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C A N C E R

Single-cell morphology encodes metastatic potential
Pei-Hsun Wu1,2*, Daniele M. Gilkes1,3, Jude M. Phillip2, Akshay Narkar4, Thomas Wen-Tao Cheng2,5, 
Jorge Marchand2, Meng-Horng Lee1,2, Rong Li2,3,4,6, Denis Wirtz1,2,3*

A central goal of precision medicine is to predict disease outcomes and design treatments based on multidimensional 
information from afflicted cells and tissues. Cell morphology is an emergent readout of the molecular underpinnings 
of a cell’s functions and, thus, can be used as a method to define the functional state of an individual cell. We measured 
216 features derived from cell and nucleus morphology for more than 30,000 breast cancer cells. We find that single 
cell–derived clones (SCCs) established from the same parental cells exhibit distinct and heritable morphological traits 
associated with genomic (ploidy) and transcriptomic phenotypes. Using unsupervised clustering analysis, we find that 
the morphological classes of SCCs predict distinct tumorigenic and metastatic potentials in vivo using multiple 
mouse models of breast cancer. These findings lay the groundwork for using quantitative morpho-profiling in vitro 
as a potentially convenient and economical method for phenotyping function in cancer in vivo.

INTRODUCTION
Much effort is being made to explore the predictive power of genomic 
alterations in the detection and prognosis of diseases (1–4). However, 
a high degree of genomic instability in advanced cancers with meta-
static disease endows these genomes with a myriad of abnormalities 
affecting the expression and function of tens of thousands of genes 
(5, 6). Recent studies show that individual (clonal) cells can display 
a broad landscape of properties, such as different gene expression 
patterns (7) and invasive behaviors (8), further increasing the challenge 
of deciphering the molecular basis of metastasis in cancer. A potential 
solution to this problem is to use a surrogate readout of a combinatorial 
set of genomic alterations that lead to similar outcomes. Previous 
studies using RNAi screens have shown that cell morphology (CM) 
can be an informative readout that is highly associated with molecular 
underpinnings (9, 10). Furthermore, recent studies indicate that the 
morphological status of cells can be linked to fundamental physio-
logical properties of cells, such as cell cycle progression (11), cell-matrix 
adhesion properties, responsiveness to drug (8–10), aging (12), gene 
expression patterns (7), and invasiveness potential (8). To this end, CM 
in a defined environment is an emergent, yet relatively easily measurable, 
outcome resulting from the coupling between a cell’s biochemistry 
and its biophysics that are ultimately encoded by the cell genome.

RESULTS
CM is a highly heritable trait at the single-cell level
We used a long-term, time-lapse recording of MDA-MB-231 human 
breast cancer cells growing in vitro, which readily suggested a high 
degree of cellular heterogeneity, including large variations in cell 
motility, cell size, and CM (movie S1). To determine whether the pheno-
typic traits presented by individual cells were stochastic or persistent, 
we used an ultralow-density growth assay to assess the morphology 

of individual cells in colonies. Cells were morphologically similar to 
other cells in the same colony but distinct from cells in other colonies. 
The morphological traits of an individual cell persisted over extended 
periods of time (>1 month in culture). This observation suggested 
that morphological traits of individual parental cells were passed on 
to their progeny either by inheritance or by sharing a similar local 
microenvironment (Fig. 1A). A similar phenomenon was observed 
with six cancer cell lines derived from primary pancreatic tumors and 
metastases (fig. S1).

To further investigate the clonal architecture of CM, we generated 
single-cell clones (SCCs) obtained through the expansion of indi-
vidual parental MDA-MB-231 breast cancer cells. Cells in each SCC 
displayed a distinct morphology (Fig. 1, B and C, and fig. S2) (7). To 
quantitatively describe the morphological spectrum of SCCs, we 
measured the morphology of cells in 14 SCCs and the parental cell 
line using a previously developed high-throughput microscopy and 
analysis system (11, 13–18). Briefly, cells and their nuclei were fluo-
rescently stained and imaged using widefield fluorescence microscopy. 
For each well, a ~6 mm by 6 mm field of view was imaged and re-
constructed from 81 (9 by 9) image tiles collected with a 10× objective. 
The morphology of cells was then automatically measured using a 
custom software (see details in Materials and Methods).

It has been previously shown that using a limited number of rep-
resentative cell shapes is an effective strategy to explore complex CM 
datasets (9, 10). Here, we found that the morphology of cells in SCCs 
was categorized into seven CM classes (denoted A to G), which were 
themselves derived from a clustering analysis based on morphological 
features describing all >30,000 cells analyzed (Fig. 1D and Materials 
and Methods). This analysis provides visual and quantitative repre-
sentations of CM across SCCs by assessing the distributions of these 
seven CM classes (e.g., Fig. 1E). These CM classes are associated with 
distinct properties of traditional CM parameters such as size, shape 
factor, and aspect ratio of cells and nuclei (fig. S3A).

On the basis of unsupervised hierarchical clustering of the CM 
distributions of the 14 SCCs, we classified the SCCs into six distinct 
morpho-types (M1 to M6) (Fig. 1F). All SCCs showed a certain 
degree of morphological heterogeneity as measured by Shannon’s 
entropy of the morpho-types. The parental cells had a substantially 
higher level of morphological heterogeneity compared with SCCs 
(fig. S3, B and C). The global CM distribution obtained by ensemble- 
averaging the CM distributions of the 14 SCCs (denoted here <SCC>) 
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was approximately the same as the CM distribution of the parental 
cells (Fig. 1F). Furthermore, SCCs displayed morphologies similar 
to colonies in the ultralow-density growth assay (Fig. 1, A and C).

Together, these results suggest that the parental MDA-MB-231 
breast cancer cell population is composed of distinct, coexisting 
classes of cells with heritable morphological traits that persist over 
long time scales.

Morphological phenotypes in vitro and differential  
tumor progression in vivo
Individual MDA-MB-231 breast cancer cells can show distinct be-
havior in vivo, including differential ability to disseminate from the 
primary tumor and differential organ dissemination (8). To determine 
whether different cell morphologies of SCCs derived from MDA-
MB-231 breast cancer cells corresponded to distinct outcomes in vivo, 
SCCs were injected into the mammary fat pad of mice, which were 
monitored for 50 days. We found that SCCs displayed a broad range 
of tumorigenicity (as measured by the weight and size of the primary 
tumors) and metastatic potential (as measured by human DNA 
content in the lungs) (Fig. 2A and fig. S4). For instance, the subclone 
SCC-M5-1317 formed tumors that were 50% larger than tumors 
produced by the parental MDA-MB-231 cells, but had a 99% decrease 
in its ability to form metastasis compared with parental cells (fig. S4). 
In contrast, SCC-M6-1308 and SCC-M6-1319 formed tumors of 
sizes similar to those produced by parental cells, but displayed 5 
to 10 times more effective metastasis than parental cells. We also 
identified a group of SCCs (e.g., SCC-M2-1012) that formed small 
tumors that did not metastasize. Implanted SCCs also produced 
substantially different numbers of circulating tumor cells (CTCs) in 
the blood (Fig. 2B). Analysis of histological sections of the mouse 
lungs showed multiple metastatic lesions in mice bearing tumors 
formed by SCC-M6-1308 and SCC-M6-1319, but no metastatic 

lesions for SCC-M5-1317 and SCC-M2-1012 (Fig. 2C and fig. S4). 
Short tandem repeat (STR) analysis showed that SCCs with distinct 
metastatic potential (SCC-M1-1022, SCC-M6-1308, and parental 
cells) had the exact same STR profiles, confirming their common 
ancestral origin.

We classified the SCCs into four grades of aggressiveness based 
on their tumorigenicity and metastatic potentials: (i) low tumorigenicity 
(LT), (ii) tumorigenic (T), (iii) metastatic (M), and (iv) hypermetastatic 
(HM) (summary of information about SCCs is given in table S1). 
We found only a weak correlation between tumor size and lung 
metastasis (Pearson’s correlation coefficient  = 0.32) (Fig. 2A). 
This is consistent with the fact that SCCs that were highly tumorigenic 
could be either metastatic or not metastatic. In contrast, the number 
of CTCs per volume of blood was highly correlated with lung metastasis 
( = 0.97) (Fig. 2B), but poorly correlated with tumor size (fig. S4). 
The high correlation between the number of CTCs and metastatic 
burden in the lungs indicates that SCCs that can extravasate to blood 
vessels have higher potential for lung metastasis. Nevertheless, that 
these CTCs could come from lung metastases as well cannot be ruled 
out (19). We note that SCCs enriched with cells displaying a spindle-like 
morphology (i.e., cell shape with a high aspect ratio) are not the ones 
showing a high metastatic potential (fig. S4H).

Together, these results indicate that SCCs with the same morpho- 
types displayed similar in vivo outcomes, including tumorigenicity, 
tumor cells in circulation, and metastatic potential (Fig. 2A).

The morphological diversity of SCC correlates with distinct 
gene expression patterns
We next determined whether distinct morpho-types and corre-
sponding tumorigenicity and metastatic potential were associated with 
distinct gene expression patterns. Transcriptomic microarray analysis 
showed that the gene expression profiles of SCCs at approximately 
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Fig. 1. Cell polymorphism—cell morphology is a highly heritable trait at the single-cell level. (A) Nuclei (blue) and F-actin organization (green) of MDA-MB-231 
breast cancer cells after growth for 4 days from a sparse initial seeding density, showing how cells formed several spatially and morphologically distinct clusters. Repre-
sentative high-resolution images of different clonal cells highlighted as I, II, and III are shown at the bottom. (B) Schematic plot showing the serial dilution procedure used 
to establish single-cell clones (SCCs) from a parental cell population. (C) Nuclei (blue) and F-actin organization (green) in cells of two established SCCs, SCC-M1-1022 and 
SCC-M6-1308, displaying distinct morpho-types. (D) Flow diagram illustrating the process used to quantify cell morphology (CM) through an unsupervised machine 
learning approach. A classifier model was built on the basis of all 14 SCCs and the parental MDA-MB-231 cells through principal component analysis and k-means clustering 
analysis. The morphology of all measured cells was classified into one of seven cell morph classes. Representative CM for each cell morph class (A to G) is shown at the 
bottom. (E) The fraction of cells in each cell morph class was used to quantitatively represent morpho-types of SCCs. Cell morph class fraction profiles for SCC-M1-1022 
and SCC-M6-1308 are shown in the histograms. (F) Unsupervised hierarchical clustering of the SCCs based on their morpho-types (i.e., fraction of cells in cell morph classes A 
to G). The names of established SCCs were further marked as M1 to M6 based on six distinct cell morpho-type clusters revealed in the dendrogram.
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the same passage number were strongly associated with specific SCC 
morpho-types (Fig. 3A). SCCs belonging to the same morpho- type 
were located in close proximity of each other in the gene expression 
space, spanned by the first two principal components PC1 and PC2. 
Similar results were obtained using an unsupervised hierarchy clustering 
analysis based on expression data from genes that displayed the highest 
expression variations—measured by standard deviations—among SCCs 
(200 gene probes with 144 unique genes; see full list in table S2).

Overall, we found that there were four distinct gene expression 
subtypes among SCCs and the parental breast cancer cells (Fig. 3B). 
In the list of 200 gene candidates that were potentially responsible for 
the cell polymorphism, the SPANX family (SPANXB2 and SPANXE)—
cancer-testis antigens that are often highly expressed in tumor cells—
featured the most variation, with approximately 1000-fold difference 
between SCCs with the lowest and highest levels of expression. A recent 
study has shown that the expression of members of the SPANX gene 
family promotes breast cancer invasion (20). Several genes in this list 
have been previously associated with patient survival and cancer 
metastasis, including CDH11 (21), KISS1 (22), MAGEA3 (12, 23), 
MAGEC1 (24), TNFSF10 (25), CXCR4 (26), and GDF15 (18).

Mutual correlations between morpho-types, gene expression classes, 
and aggressiveness further confirmed that gene expression profiles 
(Fig. 3) and aggressiveness in vivo (Fig. 2, A to C) are reflected by 
the morphology of SCCs (Fig. 3C). This analysis shows that cells of 
LT are particularly small (enriched in cell morphs A and C); enrich-
ment in elongated cells (cell morph F) was found only in groups of 
tumorigenic—but not metastatic—SCCs. The shapes of cells that 
were exclusively metastatic exhibited enriched cell morphs E and G: 
Their morphology tended to be rounder and larger (enriched in 
cell morph E) (Fig. 3C).

Distinct gene expression profiles of SCCs reveal  
prognostic genes
We further evaluated the genes that were differentially expressed among 
functionally distinct SCCs. A total of 218 genes (table S3) were either 
significantly down-regulated or significantly up-regulated [>5-fold 
and P value from one-way analysis of variance (ANOVA) <0.05] when 
comparing SCCs of different tumorigenicity and metastatic potential 
(Fig. 4A). Among these 218 genes, 189 genes (87%) were associated 
with the comparison of LT and M′ tumors, in contrast to 38 genes 
that were associated with the comparison of T and M′ tumors (Fig. 4A). 

This indicates that at the transcriptomic level, SCCs of LT were more 
different from metastatic SCCs (M′) than tumorigenic SCCs. Of 
38 genes that were differentially regulated between T and M′, 28 (74%) 

Fig. 2. Morphological phenotypes in vitro and differential tumor progression in vivo. (A and B) Scatter plot showing both tumor size and the extent of lung metas-
tasis resulting from the injection of 14 SCCs and parental MDA-MB-231 cells into the mammary pad of SCID mice. At least four mice were tested for each SCC (A). The 
number within each circle represents the morpho-type class of the corresponding SCC. On the basis of tumorigenicity and metastatic burden in the lung, these SCCs were 
further classified into four groups: low tumorigenicity (LT), tumorigenic (T), metastatic (M), and hypermetastatic (HM). The Pearson’s correlation coefficient between the 
effective metastasis and tumor weight among all SCCs is 0.32. The number of circulating tumor cells (CTCs) is highly correlated with lung metastasis, with a correlation 
coefficient of 0.96 (B). (C) Histological sections of mice lung show that clear metastatic lesions are present for SCC-M6-1308, SCC-M6-1319, and parental cells, but not in 
other SCCs, including SCC-M2-1012, SCC-M2-1304, and SCC-M2-1022. au, arbitrary units.

Fig. 3. Morphological diversity of SCCs is driven by distinct gene expression 
patterns. (A) The first and second principal components obtained from the princi-
pal component analysis of gene expression data were used to show the landscape 
of whole genome expression profile of the SCCs. The number within each circle 
represents the morpho-type class of each SCC. SCCs with the same morpho-type 
classes in general clustered together. (B) Unsupervised hierarchy clustering analysis 
using differentially expressed genes among these SCCs (see detailed list of genes 
in table S2) shows four distinct gene expression classes (G1 to G4). SCCs within the 
same morpho-type class are classified within the same gene expression class with 
the exception of SCC-M2-1012. SCCs within G1 and G3 gene expression classes 
exhibit multiple morpho-type classes. (C) Diagram showing mutual relations between 
morpho-type, gene expression class, and outcomes in vivo for different SCCs. 
Polar-petal plots were used to visualize fraction profiles of cell morph classes for 
the six different morpho-types. The length of a petal indicates the fraction size for 
the corresponding CM class.
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also could differentiate LT from T tumors, suggesting that tumorigenic 
(T) SCCs represent an intermediate transcriptomic state between 
LT SCCs and M′ SCCs.

To explore the relation between morpho-types and gene expres-
sion of SCCs, we cross-compared the list of 218 genes with the list 
of 883 genes functionally annotated as “regulation of cell shape” 
(GO:0000902) by gene ontology (27–29). We found that 22 genes 
co-occurred in both lists, which corresponds to a P value of 2.42 × 10−4 
(table S4). Since our findings show that morpho-types of SCCs are 
highly associated with their functions in vivo, this result strongly 
suggests that the morphological heterogeneity of SCCs is a result of 
differential expressed genes, such as interleukin-6 (IL-6), IL-7R, etc., 
which may play a role in tumor progression (30).

We further investigated the potential mechanisms by which 
morpho-type M6 may encode metastatic potential in vivo. M6 is 
characterized by cells displaying large nuclei, which may be indicative 
of an increase in ploidy (31, 32). To test this hypothesis, we analyzed 
the degree of ploidy of SCCs. Measurement of the distribution of the 
number of chromosomes for each SCC, using the metaphase-spread 
assay, showed that SCCs with high metastatic potential (M′ SCC) 

displayed a substantial higher average number of chromosomes 
(77 to 86) than LT SCCs and T SCCs (50 to 59) and parental MDA-
MB-231 cells (~59) (Fig. 4C). This is consistent with experimental 
and clinical evidence that suggests that tetraploidization is a frequent 
genomic abnormality associated with enhanced metastasis, possibly 
due to a high rate of aneuploidy production in subsequent cell divisions 
and/or better tolerance of aneuploidy due to higher basal ploidy (33–36). 
All SCCs exhibited wide distributions in chromosome numbers (Fig. 4B), 
suggesting that high chromosome instability is inherent in all cells 
derived from the parental breast cancer cell population.

Another morphological characteristic of the morpho-type M6 is 
the highly symmetric shape of the cells compared with the much more 
spindle-like morphology of the other morpho-types on two-dimensional 
(2D) glass surfaces. As cell shape is often a readout of the produc-
tion of cortical cytoskeletal forces (17), we compared the motility of 
different SCCs in 3D matrices of controlled collagen I content (37, 38). 
For all motility models tested, including cells on 2D substrates of 
controlled stiffness and cells embedded in 3D collagen matrices (39, 40), 
we did not find a correlation between motility and metastatic potential 
(fig. S5). The proliferation rate of SCCs in culture showed that the 

Fig. 4. Distinct gene expression profiles of SCCs reveal prognostic genes. (A) Venn diagram showing the number of genes that are found to be significantly different 
(>5-fold and P value from one-way ANOVA <0.05) between three different in vivo grades of aggressiveness for SCCs (i.e., LT versus T, T versus M′, and LT versus M′). 
M′ includes both M and HM. (B and C) Representative image showing 4′,6-diamidino-2-phenylindole (DAPI)–stained spreading chromosome of SCC-M6-1308 (B). Chro-
mosome number counted using the metaphase spreading assay for parental cells (n = 44), and cells from SCC-M3-1001 (n = 24), SCC-M3-1006 (n = 11), SCC-M2-1012 
(n = 22), SCC-M2-1311 (n = 18), SCC-M2-1304 (n = 18), SCC-M6-1316 (n = 26), SCC-M6-1308 (n = 31), and SCC-M6-1319 (n = 22). One-way ANOVA test shows there is a sig-
nificant difference, with a P < 0.0001 (C). (D) Score for effective metastasis to the lung in the tail-vein injection mouse model (n = 5) shows significant difference (P = 0.0012 
by Student t test) between tumorigenic clone SCC-M2-1304 (mean lung effective metastasis score, 0.034) and metastatic clone SCC-M6-1308 (1.159). (E) Differentially 
expressed genes between LT SCC versus M′ SCC were used to investigate their prognostic power. A cohort of 1379 tumors from patients with breast cancer was used to 
test the predictive potential of identified gene sets. Patients were separated into two groups based on the average expression level of these identified genes, and the 
Kaplan-Meier survival curves for the two groups of patients were plotted. For the genes that were up-regulated in the M′ SCCs, no significant prognostic effect was found. 
However, the results show that patients with higher expression levels of metastasis suppressor genes (i.e., up-regulated genes in LT) have a significantly longer survival 
time than those with low expression (P = 0.0001). P value is evaluated using log-rank test.
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highly metastatic SCC clones and parental MDA-MB-231 cells had 
the highest population growth rates among SCCs (fig. S5B).

Direct injection of tumorigenic and metastatic SCCs into blood vessels 
through the tail vein showed that metastatic SCCs (SCC-M6-1308) 
could more effectively extravasate and colonize the lung, suggesting 
that the metastatic potential of the SCCs is determined by their 
lung-seeding capacity (Fig. 4D and fig. S6).

Last, we compared the distant metastasis–free survival (DMFS) 
of patients with breast cancer, which was stratified by expression levels 
using a cohort of 1379 tumors obtained from patients with breast 
cancer (GOBO database, Gene expression–based outcome for breast 
cancer) (41). Of the 218 genes identified by our SCC classification, 
we found 155 genes in this cohort (see summary in table S3). Kaplan- 
Meier survival analysis showed that patients with tumors show-
ing a higher level of expression of tumor-suppressor genes—the 
genes that were up-regulated when comparing LT and M—had a 
significantly improved DMFS (P = 0.0001) than patients with tumors 
showing low expression of these genes (Fig. 4D). Consistent with 
this result, tumors of patients with a high expression of genes that 
were up-regulated in T or LT tumors in comparison to M′ or T tumors 
had significantly longer DMFS (fig. S7), confirming the role of cancer 
cell polymorphism in tumor evolution and progression.

DISCUSSION
Together, our analysis of SSCs derived from a parental breast cancer 
cell line demonstrates clonally persistent morphological heterogeneity. 
These SCCs show a wide range of distinct tumorigenic and meta-
static potentials in vivo. The progression and outcomes of SSC-derived 
cancers in mice are associated with distinct patterns of gene expres-
sion. The same genes that are differentially regulated when comparing 
metastatic to nonmetastatic SCCs are of prognostic value to assess 
metastasis-free patient survival. These results support our hypothesis 
that CM is a holistic readout (in physics, CM would be called an 
“emergent” property) of the complex genomic and gene expression 
changes in cancer cells. The morphological features that predict 
metastatic potential are associated with increased ploidy. High basal 
ploidy provides better tolerance of diverse aneuploid karyotypes, 
which produce the phenotypic variation driving adaption of metastatic 
tumors to novel microenvironments.

We anticipate that incorporating single-cell analysis of intratumoral 
heterogeneity could further improve diagnosis and prognosis for 
individual patients and that quantitative cell phenotyping analysis 
in vitro could offer an effective and economical method to decipher 
complex cellular heterogeneity in tumors to identify lethal cancer 
cell subtypes for diagnostic and therapeutic purposes.

MATERIALS AND METHODS
Cell lines and culture
The parental breast cancer cell line MDA-MB-231 (42) and derived 
SCCs were maintained in high-glucose (4.5 mg/ml) Dulbecco’s 
minimum essential medium supplemented with 10% fetal bovine 
serum and 1% penicillin-streptomycin. Cells were maintained at 
37°C in a 5% CO2, 95% air incubator.

Establishment of SCCs
A suspension of parental MDA-MB-231 cells was diluted using culture 
medium to a cell density of approximately 1 cell/0.1 l. A droplet of 

0.1 l of cell suspension was placed in each well of a 96-well plate by 
pipetting followed by microscopy inspection to examine the number 
of cells in the deposited droplet. For wells containing a single cell, 
200 l of culture medium was subsequently added to allow for cell 
growth into SCCs. The culture medium was then replaced regularly 
every 3 to 4 days, and SCCs were subsequently transferred to 24-well 
plates, 6-well plates, and 10-cm petri dishes after they became confluent. 
SCCs were then frozen down and thawed for further experiments.

Orthotopic implantation and metastasis assays
Studies using 7- to 10-week-old female severe combined immuno-
deficient (SCID) mice [National Cancer Institute (NCI)] were performed 
according to protocols approved by the Johns Hopkins University Animal 
Care and Use Committee. Briefly, 2 × 106 cells were resuspended in 1:1 
ratio of phosphate-buffered saline (PBS) to Matrigel (BD Biosciences) 
and injected into the second left mammary fat pad. Tumor growth was 
monitored by caliper measurements. Tumor volume (cubic millimeter) 
was calculated as length by width by depth by 0.52. After indicated 
times, mice were sacrificed, and the lungs were perfused with PBS. 
The left lung was inflated by injecting with low–melting point 
agarose. Uninflated lungs were used for human genomic DNA ex-
traction. Lungs were digested with lysis buffer and proteinase K at 
55°C overnight, and genomic DNA was isolated by phenol/chloroform 
extraction and isopropanol precipitation. Genomic DNA (200 ng) 
was used for quantitative polymerase chain reaction (qPCR) to 
quantify human HK2 and mouse 18S transcripts.

To count CTCs, 500 l of blood from each mouse was collected. 
Red blood cells were lysed using ammonium chloride solution 
(Stem Cell Technologies, catalog no. 07800). RNA from the remaining 
cells in the blood was extracted (Life Technologies, catalog no. 15596-026) 
and reverse transcribed to complementary DNA (cDNA; Bio-Rad 
iScript Reverse Transcriptase, catalog no. 170-8840). The cDNA was 
then used for qPCR to quantify human-only 18S rRNA and mouse 
and human 18S rRNA. In each sample, we measured normalized 
human 18S gene expression by 2−C

sample where Csample = Chu − average 
C(hu and mu 18S). The calibration curve between measured 18S gene 
expression and the number of MDA-MB-231 cells was obtained by 
spiking controlled numbers of MDA-MB-231 cells in naïve mouse 
blood samples.

For the tail-vein injection model, MDA-MB-231 subclones were 
harvested by trypsinization, resuspended at 107 cells/ml in PBS, and 
injected (1 × 106 cells) intravenously into SCID mice. After 2 weeks, 
lungs were perfused with PBS. One lung was inflated for formalin 
fixation and paraffin embedding. The other lung was used to isolate 
genomic DNA for qPCR analysis with human-specific HK2 primers.

Immunostaining and fluorescence microscopy
Approximately 12,000 cells were plated in each well of a 24-well 
glass bottom plate (MatTek, MA), corresponding to approximately 
20% surface coverage to ensure single-cell dispersion. After 16 hours 
of incubation, cells were fixed with 3.7% paraformaldehyde for 12 min 
at room temperature. Cells were then permeabilized with 0.1% Triton 
X-100 (Sigma-Aldrich) for 10 min; nonspecific binding was blocked 
with PBS supplemented with 1% albumin from bovine serum for 
40 min. Nuclear DNA was stained with Hoechst 33342 (Sigma-Aldrich) 
at 1:50 dilution; F-actin was stained with phalloidin Alexa Fluor 488 
(Invitrogen) at a 1:40 dilution. Fluorescently labeled cell samples were 
visualized with a Nikon digital sight DS-Qi1MC camera mounted 
on a Nikon TE300 epifluorescence microscope (Nikon Melville, NY) 
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and equipped with a motorized stage and motorized excitation and 
emission filters (Prior Scientific, Rockland, MA) controlled by 
NIS-Elements (Nikon). For each sample, 81 (9-by-9 square grid) 
fields of view from a low-magnification lens (10× Plan Fluor lens; 
numerical aperture, 0.3; Nikon) were used, which covered a contiguous 
area of 6.03 mm by 4.73 mm (28.5 mm2). The fluorescence channels 
for Hoechst 33342 and Alexa Fluor 488 were recorded to obtain the 
necessary morphometric information about the nucleus and cellular 
body of each individual cell within the scanning region.

Analysis of CM
Image processing for quantification of cellular morphological features 
from fluorescence images was carried out using a custom program 
developed in MATLAB (Mathworks, MA) (13–15, 43). In brief, we 
first segmented individual cells and their nuclei. We used five different 
categories of morphological features with a total number of 215 features 
to characterize nucleus and cell shapes. These features correspond 
to classes of morphological features that include basic morphological 
features, boundary signature, curvature, nucleus-cell positioning, and 
protrusion (fig. S8). The full list of features is summarized in table S5. 
In general, basic morphology features are features such as area, perimeter, 
long axis, short axis, and aspect ratio. Boundary signature of a shape 
(R) is the distance profile from all boundary coordinates to the centroid 
points of a shape, and boundary signature features are the statistical 
profiles of R, such as mean, median, and SD. To obtain curvature 
features, we first calculated the curvature (k) along the boundary of 
smoothed cell shapes. The smoothing of shape is processed by con-
volving the x and y coordinates of the shape with a 1D Gaussian 
filter, which has unit SD and size of 11 pixels. Statistical descriptors 
for the curvature along the boundary of shape, such as mean, median, 
SD, were measured as curvature features. The detailed list of statistical 
descriptors used can be found in the table S5. The same statistical 
properties used for boundary signature were extracted to represent 
the curvature features of a shape. Nucleus-cell positioning profile 
(R′) is represented by the distance from the nucleus edge to the cell 
edges in different orientations based on the centroid of the nucleus. 
The nucleus-cell positioning features are a set of statistical properties 
of R′. For the quantification of protrusion morphology, we adopted 
a previous approach (15, 43). In brief, we first determined the mor-
phological skeleton of individual cell contours and identified the main 
body region of the cells. The protrusions were identified as the skeletal 
structures that were extended beyond the main body of the cell. The 
protrusions were further classified into two subtypes: primary and 
secondary protrusions. The primary protrusions were considered to 
be the protrusions stemming directly from the cell body, while the 
secondary protrusions were the ones branching from other protrusions. 
The length of each protrusion was measured, and the total number 
of protrusions for individual cells was determined as the summation 
of primary and secondary protrusions. The total number of pro-
trusions, mean length of protrusions, primary protrusion number, 
secondary protrusion number, and the ratio of secondary to primary 
protrusions were used as parts of the CM features. To quantitatively 
classify cell morpho-types, the morphology feature space of cells 
was first reduced and was represented by projection scores at 
36 eigenvectors that spanned 95% of variations of among all mea-
sured cells from the principal component analysis (fig. S3). K-means 
clustering analysis with cityblock distance function was implemented 
to identify the seven distinct clusters among CM data of all mea-
sured cells.

Metaphase spreading assay
Cells were grown up to 60% confluency after plating. Colcemid 
(Invitrogen) was added to the cultural medium at a concentration 
of 100 ng/ml, and cells were incubated at 37°C for 3 to 4 hours. Cells 
were harvested using trypsin and resuspend in 1 ml of culture medium 
after spinning down. Five microliters of 37°C prewarmed KCI was 
added slowly to the cell suspension and incubated at room temperature 
for 7 to 10 min followed by adding 120 l of freshly prepared fixa-
tive solution (methanol:acetic acid in 3:1 volume ratio). Cells were 
incubated in 9.5 ml of fixative solution for 10 min after being spun 
down at 1000 rpm for 8 min and having discarded the supernatant. 
Cells were then resuspended in 0.3 ml of fixative and dropped on a 
glass slide before being placed onto slide warmer at 65°C for 20 min 
followed by treatment with RNAse A (1 mg/ml; 1:100 from Qiagen) 
and propidium iodide (1 mg/ml stock and 1:1000 final) in 2× SSC 
for ~45 min at 37°C. Slides were air dried before mounting using 
mounting medium with DAPI (Vectashield). Chromosome spreads 
were imaged with 63× oil objective mounted on a Ti-E microscope 
(Nikon) and analyzed using previously established software (44, 45).

Microarray transcriptional profiling
Total RNA was isolated from MDA-MB-231 cells and its SCCs with 
the RNeasy Mini kit and analyzed using the Affymetrix GeneChip 
PrimeView Human Gene Expression Array (Johns Hopkins Deep 
Sequencing and Microarray Core Facility). Partek Genomic Suite was 
used to normalize expression data of all extended level probe sets using 
the following options: GC content prebackground adjustment, robust 
multi-array average (RMA) background correction, and quantile 
normalization. Gene expression level was defined as the average ex-
pression level of all exons for that gene. One-way ANOVA test was 
used to obtain P value and fold change (FC) values. The differentially 
expressed genes were detected for P < 0.05 and |FC| >5 (linear).

Statistics
Data were represented as averages ± SEM unless otherwise specified. 
One-way ANOVA test was performed to determine significance using 
MATLAB (MathWorks) unless otherwise specified.
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