Table 3. Performance measures of machine learning candidate tools applied using leave-one-subject out cross validation and performance measures of quantitative (analog) risk assessment from the four human readers.
Assessment Method | Expert | AUC-ROC | Youden | Specificity | Sensitivity |
---|---|---|---|---|---|
ML-tool candidate | Nodule | 0.78 | 0.36 | 0.61 | 0.90 |
Margin | 0.86 | 0.46 | 0.77 | 0.85 | |
Immediate | 0.79 | 0.38 | 0.65 | 0.80 | |
Extended | 0.88 | 0.41 | 0.81 | 0.88 | |
Extended+ | 0.89 | 0.60 | 0.84 | 0.83 | |
Observer (Analog) | Reader 1 | 0.76 | 0.63 | 0.62 | 0.88 |
Reader 2 | 0.80 | 0.67 | 0.73 | 0.79 | |
Reader 3 | 0.74 | 0.74 | 0.88 | 0.65 | |
Reader 4 | 0.65 | 0.75 | 0.31 | 0.94 | |
Average reader | 0.74 | NA | 0.63 | 0.82 |
ML, machine learning; AUC-ROC, area-under-curve of receiver-operator characteristic; NA, not applicable.