay. Cell proliferation was determined using CCK-8 (CK04-05, Dojindo) according 
to the manufacturer’s instructions. Briefly, 1 × 103 cells were seeded on 96-well plates and cultured for 24 
hours. One hundred microliters of  CCK-8 buffer was added to each well, and plates were incubated for 2 
hours. The absorbance was measured at 450 nm using a microplate reader (Epoch, Bio-Tek Instruments). 
Each assay was repeated with more than 3 replicates each time.

Colony formation assay. One hundred viable LLC1 cells or 200 A549 cells were seeded in 12-well culture 
plates. Medium was exchanged every 2 days with fresh complete medium with or without 200 ng/mL 
purified Ndnf  protein. After 14 days, cells were fixed with methanol for 5 minutes and stained with 0.05% 
Coomassie blue in 20% methanol and 5% acetic acid. The colony numbers, defined as more than 50 cells/
colony, were counted. Each assay was repeated with more than 2 replicates each time.

Soft agar assay. Two thousand viable cells were resuspended in 1 mL of  complete medium with or 
without 200 ng/mL purified Ndnf  protein containing 0.3% Noble agar (214220, Difco). Resuspend-
ed cells were plated on 12-well plates containing a solidified bottom layer of  complete medium (with 
or without Ndnf  as appropriate) containing 0.6% agar. One hundred microliters of  complete medi-
um containing 0.25% agar with or without purified Ndnf  proteins (200 ng/mL) was added every 3–4 
days. After 2 weeks, colonies were visualized by staining with 100 μL of  1 mg/mL 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 30 minutes. The spheres over 100 μm in diameter 
were counted. Each assay was repeated with more than 2 replicates each time.

Viral infection. shRNA-expressing lentiviral plasmids (pLKO.1-puro) targeting Ndnf or NDNF and a con-
trol scrambled shRNA (an shRNA sequence not targeting any known gene) plasmid were purchased as 
bacterial glycerol stocks from MilliporeSigma (Supplemental Table 9). For overexpressing Ndnf or NDNF, 
mouse or human Ndnf/NDNF cDNA without the 3′-UTR was subcloned into the retroviral vector plasmid 
pBABE-puro (Addgene, 1764) at unique BamHI and EcoRI sites (Supplemental Table 9). To produce lentiviral 
particles, this vector was cotransfected with the lentiviral packaging plasmids pLP1, pLP2, and pLP/VSVG 
(Invitrogen, Thermo Fisher Scientific) into HEK293T cells. Similarly, to produce retroviral particles, overex-
pressing plasmid was cotransfected with the retroviral packaging plasmid pLP/VSVG (Invitrogen, Thermo 
Fisher Scientific) into the GP2-293 packaging cell line, which expresses gag and pol proteins (Clontech). Lipo-
fectamine 2000 (Invitrogen, Thermo Fisher Scientific) was used as the transfection reagent according to the 
manufacturer’s instructions. At 48–72 hours after transfection, the virus-containing cell culture medium was 
harvested and frozen in aliquots, which were then used in transducing A549 or LLC1 cells. Transduced cells 
were selected by growth in medium with 1 μg/mL puromycin (A1113803, Thermo Fisher Scientific). NDNF/
Ndnf silencing efficiency was measured by RT-qPCR as shown in Supplemental Figure 10.

Statistics. Statistics were performed using GraphPad Prism 8. For comparison of  central tendencies, nor-
mally distributed data sets were analyzed by unpaired 2-sided t test under the assumption of  equal variance; 
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non-normally distributed data sets were analyzed by nonparametric Mann-Whitney U tests. One-way ANOVA 
followed by Holm-Šídák multiple-comparisons test was used for multiple comparisons. The χ2 test was applied 
to analyze the relationship between NDNF mRNA levels detected by RNAscope ISH and pathological status. 
Differences were considered statistically significant when P < 0.05.

Study approval. All animal studies were approved by the George Washington University IACUC 
(Washington, DC, USA). No patient samples were directly used in this study.
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