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Abstract
Thermal performance curves (TPCs) are used to predict changes in species interactions, and hence, range shifts, disease
dynamics and community composition, under forecasted climate change. Species interactions might in turn affect TPCs.
Here, we investigate how temperature-dependent changes in a microbial host–parasite interaction (the bacterium
Pseudomonas fluorescens, and its lytic bacteriophage, SBWΦ2) changes the host TPC and the ecological and evolutionary
mechanisms underlying these changes. The bacteriophage had a narrower thermal tolerance for infection, with their critical
thermal maximum ~6 °C lower than those at which the bacteria still had high growth. Consequently, in the presence of
phage, the host TPC changed, resulting in a lower maximum growth rate. These changes were not just driven by differences
in thermal tolerance, with temperature-dependent costs of evolved resistance also playing a major role: the largest cost of
resistance occurred at the temperature at which bacteria grew best in the absence of phage. Our work highlights how
ecological and evolutionary mechanisms can alter the effect of a parasite on host thermal performance, even over very short
timescales.

Introduction

An often overlooked concern surrounding climate change is
its impacts on host–parasite interactions [1]. The effect of
temperature on species interactions is likely widespread, as
temperature influences the physiology, ecology and evolu-
tion of both hosts and parasites [2–5]. However, the sign
and strength of the effects of warming on host–parasite
interactions may be context dependent, changing with the
host, parasite and environmental conditions in question [6].
One approach to predict the potential impacts of warming
on host–parasite interactions has been based around thermal
performance curves (TPCs) of, and differences between,
key host and parasite traits [2, 6, 7]. For example, it has

been argued that as hosts generally have a narrower thermal
range and lower thermotolerance than their parasites [8–10],
they are more susceptible to disease at temperatures further
away from their optimum temperature.

A probable consequence of temperature-dependent
changes in host–pathogen interactions [11] is a change in
the host’s TPC in the presence, versus the absence, of the
parasite. For example, if the largest impact of the parasite
occurs at the host’s optimum growth temperature, key traits
such as the maximum growth rate, and optimum tempera-
ture of the host could change. In addition to the ecological
feedbacks resulting from differences in the thermal perfor-
mance of host and parasite traits, rapid (co)evolution of
resistance and infectivity traits could play a major role
in altering TPCs [12, 13]. Crucially, TPCs of hosts and
parasites are typically assumed to be fixed across time and
in different abiotic and biotic environments [6, 8, 14, 15],
but the presence of a predator can alter the TPC of the prey
[16] and the prey’s evolutionary response to warming [17].
If parasites affect the thermal performance of their host, this
may alter some of the predictions of range shifts and disease
dynamics expected under climate change.

To date, most experimental and theoretical work on the
thermal performance of organisms is done on single
species under highly controlled conditions, where naturally
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occurring parasites, symbionts and microbiota are greatly or
completely removed [18–20]. Consequently, it is unknown
if parasites alter the TPC of host fitness and influence key
species-level traits such as the optimal, Topt, and cardinal
(critical thermal maximum, CTmax, and minimum, CTmin)
temperatures of host growth. Understanding these potential
impacts is critical to assess the effect of climate change on
ecological and evolutionary dynamics of host–parasite
pairs, as well as predicting the consequences of novel
host–parasite interactions that will occur in a warmer world.
Here, we explicitly determine how and why interactions
with a parasite affect host thermal performance in arguably
the most common host–pathogen interaction on the planet:
that between bacteria and their viruses (bacteriophage) [21].

We focus on a well-studied system, the bacterium
Pseudomonas fluorescens SBW25 and its lytic phage, SBW
Φ2. This system has been used extensively for studying
host–parasite ecological and evolutionary interactions
[22–25]. Over a wide range of temperatures, we measured
the replication rate of the phage and the growth rate of the
bacteria in the presence and absence of the phage. We uti-
lised the ‘traits’ that underpin TPCs to compare biologically
meaningful parameters [15]. We hypothesised that any large
difference in thermal performance of bacteria and phage
would change the thermal performance of bacteria in the
presence vs. the absence of phage. Given the importance of
evolution occurring over ecological timescales [26, 27],
especially in microbial populations with large population
sizes and short generation times, we also investigated evo-
lutionary changes in host populations to determine whether
resistance evolution explained any changes in host thermal
performance.

Materials and methods

Measuring bacterial growth in the presence and
absence of phage

Isogenic P. fluorescens SBW25 was cultured overnight
(from a frozen stock) at 28 °C in 6 mL of M9 minimal salts
media (M9), supplemented with 5 g of glycerol and 10 g of
peptone (50 % concentration of King’s medium B) in glass
vials at 180 r.p.m. Overnight stocks were then diluted to
~ 50,000 cells per 10 µL (5 × 106 cells per mL). Growth
curves were measured in 96 well plates, with 180 µL of
altered M9 (described above). We inoculated wells with
10 µL of bacteria and either 10 µL of M9 or 10 µL of phage
(~50 phage) giving a multiplicity of infection (MOI) of
0.001. We used this low MOI and low starting densities to
ensure rapid bacterial growth. Six wells were left free for
both bacteria and bacteria plus phage treatments at each
temperature as blank controls. We set up six replicates of

bacteria and bacteria plus phage simultaneously at 8 tem-
peratures (15, 20, 25, 28, 30, 33, 35 and 37 °C). Each plate
was placed in a plastic box with a moist sponge at the
bottom to prevent evaporation of media from the wells,
which may confound measurements of optical density
(OD). OD (600 nm wavelength) was measured as a proxy
for density of P. fluorescens using a plate reader (Biotek
Instruments Ltd). Readings of OD were taken with the lid
off at an average of every 3 hr for up to 75 hr.

Measuring phage replication rate

Replication of the lytic phage SBWΦ2 was measured using
methods similar to Knies et al. [28, 29], at the same tem-
peratures as the bacterial growth curves, with the addition of
3 additional temperatures (22.5 °C, 26 °C and 27 °C) to
better characterise temperatures around the optimum of
phage replication. First, isogenic P. fluorescens was grown
overnight in conditions described above. The bacteria were
transferred into fresh media at 28 °C and allowed to grow
for 6 hr while shaking to increase density (~107 cells). We
then added 20 µL of phage (~106; MOI ~0.02, N0) to each
tube (six replicates per temperature). Vials were left static
for 4 hr at each temperature, after which phage was
extracted using chloroform extraction. 100 µL of chloro-
form was added to 900 µL of culture, then vortexed and
centrifuged at 10,000 × g for 5 min. The supernatant was
removed and placed in fresh Ependorf tubes. Final phage
titres, N4, were measured using plaque assays against the
ancestral bacteria at 28 °C. Phage replication rate, r, was
then calculated as r ¼ lnðN4�N0Þ

4 .

Measuring resistance of bacteria

To investigate the mechanism behind any effect of phage on
bacterial growth, we measured the resistance of bacteria
within a single growth curve. We set up 18 wells of 96 well
plates at 8 temperatures that contained ~50,000 cells and
~50 phage (as described above). We then destructively
sampled 6 wells at three time points through the growth
curve (after 12, 24 and 48 hr). To do this, 20 µL of each well
was placed in 180 µL of M9. These were then serially
diluted and plated onto KB agar. Twelve colonies from each
replicate were taken per time point and grown overnight in
150 µL of altered M9, shaking at 28 °C. Each clone was
then checked for resistance against the ancestral phage
using a phage streak assay. Phage streak assays were
incubated overnight at 28 °C.

Measuring the cost of resistance

To determine whether any effect of phage was due to a cost
of resistance, we grew 12 replicates of P. fluorescens in the
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presence and absence of phage for 12 hr at 28 °C. After
12 hr, each population was plated onto KB agar and grown
for 2 days at 28 °C. Three clones were isolated from each
replicate and grown for two days in modified M9 media.
Each isolate was checked for resistance against the ancestral
phage. Growth curves of each clone were done using
the methods described above, but inoculate density
was ~500,000 cells to reduce the lag time and no phage
was added.

Statistical analyses

Calculating exponential growth rate for bacteria

For bacterial growth, we wanted to estimate exponential
population growth rate in the presence and absence of
phage, and for resistant and susceptible clones. In the pre-
sence and absence of phage, prior to model fitting, we
removed 3.42% of points (Figs. S1–S8) in order to obtain
the best estimate of exponential growth at each temperature.
The results were qualitatively unchanged by the data
cleaning procedure (Fig. S9). For a full explanation of the
data cleaning procedure please see the supplementary
methods section. After this initial data cleaning, we fitted
the Gompertz model [30] to measurements of log10OD600

through time, t, in hours, using code extracted from the R
package ‘nlsMicrobio’ [31]:

log10OD600 ¼ log10n0 þ log10nmax � log10n0ð Þ

�e

�e
1þr�e1� lag�t

log10nmax�log10n0ð Þ�ln 10ð Þ

� � !
ð1Þ

where log10n0 is the starting density, log10nmax is carrying
capacity, r is the exponential growth rate (hr−1) and lag is
the lag time in hours. Model fitting was done using non-
linear least squares regression using the R package ‘nls.
multstart’ [32]. This method of model fitting involved
running up to 500 iterations of the fitting process with start
parameters drawn from a uniform distribution and retaining
the fit with the lowest Akaike Information Criterion score
(AIC). The parameters of the model (r, log10n0, log10nmax

and lag) can be seen as population-level growth ‘traits’,
which may vary with both temperature and the presence and
absence of phage. In this study, r is defined as exponential
growth rate of the population and lag is likely determined
by the time it takes until growth is detected by the OD
reader. Consequently, lag time confounds any actual lag
phase with decreases in abundance and slower growth rates
that increase the time it takes for abundance to be detected.
Other growth models were fitted (e.g. Baranyi, Buchanan;
Table S1), but the Gompertz model returned lower AIC
scores for the majority of model fits (Fig. S10).

For susceptible and resistant clones, we cleaned the data
by removing the first measurement (where bubbles due to
pipetting could alter the OD reading) and setting time zero
to the time at which the first optical density measurement
was detected for each clone. We initially used the same
modelling approach, but this time the Baranyi model
without lag was the model most selected using AIC scores
(Fig. S11). However, after examining the predictions and
residuals of the model fits (Figs. S12 and S13), we found
that exponential growth rate was underestimated at tem-
peratures where bacteria grew best, and at these tempera-
tures there was a significantly greater underestimation of
growth rate in susceptible, rather than resistant, bacteria
(Fig. S14). Consequently, exponential growth rate per clone
was calculated here using rolling regression, taking the
steepest slope of the linear regression between ln OD600 and
time in hours in a shifting window of every 4 time points
(~7 hr) as the estimate of exponential growth. Average
growth rate per replicate was calculated by taking the mean
clonal growth rate. After data cleaning and model fitting,
every growth curve had estimates of exponential growth
rate that were then used to model the thermal performance
of bacteria.

Fitting thermal performance curves to phage and bacteria

Thermal performance curves were fitted for phage replica-
tion rate and r of bacteria in the presence and absence of
phage, and for resistant and susceptible bacterial clones. We
used the Sharpe–Schoolfield equation for high-temperature
inactivation [33], which extends the original Boltzmann
equation to incorporate a decline in growth rate beyond the
optimum.

b Tð Þ ¼ bðTcÞeE 1
kTc

� 1
kTð Þ

1þ e
Eh

1
kTh

� 1
kT

� � ð2Þ

b(T) is the rate of phage replication or bacterial growth at
temperature, T, in Kelvin (K). Instead of the intercept being
at 0 K (−273.15 °C), b(Tc) is the rate at a common
temperature, Tc= 20 °C (293.15 K) [34]. E (eV) describes
the thermal sensitivity of the biological rate, k is
Boltzmann’s constant (8.62 × 10−5 eV K−1), Eh (eV) char-
acterises the decline in the rate past the optimum
temperature and Th (K) is the temperature at which half
the rate is reduced due to high temperatures. Equation 2
yields an optimum temperature, Topt, (K).

Topt ¼ EhTh
Eh þ kThln

Eh
E � 1
� � ð3Þ

Maximal growth rate, rmax, was calculated by using the
estimated model parameters to predict the rate at Topt. As in
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previous studies [18, 19], these ‘traits’ were then used to
look for differences between (1) bacteria in the presence and
absence of phage, and (2) resistant and susceptible bacteria.
Similar species-level ‘traits’ are used in climate change
research to explain range shift dynamics [15, 35], but
how they are influenced by species interactions remains
relatively unknown [16]. As phage replication was negative
at high temperatures, an offset was added to the equation
to raise all rates above 0 to allow model fitting.
This invalidated any interpretation of the thermal sensitiv-
ities of phage replication. However, this was already diffi-
cult as phage replication is partially determined by bacteria
growth rate, which is also temperature dependent and could
cause differences in the number of susceptible hosts
across temperatures. Consequently, for phage replication
we concentrated on the optimum temperature (Topt) and
critical thermal maximum (CTmax), which is the temperature
at which phage replication became negative at high
temperatures.

For phage and bacteria, Eq. 2 was fitted to the data using
non-linear regression in a Bayesian framework using the
R package ‘brms’ [36]. This method allows for prior
information on suitable parameter values and the estimation
of uncertainty around predictions and parameters, including
derived parameters not present in the original model for-
mulation such as Topt, CTmax and rmax. Different models
were fitted for phage replication rate, exponential growth
rate of bacteria in the presence and absence of phage,
and exponential growth rate of resistant and susceptible
bacterial clones. For the analysis including resistant and
susceptible clones, a random effect was added to account
for the non-independence of measurements of the same
clone across temperatures. For bacteria exponential growth
rate, phage presence/absence or susceptible/resistance was
added as a factor that could alter each parameter of the
model. Models were run for 5000 iterations and 3 chains
were used with uninformative priors. Model convergence
was assessed using posterior predictive checks, Rhat values
(all values were 1) and manually checking of chain mixing.
Differences between parameter estimates are described
using 95% credible intervals. Credible intervals of predic-
tions and parameters were calculated from the posterior
distribution using the R package ‘tidybayes’ [37]. Non-
overlapping 95% credible intervals indicate statistical sig-
nificance at (at least) the p= 0.05 level.

Using predictions from the model for bacterial growth, the
relative fitness of bacteria in the presence of phage was esti-
mated across the continuous temperature range (15–37 °C).
The difference was calculated as a selection coefficient, where
relative fitness at each temperature, w Tð Þ, was calculated as:

w Tð Þ ¼ rðTÞbactþphage

rðTÞbact alone
ð4Þ

where rðTÞbactþphage is the growth rate at a given
temperature in the presence of phage and rðTÞbact alone is
the growth rate in the absence of phage. When the 95%
credible intervals of the predictions do not cross 1, it
indicates that phage significantly altered bacterial growth
rate. When there is overlap with the predictions and 1, it
means there is no significant change in relative fitness. An
identical statistical approach was taken for analysing the
growth rates of susceptible and resistant clones. In this
instance, the relative fitness across temperatures, w Tð Þ,
represented the cost of resistance.

Analysing phage resistance assays

A logistic regression was used to analyse the proportion of
resistance through time and across temperatures. A binomial
model was fitted to the number of resistant and susceptible
individuals per replicate at each temperature and time point
using the logit transformation. As there were many popu-
lations where all clones were completely susceptible or
resistant (resulting in zero and one inflated data), we added
one to both the number of resistant and susceptible indivi-
duals in each population and used a quasibinomial error
structure to control for overdispersion. By adding one to
both susceptible and resistant totals, it meant that the model
tended to produce slight underestimates for resistance in
fully resistant populations, and slight overestimates of
resistance in fully susceptible populations, while having little
effect on populations with intermediate resistance. This led
to the model giving conservative estimates of differences in
resistance between temperatures and through time. We fitted
a model that combined the number of resistant and suscep-
tible clones in a population as the response variable
and included temperature and time (in hours) as discrete
predictor variables. Model selection was done through
likelihood ratio tests using F tests. Pairwise post-hoc com-
parisons were done on the response scale using the R
package ‘emmeans’ [38]. All analyses were done using the
statistical programming language R (v3.5.1) [39] and all
plots were made using the R package ‘ggplot2’ [40].

Results

Bacteria and phage had mismatches in their thermal
performance

We measured phage replication rate and bacterial growth
rate across eight temperature (15–37 °C) to determine
whether there were mismatches in the thermal performance
of the host and its parasite. To do this, we modelled the
thermal performance curve of each rate and used estimated
and derived parameters of the model (see Eq. 2 in Methods)
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as traits that we used to compare the thermal responses of
bacteria and phage. Phage replication rate increased to a
thermal optimum, Topt, of 27 °C (95% credible intervals
[CI]: 26.5–27.5 °C) before rapidly declining to a negative
replication rate by 30 °C (Fig. 1a). The critical thermal
maximum, CTmax, of phage replication was 29.2 °C (95%
CI: 29.0–29.4 °C), beyond which phage decreased in
abundance over 4 h (Fig. 1a). This indicated that phage
struggled to infect the host at temperatures beyond their
Topt, which was similar to previous work that measured the
coevolution of this bacteria–phage system across tempera-
tures [25]. The bacteria, P. fluorescens, had a similar opti-
mum temperature (Fig. 1b [blue]; Topt = 28 °C; 95% CI:
27.1–29.0 °C), but growth was maintained well beyond
Topt, with high growth rates still occurring at 35 °C
(Fig. 1b), >6 °C above the CTmax of the phage. This could
act as a high-temperature refuge for the bacteria as phage
infection at these temperatures is extremely low. Due to
these mismatches in the thermal performance of phage
infection and bacterial growth, it was expected that the
parasite would alter the thermal performance of its host.

Phage altered the thermal performance of its
bacterial host

Due to the thermal mismatches between bacteria and phage,
we explored whether phage altered the thermal performance
of its host. To do this, we measured the growth rate of
bacteria in the presence and absence of the phage and
compared key traits that underpinned the thermal perfor-
mance curve (see Methods). We observed marked differ-
ences in the response of bacteria to temperature when in the

presence of its phage (Fig. 1b and Table S2). Phage pre-
sence changed the optimum temperature of bacterial growth
(Fig. 2c), shifting Topt from 28 °C (95% CI: 27.1–29.0 °C)
to 30.6 °C (95% CI: 29.0–32.1 °C). Moreover, phage pre-
sence resulted in a 20.1% (95% CI: 13–27.3%) decline in
the maximal growth rate, rmax, in the presence of phage
(Fig. 2d). To better understand the non-linear, temperature-
dependent effect of phage on bacterial growth, we calcu-
lated the relative fitness of bacteria in the presence of phage
across temperatures (see Methods; Fig. 2a). The largest
impacts of phage on bacterial growth occurred at inter-
mediate temperatures where growth in the absence of phage
was highest (Fig. 2a, where relative fitness was <1),
whereas no significant change in growth rate was observed
at the low and high temperatures measured (credible inter-
vals of predictions overlap 1). The non-linear changes to
bacterial growth also resulted in differences in other key
traits (Table S2) such as the thermal sensitivity of the rate
before (E; Fig. 2b) and after (Eh; Fig. 2e) the optimum
temperature.

The evolution and cost of resistance was
temperature dependent

It is possible that the change in thermal performance of P.
fluorescens could have resulted simply from the mismatches
in thermal performances of the host and parasite. Up to Topt
of the phage (~27 °C), phage presence reduced the abun-
dance and thus population growth rate of the bacteria.
Consequently, the rapid decline of phage replication at
temperatures above 30 °C, while bacteria still had high
growth rates, could explain observed shift in the thermal
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Fig. 1 Thermal performance of phage and bacteria. a Phage replication
increased with temperature up to an optimum before declining rapidly
to a negative replication rate at 30 °C. b Bacteria growth showed
unimodal responses to temperature in the presence (black) and absence
of phage (blue). However, phage changed the shape of the thermal
response. Points represent an independent replicate at each

temperature. Solid lines represent the mean prediction and shaded
bands represent the 95% credible interval of predictions. In a the
dashed line represents 0 growth, below which phage abundance
decreased. In b, the dashed line represents the CTmax of the phage,
beyond which phage abundance decreased
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performance of the bacteria. However, bacteria can rapidly
evolve resistance to phage within the timescales of our
assays, and this has been demonstrated in our host–parasite
pair [41, 42]. If, as expected, resistance is costly, and
resistance does not evolve at temperatures beyond the phage
CTmax, the effect of phage on the thermal performance of
the host may in part be driven by evolutionary change. To
investigate this, we measured the resistance of bacteria
through a single logistic growth curve at each temperature
(Fig. 3). The evolution of phage resistance changed across
temperatures and through time, and there was a significant
time × temperature interaction (likelihood ratio test com-
paring models with and without time × temperature inter-
action: Δd.f.= 13, F= 11.56, p < 0.001). There was no
measurable resistance in the ancestral bacteria, but after just
12 hr, all populations at 28 °C (close to Topt of phage
replication [~27 °C]) or lower were close to 100% resistant
(Fig. 3a), consistent with a selective sweep in which sus-
ceptible cells are lysed and resistant mutants reach fixation.
Moreover, after 12 hr, bacterial abundance was much lower
than expected at temperatures where phage infection
occurred, indicative of a phage epidemic that wiped out
susceptible hosts. In contrast, resistance rarely, or never,
evolved at temperatures well above those of the critical
thermal maximum of phage replication rate (33 °C and
higher, Fig. 3). Where resistance did evolve at these

temperatures, it was at very low frequency (1 clone out of
12). We found no bacteria still living at 37 °C after 48 hr,
indicating that although growth occurs at those tempera-
tures, this is quickly proceeded by death.

At temperatures where phage altered the growth rate
of bacteria (25, 28 and 30 °C), we observed significant
changes in the proportion of resistance through time (see
Table S3 for pairwise differences of resistance through time
for each temperature). Resistance evolved and was at high
proportions after 12 or 24 hr where populations were still in
exponential growth phase. However, after 48 hr, when
populations had reached stationary phase at all temperatures
apart from 15 and 20 °C (Fig. S15), the proportion of
resistance decreased significantly (Fig. 3c). From 24 to
48 hr, 25 °C resistance fell from 0.89 (95% CI: 0.83–0.94)
to 0.69 (95% CI: 0.60–0.78), at 28 °C from 0.89 (95% CI:
0.83–0.93) to 0.48 (95% CI: 0.40–0.57) and at 30 °C from
0.77 (95% CI 0.68–0.83) to 0.17 (95% CI: 0.11–0.25). This
temporal effect did not occur at low and high temperatures
where there was little effect of phage on bacterial growth
rate (Fig. 2a and Table S3), suggesting that there was a non-
linear cost of resistance across the temperature range.

To confirm whether there was a cost of resistance and if
any cost varied with temperature, we isolated clones that
were either resistant or susceptible to the phage and mea-
sured their thermal performance in the absence of phage.

Fig. 2 Effect of phage on the
thermal performance of bacteria.
a Phage altered the growth rate
of bacteria (calculated as relative
fitness) in a non-linear fashion
with increasing temperatures.
b–e The effect of phage on key
thermal performance traits.
Phage altered the b activation
energy, c optimum temperature,
d optimal growth rate and
e deactivation energy. In a the
solid line represents the mean
prediction and shaded band
represents the 95% credible
interval of predictions. The
dashed line at y= 1 would
indicate that phage do not alter
growth rate. Below 1, phage
reduces the growth rate of the
bacteria. In b–e points and lines
represent the mean and 95%
credible intervals of the
estimated parameters
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The thermal performance of resistant clones differed from
that of susceptible clones (Fig. 4), closely matching the
patterns observed when bacteria were grown with phage
(Figs. 1b and 2a). At low and high temperatures, there were
no differences in the growth rate of resistant and susceptible
clones (Fig. 4). However, at temperatures where growth of
susceptible clones was highest (25–30 °C), there was a cost
of resistance (Fig. 4b), resulting in a 13.4% (95% CI:
6.8–20.2%) reduction in maximal growth rate. This
temperature-dependent cost of resistance was qualitatively

similar to the effect of phage on bacteria growth, being
greatest at intermediate temperatures (Figs. 2a and 4b).

Discussion

Here, we show that the presence of a parasite can pro-
foundly impact the thermal performance of its host. Nota-
bly, phage reduced bacterial growth most at temperatures
where the bacteria grew fastest, close to the bacterial rmax,
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while having little or no impact at cold or high temperatures
well beyond Topt (Figs. 1 and 2). This resulted in changes to
the thermal performance curve of bacterial growth in the
presence of phage (Fig. 2b). These results can be explained
by a combination of ecological and evolutionary processes.
Ecologically, at temperatures below the critical thermal
maxima of the phage, phage presence vastly reduced bac-
terial abundance (i.e. increased lag time in the logistic
growth curve, Figs. S1–S4). In contrast, phage could not
infect above 30 °C, but bacteria still had high growth rates.
However, rapid evolution also played an important role in
altering the thermal performance of P. fluorescens. While
phage resistance evolved rapidly and was at high levels at
all temperatures below the phage CTmax, at higher tem-
peratures there was no selection for resistance (Fig. 3).
Crucially, there were costs associated with resistance, but
these costs changed non-linearly with temperature (Fig. 4).
At low temperatures and temperatures far beyond the bac-
teria Topt, there was no measurable cost of resistance, but
significant costs of resistance at intermediate temperatures
where bacteria growth was highest (Fig. 4). At some tem-
peratures, susceptible bacteria re-emerged after resistance
had evolved (Fig. 3) during stationary phase, which could
be a result of nutrient limitation or reduced phage infection
of susceptible bacteria in stationary phase [43], both of
which would alter the fitness cost of resistance. Overall,
these results demonstrate that phage alter the TPC of their
host (Fig. 1b) through both ecological (due to differences in
thermal tolerance between phage infection and bacterial
growth) and evolutionary processes (temperature-dependent
costs of resistance), resulting in a shift in the TPC for the
host in the presence of the phage (Fig. S16). It is worth
noting that costs of phage resistance were also greatest
at the optimum temperature in another well-studied
bacteria–phage system; Escherichia coli and bacterioph-
age T4 [44, 45].

How general are these results likely to be? We suggest
that parasites (and symbionts more generally) impacts on
host TPCs are likely widespread, because no change in host
TPC would occur only when host and parasite traits respond
equivalently with temperature. In reality, there are almost
certainly mismatches between host and parasite TPCs and
differences in local adaptation to prevailing temperatures
appears to be the norm [7, 46]. Here, we observed rapid
evolutionary interactions between our bacteria–phage pair
because of the strong parasite-imposed selection and
the large population size and short generation time of
P. fluorescens (~14 generations after 12 hr at 30 °C). As this
is true of most micro-organisms, we expect that evolu-
tionary mechanisms could frequently drive changes in
population-level TPCs, although the selection for resistance
is likely to be lower in more heterogeneous environments
and with different parasitic lifecycles.

Across other host–parasite systems, similar genotype ×
genotype × environment interactions (G × G × E) occur in
different traits, but may be driven more by ecological,
rather than evolutionary, processes. For example, in larger,
longer-lived hosts, individuals may experience substantial
variation in temperature and parasitism over the course of
a single generation. In such instances, the individual-level
cost of parasitism can still be highest at intermediate
temperatures [47] and variation in critical thermal maxima
between different host species [8] and thermal mismatches
between host and parasite [6] can drive temperature-
dependent changes in host susceptibility. Consequently,
the effect of parasites on the thermal performance of the
host may be widespread across many host–parasite sys-
tems, driven by ecological or rapid evolutionary processes
depending on host lifespan and magnitude of parasite-
imposed selection.

However, as with the effect of changing temperature on
disease severity, precisely how TPCs will change will be
context dependent, changing with, amongst other factors, the
host–parasite pair and the biological traits measured. For
example, phage replication across temperature depends on
the thermal sensitivity of multiple processes such as latency
period, burst size and thermal stability [48], such that the
limiting factor for phage replication may also differ across
temperature. Moreover, the effect of any of these phage traits
in isolation may result in a different impact on the host TPC.
Marine phage are generally more thermally stable than their
hosts [9], but, as shown here, it that does not mean that the
phage can infect at all temperatures [49]. Across ectotherms,
thermal breadth across multiple traits is generally wider in
smaller organisms [10], but whether this impacts host or
parasite TPCs (parasites are generally smaller than their host)
in the presence of each other remains to be seen.

In conclusion, our study demonstrated that host–parasite
interactions change in non-linear ways with temperature (G ×
G × E interaction), and this had a significant impact on the
thermal performance of the host. By measuring the thermal
performance of the host and the parasite simultaneously, and
also examining the evolution and cost of resistance, we
identified the mechanisms through which phage altered the
thermal performance of the host. Our results highlight that
TPCs measured under axenic conditions should be inter-
preted with caution; measuring TPCs in the absence of their
parasites (and other associated microbiota) may not be
reflective of the host’s TPC in nature where such interactions
are ubiquitous. Future work should investigate the longer
term evolutionary and coevolutionary consequences of cli-
mate warming [13] and in a broader, more realistic ecolo-
gical context, to determine how this impacts host–parasite
interactions. In an era of human-induced climate change, it is
more important than ever to gain a deeper understanding of
how evolutionary and ecological processes can indirectly
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impact thermal performance and how host–parasite interac-
tions will change with temperature.

Data accessibility
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on GitHub and archived on Zenodo. All data and analyses
are available on GitHub (https://git.io/Je4nz) and archived on
Zenodo (https://doi.org/10.5281/zenodo.3492192).
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