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L-Plastin deficiency produces increased trabecular bone due to
attenuation of sealing ring formation and osteoclast dysfunction
Meenakshi A. Chellaiah 1, Megan C. Moorer2, Sunipa Majumdar1, Hanan Aljohani1, Sharon C. Morley3, Vanessa Yingling4 and
Joseph P. Stains 2

Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring
formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin
knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption
pits in vitro. Transduction of TAT-fused full-length L-plastin peptide into osteoclasts from L-plastin knockout mice rescued the
formation of nascent sealing zones and sealing rings in a time-dependent manner. This response was not observed with mutated
full-length L-plastin (Ser-5 and -7 to Ala-5 and -7) peptide. In contrast to the observed defect in the NSZ, L-plastin deficiency did not
affect podosome formation or adhesion of osteoclasts in vitro or in vivo. Histomorphometry analyses in 8- and 12-week-old female
L-plastin knockout mice demonstrated a decrease in eroded perimeters and an increase in trabecular bone density, without a
change in bone formation by osteoblasts. This decrease in eroded perimeters supports that osteoclast function is attenuated in
L-plastin knockouts. Micro-CT analyses confirmed a marked increase in trabecular bone mass. In conclusion, female L-plastin
knockout mice had increased trabecular bone density due to impaired bone resorption by osteoclasts. L-plastin could be a potential
target for therapeutic interventions to treat trabecular bone loss.
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INTRODUCTION
Osteoclasts are multinucleated, terminally differentiated giant cells,
originating from the fusion of monocytes, and are involved in bone
resorption. During the adhesion of osteoclasts to the bone during
resorption, an actin-rich ring-like sealing zone (SZ) forms, providing
a tight attachment area to the bone surface and circumscribes the
area of bone resorption. The molecular dynamics of bone
resorption and the cytoskeletal changes needed to carry out the
formation of resorptive structures is complex and is fertile ground
for therapeutic interventions to regulate bone-resorbing activities.
Sealing ring formation is a hallmark of osteoclast activation for

bone resorption.1–5 Sealing zones are delineated as ring-shaped
structures enriched in bundles of actin. Formation of actin rings
defines the functionality of an osteoclast plated on mineralized
matrix, dentine, or histological bone slices in vitro. In resorbing
osteoclasts, rings give rise to SZs by growing individually and
making a thicker and more central and stable “super-ring”.6

Researchers termed these structures as SZ rings, actin rings, or
SZs.7–15 The SZ defines the resorption area of the bone, consisting
of a dynamic actin-rich ring-like structure which we have
designated as a sealing ring since 2007.1,2,16–20

Our recent work has shown an important role for plastins in
osteoclast biology, and the formation of actin-rich SZ structures.18–20

Plastins (also known as fimbrins) are a family of three tissue-specific
actin-binding proteins. Although three isoforms of plastins (L-, T-,

and I-plastin) have been characterized, only L- and T-plastin are
involved in cytoskeletal reorganization,21 and only L-plastin (LPL)
can bundle β-actin efficiently.22 T-plastin is expressed in cells from
solid tissue, whereas LPL occurs predominantly in hematopoietic
cells. The third isoform, I-plastin, is specifically expressed in the
small intestine, colon, and kidney.23 Plastins contain Ca2+-binding
sites flanked by EF-hand motifs at the amino-terminal (NT) end
and two repeated actin-binding domains (ABDs) at the C-terminal
end. Each ABD contains two serial calponin-homology domains at
the carboxyl-terminal end. LPL monomers bind two adjacent
molecules of filamentous actin, stabilizing the parallel strands.24

The spatially closed ABDs (120 Å) of plastins enable them to
organize actin filaments into tight bundles.25,26 Further, phosphor-
ylation of LPL on Ser-5 and –Ser-7 is required for cytoskeleton
rearrangements that underlie chemotaxis and adhesion.27–29

While LPL was reported in podosomes of osteoclasts,30–32 its
role in osteoclastogenesis was unclear. We have previously shown
colocalization of LPL and actin in the nascent sealing zones (NSZs)
of resorbing osteoclasts2 and that phosphorylation of LPL on Ser-5
and Ser-7 regulates the actin-bundling capacity of LPL in the
formation of NSZs.18–20

Here, we extend our earlier work and report that osteoclasts
from LPL−/− mice exhibit defects in the formation of sealing rings.
Transduction of TAT-fused FL-LPL peptide into LPL−/− osteoclasts
rescued the formation of NSZs and sealing rings. This response
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was not observed with the mutated FL-LPL peptide at Ser-5 and
Ser-7 aa. These findings strongly support a critical role of LPL
phosphorylation in NSZs formation. Furthermore, LPL deficiency in
mice was associated with an increase in trabecular bone volume
and a decrease in eroded perimeters, indicating a mild
osteopetrotic phenotype in female LPL−/− mice. Analyses in
LPL−/− mice suggest that LPL is an essential molecule in the actin
remodeling processes involved in the early phase of sealing ring
formation and osteoclast function.

RESULTS
LPL−/− osteoclasts are not defective in osteoclast formation,
podosome assembly, and migration
An initial assessment was made in osteoclasts from wild-type
control (WT) and LPL−/− mice for the expression of LPL by
immunoblotting analysis (Fig. 1a). As expected, osteoclasts from
LPL−/− mice lack LPL protein (Fig. 1a). Next, we determined the
differentiation of osteoclast precursors by TRAP staining (Fig. 1b)
and actin distribution in podosomes with rhodamine-phalloidin
(Fig. 1c, d) in osteoclasts plated on glass coverslips. TRAP+
osteoclasts are equally formed from the bone marrow cells of
LPL−/− and WT mice. Actin staining with rhodamine-phalloidin
demonstrated actin filament-enriched peripheral rows of dot-like
structures (podosomes) in osteoclasts (Fig. 1c) from WT (left panel)
or LPL−/− (right panel) mice. Both phagokinesis and transwell
migration assays demonstrated comparable movement in WT and
LPL−/− osteoclasts (Fig. 1e, f). Thus, LPL deficiency did not affect
osteoclast adhesion and migration.

LPL−/− osteoclasts are defective in NSZ formation and resorption
pit formation on dentine matrix
Prior work has implicated LPL as a component of podosomes,
which are used by macrophages to support migration, polariza-
tion, and lamellipodia formation.33–38 Accordingly, we examined if
the loss of LPL affects podosome formation in osteoclasts.
Regardless of genotype, osteoclasts plated on glass coverslips
demonstrated actin-rich dot-like podosomes at the cell periphery
(Figs. S1A and 2). Confocal microscopy analyses of the osteoclasts
plated on dentine slices consistently revealed NSZs at 3 h–4 h (Fig.
S1B), and mature sealing rings at 10 h–12 h (Fig. S1C).2,18,19 To
further elucidate the possible role of LPL in NSZs formation, we
used osteoclasts from WT and LPL−/− mice. Osteoclasts from WT
mice demonstrated NSZs (Fig. 2a; indicated by arrowheads) and
multiple over-lapping resorption pits (Fig. 2c) when plated on
dentine matrix. NSZs were counted in ~60 osteoclasts from three
different experiments (~20/experiment), and the average number
of NSZ is ~146 ± 21 (~2.4 NSZ per osteoclast). In contrast, LPL−/−

osteoclasts were defective in the formation of NSZs (Fig. 2b). As a
result, these osteoclasts were hyporesorptive and made superficial
pits in vitro (Fig. 2d).
To further validate the observations shown above, we

performed intermittent time-lapse live video analyses at
45–60min (Fig. 3a, d), 2 h–3 h (Fig. 3b, e), and 3 h–4 h (Fig. 3c, f)
in GFP-actin expressing WT (Fig. 3a–c) and LPL−/− osteoclasts (Fig.
3d–f). Osteoclasts from WT and LPL−/− mice actively migrate
towards dentine slices at 45–60min. Irrespective of genotype,
these osteoclasts demonstrate podosome-like structures (Fig. 3a, d)
and attach to dentine slices at 2 h–3 h (Fig. 3b, e). Organization of
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Fig. 1 Characterization of LPL−/− osteoclasts. a Immunoblotting (IB) analysis with an L-plastin antibody. Equal amount of lysate proteins
made from WT and LPL−/− osteoclasts were used for IB with an antibody to LPL. IB with a GAPDH antibody served as a loading control.
b Osteoclast differentiation in vitro from the bone marrow cells isolated from the long bones of WT and LPL−/− mice. Representative images of
TRAP-stained osteoclasts are shown. Cells were viewed under ×20 objective in a phase contrast microscope and photographed. Magnification is
×200. c, d Osteoclasts plated on coverslips were stained for actin with rhodamine-phalloidin. A magnified single osteoclast from WT (left) and
LPL−/− (right) mice demonstrating the dot-like podosome structures at the cell periphery is shown in c. Areas pointed by arrowheads in c are
magnified in d. Scale bar: 100 µm in c; 25 µm in d. e, f Phagokinesis and transwell migration analyses. e Phagokinesis assay: the motility of the
cell is represented as areas migrated in mm2. Results are shown as mean ± SD (n= 3). f Transwell migration assay: all assays were performed in
triplicates. Experiments were repeated three times with three different osteoclast preparations. Data are presented as the number of cells per
migrated field (error bars represent SD) of the three experiments performed. Data were assessed using Student’s t test.
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actin-rich basolateral membrane occurs opposite to the attach-
ment zone to dentine in WT osteoclasts (Fig. 3b, indicated by wavy
arrows). However, actin distribution is punctate in the membrane
of LPL−/− osteoclasts (Fig. 3e). At 3 h–4 h, the WT osteoclasts form
actin aggregate-like structures or NSZs (Fig. 3c, indicated by an
arrowhead). Contrastingly, LPL−/− osteoclasts fail to form NSZs
(Fig. 3f, f′). An arrow in f′ points to podosome-like structures which
support the adhesion of LPL−/− osteoclasts to dentine surface.

Transduction of a TAT-fused full-length LPL peptide rescues the
formation of sealing rings in LPL−/− osteoclasts
We have previously shown that transduction of TAT-fused full-
length LPL (FL-LPL) peptide significantly increased the number of

NSZs and therefore, sealing rings in WT osteoclasts.18 Here, we
examined if the transduction of TAT-fused FL-LPL could rescue the
defect in the formation of sealing rings in LPL−/− osteoclasts.
Accordingly, LPL−/− osteoclasts were transduced with the TAT-
fused FL-LPL or TAT-HA vector control peptide. TAT-HA peptide
transduced WT osteoclasts were used as controls. Immunoblotting
analysis with an LPL antibody confirmed the transduced levels of
FL-LPL peptide (~75–78 kDa, Fig. 4a, lane 2) in LPL−/− osteoclasts.
FL-LPL is adequately transduced in LPL−/− osteoclasts, and it is
comparable with the levels of endogenous LPL protein
(~68–70 kDa; lane 1) in WT osteoclasts transduced with the vector
peptide TAT-HA. Consistently, LPL−/− osteoclasts are lacking LPL
protein (lane 3).
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Fig. 2 Analysis of the formation of nascent sealing zones (NSZs) and dentine resorption activity in WT and LPL−/− osteoclasts. Osteoclasts
from WT (a) and LPL−/− (b) mice were cultured on dentine slices for 3 h–4 h in the presence of TNF-α and stained for actin with rhodamine-
phalloidin. Confocal microscopy analysis was done in actin-stained osteoclasts. Dentine is shown in green color (pseudocolor) and actin in red.
Overlay image shows the distribution of actin (red) on a dentine slice (green). Arrowheads point to NSZs in WT osteoclasts and arrows point to
podosomes in LPL−/− osteoclasts. Scale bar—50 µm. Experiments were repeated three times in osteoclasts isolated from WT and LPL−/− mice.
The number of NSZs were counted in ~60 WT osteoclasts total from three different experiments and the average number of NSZs is ~146 ± 21
(mean ± SD). c, d Analysis of the resorption activity in osteoclasts plated on dentine slices. Osteoclasts were cultured on dentine slices for
10 h–12 h in the presence of TNF-α. Resorption pits were scanned using a Bio-Rad confocal microscopy. Resorbed area is seen as dark areas.
Arrowheads in d point to superficial pits. Scale bar—25 µm.
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Fig. 3 Intermittent or short time-lapse video analyses in osteoclasts from wildtype (WT) and L-plastin knockout (LPL−/−) mice. Short time-
lapse video microscopy analyses at 45–60 min (a, d) 2 h–3 h (b, e), and 3 h–4 h (c, f, f′) in WT (a–c) and LPL−/− osteoclasts (d–f) expressing GFP-
actin are shown. Osteoclasts were incubated with dentine slices and TNF-α during these analyses. Basolateral membrane-like structures are
indicated by wavy arrows in b. NSZ is indicated by an arrowhead in c. Podosome-like structures are indicated by an arrow in f′. The asterisk in
a–f′ indicates dentine matrix which is shown in diffused green color (pseudocolor). Scale bars—100 μm (a, b, d, e); 50 μm (c, f, f′).
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Osteoclasts (WT and LPL−/−) transduced with indicated TAT-
peptides were plated on dentine slices for 10 h–12 h in the
presence of TNF-α. Low dose TNF-α promotes actin ring formation
in osteoclasts, which is associated with bone loss that occurs in
inflammatory diseases.39–42 LPL−/− osteoclasts transduced with
TAT-HA peptide demonstrated podosome-like structures at the
periphery but lacked well-formed sealing rings (Fig. 4c). Transduc-
tion of LPL−/− osteoclasts with the TAT-fused FL-LPL peptide
rescued sealing ring formation (Figs. 4d and S2). Pit forming
activity corresponds with the rescue of the sealing ring formation
in FL-LPL transduced LPL−/− osteoclasts (Fig. S3C, D). In contrast,
neither sealing rings nor resorption pits were observed in LPL−/−

osteoclasts transduced with TAT-HA peptide (Figs. 4c, S2 and S3).
The ability of TAT-fused FL-LPL peptide to modulate actin dynamics

in osteoclasts requires phosphorylation at Ser-5 and Ser-7.18 Here, we
sought to determine whether the transduced FL-LPL peptide is
phosphorylated and if the phosphorylation influences the
formation of NSZs. Therefore, LPL−/− osteoclasts were transduced
with TAT-fused FL-LPL or mutated FL-LPL (A5A7) peptide
(schematic diagram in Fig. 5a). Subsequently, WT (control) and
transduced LPL−/− osteoclasts were treated with bone particles
and TNF-α for 3 h–4 h to make lysates for immunoprecipitation
(Fig. 5b–d). LPL immunoprecipitates were first immunoblotted
with a p-Serine antibody (Fig. 5b). Lysates made from WT
osteoclasts were used as a reference standard for LPL phosphor-
ylation (lane 2). Phosphorylation of endogenous LPL in WT
osteoclasts (lane 2) and the transduced FL-LPL (lane 4) peptide
was observed. Although phosphorylation of the transduced
mutated FL-LPL was not observed (panel b; lane 3), immunoblot-
ting with an LPL antibody demonstrates the transduced mutated
and unmutated FL-LPL peptides (panel c; lanes 3 and 4) and the
endogenous LPL peptide in WT osteoclasts (panel c; lane 2).
Consistent with the observations shown in Fig. 2, the molecular
mass of transduced FL-LPL is ~75–78 kDa in LPL−/− osteoclasts
and endogenous LPL protein is ~68–70 kDa in WT osteoclasts.
Densitometric quantification of the transduced and endogenous

protein levels from three different experiments are shown as a
graph in panel e. There is no statistically significant difference in
the levels of LPL protein between groups (Fig. 5e). We then
determined the time-dependent organization of NSZs and sealing
rings using intermittent time-lapse video recording (Fig. 5f–h).
After transduction, LPL−/− osteoclasts were plated on dentine
slices in the presence of TNF-α. At the specified time of analysis
(2 h–4 h in Fig. 5f and 6 h–8 h in Fig. 5g), time-lapse video
recording was performed every 15′ for 2 h. Representative frames
are shown at 3½ h (Fig. 5f) and 7 h (Fig. 5g, h). As anticipated,
transduction of the TAT-fused FL-LPL peptide rescued the
formation of NSZs and sealing rings in a time-dependent manner
in LPL−/− osteoclasts (Fig. 5f, g). This rescue was not observed with
FL-LPL (A5A7) (panel h), supporting the notion that these
phosphorylation sites are essential to LPL’s action in the formation
of NSZs and sealing rings. These osteoclasts demonstrated
podosome-like structures (indicated by wavy arrows (panel h)).
However, fewer podosome-like structures were observed on
dentine than on glass coverslips (Figs. 2 and 5), which may be
due to the effects of different substratum.6,43–45 Time-lapse
analyses in three different experiments validating the effects
TAT-fused FL-LPL and FL-LPL (A5A7) peptides on the rescue of
NSZs and sealing rings are shown in quadruplicates (Fig. S4). The
above results confirm an essential role for LPL in the ability of the
osteoclasts to form the structures necessary to resorb bone
efficiently.

LPL deficiency increased trabecular bone in femurs of 8- and 12-
week-old female mice
Homozygous LPL−/− mice develop normally and are fertile. At 8
and 12 weeks of age, female LPL−/− mice did not show any
anomaly in body length or weight as well as in the histology of
organs such as liver, brain, kidney, and heart compared with WT
mice. Femurs of 8- and 12-week-old mice were analyzed using
micro-CT. Also, tibias and femurs of 8- and 12-week-old mice were
subjected to quantitative histology and histomorphometry analyses.
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Fig. 4 Analysis of the effect of transduction of indicated TAT-fused peptides on the formation of sealing rings in osteoclasts from wildtype
(WT) and L-plastin knockout (LPL−/−) mice. a Immunoblotting analysis with an antibodyto LPL. WT and LPL−/− osteoclasts treated with bone
particles and TNF-α were transduced with indicated TAT-fused FL-LPL (lane 2) or TAT-HA (lanes 1 and 3) peptide. Immunoblotting analysis with
an antibody to LPL demonstrated endogenous LPL protein in WT osteoclasts (~68–70 kDa; indicated by asterisks) and transduced FL-LPL
peptide in LPL−/− osteoclasts (~75–78 kDa; lane 2). Immunoblotting with a GAPDH antibody was used as loading control. b–i Osteoclasts
transduced with indicated TAT-fused peptides were plated on dentine slices for 14 h–16 h in the presence of TNF-α to determine the
formation of sealing rings (b–d). Confocal images of osteoclasts are shown. Merged (red and green) images are shown in the top panels.
Dentine is shown in green color (pseudocolor; middle panels). An asterisk in b and d points to resorbed area underneath the osteoclast. Actin-
stained cells are shown in the bottom panels. Arrows point to sealing rings and arrowheads point to NSZs. Wavy arrows point to podosomes.
Scale bar—50 μm. Experiments were repeated three times with three different osteoclast preparations.
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Consistent with prior work,46 micro-CT analyses demonstrated a
marked increase in trabecular bone mass (BV/TV) in the distal
femur of LPL−/− mice at both 8 weeks (Fig. 6a) and 12 weeks of
age (Fig. 6b). This is associated with an increase in trabecular
number (Tb.N) and decrease in trabecular separation (Tb.Sp). In
contrast, at 8 weeks of age, there was no significant difference in
cortical parameters at the femoral mid-diaphysis (Fig. S5, panels in
a). However, by 12 weeks of age, a decrease in cortical bone
thickness (Cs.Th) was observed in LPL−/− mice relative to their WT
controls (Fig. S5). This decrease in Cs.Th was likely not due to
increased periosteal apposition, as the periosteal perimeter

(Ps.Pm) of the mid-diaphysis did not differ between genotypes
(Fig. S5B, middle panel). Instead, there was a significant increase in
the endocortical perimeter (Ec.Pm), suggesting an increase in
endocortical bone resorption in these mice (Fig. S5B, right panel).
Static bone histomorphometric analysis was performed in bone

sections (femur and tibia) stained with hematoxylin and eosin
(H&E) staining (Fig. S6A, C). Bone sections were also stained for
TRAP to aid in the detection of osteoclasts (Fig. S6B, D). Consistent
with the micro-CT analyses, histomorphometric analyses also
demonstrated an increase in trabecular bone density in LPL−/−

mice by 8 weeks of age (Fig. S6C, D; Table S1). The number of
TRAP-positive osteoclasts present on the surface of WT and LPL−/−

bones were similar (Fig. 7a; Table S1). Despite these similar
numbers of osteoclasts, LPL−/− mice show (a) a decrease in the
eroded perimeter (Fig. 7b), suggesting a decrease in osteoclast
activity; and (b) a significant increase in the trabecular thickness
and Tb.N corresponding with a decrease in the trabecular spacing
(Fig. S6F–H; Table S1). Both of these results are consistent with a
decrease in osteoclast activity in both 8- and 12-week-old female
mice when LPL is not present (Fig. 7b).
In order to assess the contribution of osteoblast-mediated bone

formation to this phenotype, mice were injected with calcein at 2
and 7 days before sacrificing.47,48 Dynamic histomorphometry
showed no difference in bone formation rate or the mean mineral
apposition rate (Fig. 7c, d) between genotypes. Likewise, the
number of osteoblasts is not different in bones from LPL−/− and
WT mice (Table S1). These data support the notion that the
increase in trabecular bone density is not due to osteoblast-
mediated bone formation.

LPL deficiency had differential effects on the serum levels of
cytokines, calcium, and bone resorption markers
To confirm that LPL deficiency in mice blocked osteoclast bone
resorption and not osteoclast differentiation, we examined the
biomarkers of bone resorption in the serum of LPL−/− mice. Similarly,
bone formation biomarkers and calcium levels were also measured.
Serum from WT mice was used as a control. Consistent with defects
in osteoclast activity, C-terminal telopeptide of type 1 collagen (CTX)
levels were significantly lower in LPL−/− mice as assessed by ELISA
(Fig. 7e). Consistent with a similar number of osteoclasts present
between both genotypes, the levels of TRAP, RANKL, and calcium
remained the same between genotypes (Fig. 7f, h, and i). A decrease
in eroded perimeters prompted us to determine the serum levels of
TNF-α. Serum TNF-α is decreased in LPL−/− compared with WT mice.
TNF-α is capable of causing bone erosion either by enhancing
proliferation or activity of cells in the osteoclast lineage.40,49 A
decrease in the eroded perimeter (Fig. 7b) suggests that a decrease
in circulating TNF-α may diminish the overall function of osteoclasts.

LPL deficiency did not affect the biomechanical properties of the
bone
Here, we used femurs and tibia isolated from WT and LPL−/− mice
at 13 weeks of age to evaluate the bone strength when LPL is not
present. However, no significant differences were found in the
biomechanical properties of either the femur or the tibia between
groups (Table S2; Fig. S7). This was surprising three-point bending
mostly measures the biomechanical properties of the cortical
bone, which micro-CT analyses revealed a significant decrease in
Cs.Th (Fig. S5; left panel in b). Perhaps this was due to the
increased bone mass in the trabecular compartment of LPL−/−

mice, as trabecular bone in the diaphyseal area may also
contribute to total bone strength.

DISCUSSION
Regulation of sealing ring formation during bone resorption by
osteoclasts is critical in pathological bone loss. This study was
designed to demonstrate the essential role of LPL in osteoclast
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actin dynamics using LPL−/− mice. Consistent with prior
work,2,18,19 we showed that LPL, an actin-bundling protein, plays
a vital role in the formation of NSZs, which mature into fully
functional sealing rings. LPL deficiency results in a mild
osteopetrosis phenotype with increased trabecular bone volume
and a decreased in eroded perimeters. These are consistent with
the possible deficiency in the actin modeling processes involved
in the formation of sealing rings in LPL−/− osteoclasts. LPL
deficiency did not affect osteoclast differentiation in vitro. Like-
wise, bone histomorphometry analysis showed that the number of

osteoclasts is not significantly different between WT and LPL−/−

mice. LPL deficiency did not affect the adhesion of osteoclasts to the
bone surface due to the presence of podosomes. Rather, the skeletal
phenotype in LPL−/− mice is likely due to the inhibition of bone
resorption. Decreased serum levels of CTX-1, a bone resorption
marker, validate this observation of reduced bone resorption.
Podosomes are the primary adhesive structure of the osteo-

clasts.47,50–54 LPL is indispensable for podosome formation,
stability, and function in macrophages.38,55 However, LPL−/−

osteoclasts are well spread on coverslips, and actin staining
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revealed distinct podosome structures in the clear zone area.
Consistent with functional podosomes, migration is not affected in
LPL−/− osteoclasts. Overall, these results suggest that the
mechanism of formation of podosomes is cell-type dependent.
In a previous study with Gsn−/− osteoclasts, we showed that

Gsn deficiency blocks podosome assembly and motility. However,
these osteoclasts still exhibited sealing rings and matrix resorp-
tion. Therefore, Gsn−/− osteoclasts are capable of resorbing bone,
but the resorbed areas are small as a result of the absence of
podosomes and the hypomotile nature of Gsn−/− osteoclasts.47

Previous studies have shown that podosomes change their dynamic
property when they mature into belts or actin rings in a SZ area.
When doing so, a major change in the actin filament assembly takes
place in the formation of SZs. SZs are made of structural units
related to individual podosomes with more extended actin core and
higher density of inter-connecting actin filaments.56–58 The dynamic
reorganization of actin filaments is regulated by the external milieu
of osteoclasts.43,59 Thus, we examined sealing ring formation in
osteoclasts plated on dentine slices, on which the mineralized matrix
(organic and inorganic component), its solubility, and the surface
area of the crystals impact the resorption kinetics and the
architecture of the resorption pits.59 Observations in Gsn−/− and
LPL−/− osteoclasts suggest that podosomes and sealing rings may
have unique actin regulatory mechanisms although they display
comparable molecular composition.
LPL phosphorylation is regulated by signaling pathways

consisting of different kinases including PKC, PKA, Src,
etc.21,46,60–64 The results presented here validate our previous
studies2,18–20 that LPL phosphorylation is essential in the
regulation of NSZ formation by TNF-α signaling. A limitation of
our study is that we did not explore the mechanisms regulating
LPL phosphorylation. Recent studies have begun to focus on the
TNF-α mediated signaling mechanism(s) involved in the phos-
phorylation of LPL in osteoclasts.
Micro-CT and histomorphometric analyses showed an increase

in trabecular bone mass consistent with osteopetrosis. Even
though a decrease in Cs.Th was observed in 12-week-old female
LPL−/− mice; there was no significant change in periosteal
measures and no difference in mechanical strength at the mid
cortical sites in both the femur and tibia of female mice. As
suggested by others, there are several likely possibilities for how
bone resorption can be attenuated without unfavorable reduction
or increase in bone formation,65,66 e.g., human osteopetrosis,
caused by mutations in proteins involved in the acidification of
the resorption lacuna (Chloride channel ClC-7 or the a3-V-ATPase).
This mutation decreased resorption with normal or even increased
bone formation.65 The defect in osteoclast function did not affect
endochondral bone growth in mice analyzed at 8 and 12 weeks,
nor did shortening, and clubbing of the femurs occur as reported
in some of the osteopetrotic mice.67 Despite changes in trabecular
microarchitecture and osteoclast activity, serum calcium levels
remain the same in LPL−/− and WT mice. Regardless, these data
suggest that LPL might have a negative role in the cortical
compartment and whether this role changes with increasing age
will be the focus of future studies.
To conclude, osteoclasts from LPL−/− osteoclasts failed to form

NSZs; however, these osteoclasts demonstrated actin-enriched
peripheral podosome-like structures. Deletion of LPL is associated
with an increase in trabecular bone volume and a decrease in
eroded perimeters, indicating osteopetrosis, but no deficits in
bone strength at mid-diaphyseal cortical sites. LPL deficiency did
not affect or increase bone formation by osteoblasts. Our study
suggests that LPL deficiency causes abnormalities in osteoclast
function appear to move in opposite directions in the trabecular
and endocortical regions of long bones. LPL-dependent and
-independent mechanisms of actin assembly occur at the
metaphyseal and endocortical regions of long bones, respectively.
LPL-independent assembly mechanisms appear to be capable of

founding sealing rings for bone resorption to occur in the
endocortical region. In the future, it is crucial to identify whether
there is any compensatory mechanism that could be present in
this region for the observed bone loss. LPL seems to act primarily
at trabecular sites to regulate osteoclastic resorption, suggesting
that LPL is a novel target for therapeutic intervention to block
bone loss. However, further analyses are required to determine
how osteoclasts deficient in LPL expression at endosteal areas
could perform differently from those at the trabecular surfaces.

MATERIALS AND METHODS
Materials
Antibody to LPL (SC-16657; Goat) was purchased from Santa Cruz
Biotechnology (Santa Cruz, CA). Antibodies to GAPDH and TNF-α
receptor 1 (TNFR1) were purchased from R & D Systems
(Minneapolis, MN). Protein estimation reagent, molecular weight
standards, and PAGE reagents were bought from Bio-Rad
(Hercules, CA). Cy2- and Cy3-conjugated secondary antibodies
were purchased from Jackson Immunoresearch (West Grove, PA).
HRP-conjugated secondary antibodies for immunoblotting and
the phosphoserine (p-Serine) antibody were purchased from
Abcam (Cambridge, MA). Mounting solutions for mounting of
coverslips were purchased from Thomas Scientific (Swedesboro,
NJ) or Vector Labs (Burlingame, CA). Rhodamine-phalloidin and all
other chemicals were purchased from Sigma (St. Louis, MO).

Mice
C57/BL6 mice (6–8-week-old mice) were used for osteoclast
preparation. These mice were either purchased from Harlan
Laboratories or generated in the animal facility of the University of
Maryland Dental School. LPL−/− mice colony established initially at
Washington University by homologous recombination at the LPL
gene in ES cells were used.27 Mice were back-crossed in to
generate LPL−/− mice on a C57Bl6 background.35 The analyses
described in this paper were done in LPL−/− and WT mice on a
C57Bl6 background. Breeding and maintenance were carried out
as per the guidelines and approval of the University of Maryland
institutional animal care and use committee (IACUC).

Preparation of osteoclasts from long bones
Osteoclasts were generated in vitro using long bone marrow cells
of 6–8-week-old C57BL/6 mice as described previously.16,47 The
multinucleated osteoclasts were seen from day 4 onward. Mature
osteoclasts were replated on dentine for immunostaining and
bone resorption analyses.

Lysate preparation and immunoblotting analysis
Osteoclasts generated from WT and LPL−/− bone marrow were
washed three times with cold PBS and lysed in RIPA buffer (RIPA;
10mmol·L−1 Tris-HCl, pH 7.2, 150mmol·L−1 NaCl, 1% deoxycho-
late, 1% Triton X-100, 0.1% SDS, 1% aprotinin, 2 mmol·L−1 PMSF,
100mol·L−1 Na3VO4, and 1% aprotinin). An equal amount of lysate
proteins (50 µg) made from WT and LPL−/− osteoclasts were used
for immunoprecipitation or immunoblotting analyses.2,18

Expression of GFP-actin in osteoclasts and confocal microscopy
analysis of the time-dependent formation of NSZs and sealing
rings in live cells
Osteoclasts were transfected with human ß-actin containing an
NH2-terminal EGFP vector (Clontech) using the transfection
reagent (MIRUS). Expression of GFP-actin was confirmed at
10 h–12 h after transfection. Dentine slices were added to
osteoclast cultures and images were acquired at 45–60min,
2 h–3 h and 3 h–4 h in the presence of TNF-α in WT and LPL−/−

osteoclasts with a 1.4 NA Plan Apo ×63 objective (Bio-Rad confocal
microscopy). GFP-actin expressing cells transduced with TAT-fused
peptides (mutated and unmutated TAT-fused FL-LPL) were also
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plated on dentine slices, and intermittent time-lapse analyses
were done at 2 h–4 h and 6 h–8 h in the presence of TNF-α.

Transduction of TAT-fused peptides into osteoclasts
We used pTAT-HA expression vector68 for cloning and purification of
the FL-LPL and mutated FL-LPL (Ser-5 and Ser-7 substituted to Ala-5,
and Ala-7; abbreviated as FL-LPL (A5A7)) constructs. Mutations at Ser-
5 and Ser-7 were generated using the Quick-Change Site-Directed
Mutagenesis Kit (Agilent Technologies, Halethorpe), as described.18

FL-LPL cDNA (Accession: BC010271) were used to generate the
mutant.2 Purification of TAT-fused peptides and transduction into
osteoclasts were completed as previously described.69

Fluorescent labeling of proteins in osteoclasts
Osteoclast precursors (105 cells/coverslips) were cultured on glass
coverslips or dentine slices. Fluorescent labeling was done with
rhodamine-phalloidin to determine actin organization.47,69 Immu-
nostained and actin-stained osteoclasts were imaged using a Bio-
Rad confocal laser-scanning microscope. Images were stored in TIF
image format and processed by Adobe Photoshop (Adobe
Systems Inc., Mountain View, CA).

Migration assays
Transwell and phagokinesis migration assays were done as
previously reported.47,69,70 Statistical significance was calculated
as described below. In phagokinesis assay, the migration efficiency
was evaluated by measuring the areas free (tracks) of gold
particles. A gridded reticle (Boyce Scientific, Inc., Gray Summit, NC)
was used in the eyepiece of a Nikon microscope and tracks were
measured using a ×10 objective. Each assay was done in triplicates
with WT and LPL−/− osteoclasts, and migratory tracks were
measured in 10–15 cells/assay; assays were repeated three times
with three different osteoclast preparations. An average of 30–40
tracks is provided as area moved in mm2.
After migration in transwell chambers for 12 h–14 h, remaining

cells that did not migrate from the upper side of the transwell
were removed gently with a cotton-tipped applicator. Mem-
branes were then stained with hematoxylin stain (Sigma) after
fixing the migrated cells with an alcohol/formaldehyde/acetic
acid mixture (20:2:1) for 15 min. Membranes were rinsed well
with water and dried. Dried filters were mounted on a glass slide
and counted in an inverted microscope (Zeiss microscope) as
previously described.69 About 5–6 areas from each membrane
were counted. All assays were done in triplicates. Therefore, the
average of 15–18 picture fields/experiment at ×100 magnifica-
tion was quantified. Assays were repeated three times with three
different osteoclast preparations. The number of fields was >45
in each assay. Data presented are mean ± SD of three experi-
ments in both assays.

Dentine matrix resorption assay in vitro and measurement of the
pit area
Osteoclasts were replated on dentine slices for 10 h–12 h in the
presence of TNF-α. Resorbed areas were scanned using Bio-Rad
confocal microscopy essentially as previously described.47 The dentine
slices mounted on No. 1 coverslips were viewed with a 40 × 0.6 NA air
objective. Images were recorded in the epi-reflection mode using
the 488-nm line of the argon laser in a 512 × 512-pixel format.
Data collection and processing were accomplished with the Zeiss
LSM 410 software package. Photomicrographs were stored in a
TIFF image format. The area of the pit was determined from the
free-hand traced perimeter using the LSM software Area
Measurement function. Images were stored in TIF format and
processed by Adobe Photoshop (Adobe Systems Inc.).47

Microcomputed tomography
Femurs were dissected from 8- to 12-week-old female WT and
LPL−/− mice and processed as described.71 Three-dimensional

Micro-CT was performed on femurs (n= 5–6) using a SkyScan
1172 (Bruker, Kontich, Belgium) at 60 kV (167 µA) and a 9.91 µm
voxel size, as described.72,73 The skeletal parameters assessed by
micro-CT followed published nomenclature guidelines.74 Trabe-
cular bone microarchitecture, including the trabecular bone
volume fraction (BV/TV), trabecular bone thickness (Tb.Th), Tb.N,
and Tb.Sp, was analyzed in a manually delineated region of
interest 0.25 mm–2.5 mm proximal to the distal femoral growth
plate. Cortical parameters, including Cs.Th, periosteal (Ps.Pm), and
endocortical or endosteal perimeters (Ec.Pm), were 0.6 mm region
at the femoral mid-diaphysis.

Bone histomorphometry
Bone histomorphometry was done in 8-week-old female LPL−/−

and WT mice as described.47,48 Static and dynamic histomorpho-
metric measurements were made using Bio-Quant software. All
measurements were done to the metaphyseal region distal to the
growth plate region. To estimate bone formation rate, double-
labeled, and single-labeled areas were traced and calculated as
described.75,76 The terminology used is that recommended by the
Histomorphometry Nomenclature Committee of the American
Society of Bone and Mineral Research.77

Mechanical testing of femurs from LPL−/− and WT mice
Left femur and tibia of 9- and 13-week-old mice were chosen
for biomechanical testing. Breaking strength of the left femur
was measured under three-point bending using a material
testing machine (ElectroForce Systems Group, Bose, Eden
Prairie, MN) fitted with a 1 000 N load cell as previously
described.78–80 The effect of shear loading was minimized via
maximizing the distance between the lower support points.
Femurs were placed on the loading fixture anterior side down
and loaded in the anterior–posterior plane at a span length of
(Femur: 9 weeks—9.2 mm, 13 weeks—9.6 mm; Tibia: 9 weeks—
13.0 mm, 13 weeks—13.8 mm). Before testing, femora were
thawed in saline at room temperature to ensure hydration.
Femurs were loaded to failure at a rate of 0.05 mm·s−1, during
which displacement and force were collected (100 Hz). Force
and displacement values were normalized using terms derived
from engineering analysis of three-point bending. Bending
moments were calculated from the force (F) data (M= FL/4)
(N·mm). Displacement data were divided by L2/12 (mm·mm−2),
where L is the distance between the lower supports (19.26 mm).
Whole-bone mechanical properties were then determined from
the moment vs. normalized displacement curves, including peak
moment (N·mm, ultimate load the specimen sustained), yield
moment (N·mm), stiffness (N·mm2, the slope of the initial linear
portion of the moment–displacement curve), yield displacement
(mm·mm−2, displacement at the yield point), post-yield displace-
ment (mm·mm−2), work to failure (N·mm–mm·mm−2, the area
under the moment–displacement curve before failure), and work
to failure post-yield (N·mm–mm·mm−2). The yield point was
calculated as the point where a 10% change in the slope of the
moment vs. the normalized displacement curve occurred.

Serum biomarkers
Blood was collected by cardiac puncture in heparin-lithium coated
tubes (Thomas Scientific) from WT and LPL−/− mice under deep
terminal anesthesia. Blood was collected, and the serum was
isolated by centrifugation at 3 000 g for 10–15min. Serum was
stored at −80 °C until use. Serum levels of mouse TNF-α, RANKL,
carboxyl-terminal telopeptide or carboxyl-terminal collagen cross-
link (CTX-1), and tartrate-resistant acid phosphatase 5 isoform b
(TRAcP5b) were measured by ELISA kits (R&D Systems, Immuno-
diagnostics Systems, and Biomedical Technologies) according to
the manufacturers’ instructions. Calcium levels were measured
using a QuantiChrom Calcium Assay Kit (DICA-500) (BioAssay
Systems).
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Statistical analysis
Results are presented as mean ± SD or SEM. Statistical significance
was performed using Student’s t test (INSTAT; Version 6.0, Graph
Pad Software, Graph Pad Inc, San Diego, CA). A probability value
<0.05 was considered to be statistically significant.
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