Skip to main content
. 2019 Dec;8(6):979–988. doi: 10.21037/tlcr.2019.12.19

Table 3. Performance measures of machine learning candidate tools applied using leave-one-subject out cross validation and performance measures of quantitative (analog) risk assessment from the four human readers.

Assessment Method Expert AUC-ROC Youden Specificity Sensitivity
ML-tool candidate Nodule 0.78 0.36 0.61 0.90
Margin 0.86 0.46 0.77 0.85
Immediate 0.79 0.38 0.65 0.80
Extended 0.88 0.41 0.81 0.88
Extended+ 0.89 0.60 0.84 0.83
Observer (Analog) Reader 1 0.76 0.63 0.62 0.88
Reader 2 0.80 0.67 0.73 0.79
Reader 3 0.74 0.74 0.88 0.65
Reader 4 0.65 0.75 0.31 0.94
Average reader 0.74 NA 0.63 0.82

ML, machine learning; AUC-ROC, area-under-curve of receiver-operator characteristic; NA, not applicable.