
Article
Rapid Simulation of Unprocessed DEER Decay Data
for Protein Fold Prediction
Diego del Alamo,1,2 Maxx H. Tessmer,3 Richard A. Stein,2 Jimmy B. Feix,4 Hassane S. Mchaourab,1,2

and Jens Meiler1,5,*
1Department of Chemistry and Center for Structural Biology; 2Department of Molecular Physiology and Biophysics, Vanderbilt University,
Nashville, Tennessee; 3Department of Microbiology and Immunology; 4Department of Biophysics, Medical College of Wisconsin, Milwaukee,
Wisconsin; and 5Institut for Drug Discovery, Leipzig University, Leipzig, Germany
ABSTRACT Despite advances in sampling and scoring strategies, Monte Carlo modeling methods still struggle to accurately
predict de novo the structures of large proteins, membrane proteins, or proteins of complex topologies. Previous approaches
have addressed these shortcomings by leveraging sparse distance data gathered using site-directed spin labeling and electron
paramagnetic resonance spectroscopy to improve protein structure prediction and refinement outcomes. However, existing
computational implementations entail compromises between coarse-grained models of the spin label that lower the resolution
and explicit models that lead to resource-intense simulations. These methods are further limited by their reliance on distance
distributions, which are calculated from a primary refocused echo decay signal and contain uncertainties that may require
manual refinement. Here, we addressed these challenges by developing RosettaDEER, a scoring method within the Rosetta
software suite capable of simulating double electron-electron resonance spectroscopy decay traces and distance distributions
between spin labels fast enough to fold proteins de novo. We demonstrate that the accuracy of resulting distance distributions
match or exceed those generated by more computationally intensive methods. Moreover, decay traces generated from these
distributions recapitulate intermolecular background coupling parameters even when the time window of data collection is trun-
cated. As a result, RosettaDEER can discriminate between poorly folded and native-like models by using decay traces that
cannot be accurately converted into distance distributions using regularized fitting approaches. Finally, using two challenging
test cases, we demonstrate that RosettaDEER leverages these experimental data for protein fold prediction more effectively
than previous methods. These benchmarking results confirm that RosettaDEER can effectively leverage sparse experimental
data for a wide array of modeling applications built into the Rosetta software suite.
SIGNIFICANCE Computational methods struggle to generate protein structural models using data obtained with double
electron-electron resonance spectroscopy (DEER), which measures nanometer-scale distances between probes bound to
the protein backbone. In addition to these data being sparse, their precision is dependent on the quality of the primary
spectroscopic readout from which they are derived. We developed RosettaDEER to directly interrogate the raw
spectroscopic data for protein structural modeling and found that even low-quality DEER data enable the identification of
native-like protein structural models. Moreover, by predicting the folds of two example proteins de novo, we demonstrate
that this approach leverages experimental data more effectively than existing methods. These results highlight the utility of
DEER decay data for protein structural modeling.
INTRODUCTION

Structural biology increasingly relies on integratedmethods to
model the structure and dynamics of proteins and protein
assemblies (1,2). Multiple complementary experimental
methodologies can describe the structure and dynamics of
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proteins that elude determination from a single technique,
such as integral membrane proteins, conformationally
flexible proteins, and those that fall outside the size limitations
of solution-state nuclear magnetic resonance and cryogenic
electron microscopy. By integrating experimental data from
multiple approaches, computational modeling can build accu-
rate models in regions with sparse experimental data. One
promising source of high-resolution experimental data for
integrated structural biology combines site-directed spin
labeling and electron paramagnetic resonance spectroscopy
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(SDSL-EPR) (3,4). Previous studies have employed SDSL-
EPR and computation in tandem to predict protein structures
de novo (5–12), model conformational changes (13–16), and
dock rigid bodies (17–19).

Existing modeling methods largely focus on data gathered
using four-pulse double electron-electron resonance spectros-
copy (20) (DEER, also called PELDOR), which can report
ondistancesofup to60–80 Åbetween stableunpaired electrons
conjugated to the protein backbonebySDSL (21,22).However,
incorporation of these distances as interatomic restraints for
modeling purposes is confounded by the conformational
freedom of these paramagnetic probes. The central challenge
is to convert interspin distance information into structural
restraints that report on the protein backbone (23–25). Addi-
tionally, the need to incorporate two spin labels into the protein
sequence per restraint results in sparse coverage of the experi-
mental data that can introduce ambiguities into computational
modeling (8). As a result, only a few experimental restraints are
generally available to describe the protein fold.

These sparse data sets have nonetheless been leveraged for
protein structure prediction and refinement by a range of
computational modeling approaches that represent the spin
labels either implicitly or explicitly. Implicit models, such as
the motion-on-a-cone (CONE) model (5), use knowledge-
based potentials to translate interspin distance values into
backbone restraints, typically between Cb atoms (26). Intro-
ducing these restraints led to measurable improvements in de
novo structure prediction benchmarks by programs employing
Monte Carlo sampling strategies (5,7–11), gradient minimiza-
tion (6,12), and molecular dynamics (27). However, because
these potentials fail to account for the environment or the rela-
tive orientations of the spin labels, they tend to be ambiguous
(26). Explicit methods, by contrast, model spin labels as indi-
vidual side chains (16,28–31), ensembles of side chains
(17,32–34), or ensembles of dummy atoms (13,14,35). The
added detail improves accuracy ofmodeling but makes imple-
mentations too computationally intensive for de novo protein
structure prediction and limits the utility of these methods to
modeling small-scale conformational changes (13,14,16).

Despite their diversity, these methods largely share a
common limitation in their reliance on distance distributions
rather than the primary spectroscopic readout. Other compu-
tational methodologies directly incorporate primary experi-
mental data, such as two-dimensional NMR spectra (36) and
cryogenic electron microscopy electron density maps (37)
to fold and refine proteins. The feasibility of using DEER
dipolar coupling decay traces as modeling restraints has
only recently been explored (16). Whereas processing spec-
troscopic decay traces into distance distributions risks intro-
ducing ambiguities and artifacts (38–43), simulating a decay
trace from a distance distribution is well described and
mathematically straightforward (16,22,40,44).

Here, we introduce RosettaDEER, a method in the macro-
molecular modeling suite Rosetta that is capable of rapidly
simulating distance distributions and DEER decay traces
between spin labels, aswell as evaluating amodel’s agreement
with experimental data. RosettaDEER’s computational effi-
ciency enables prediction of protein structures de novo with
greater accuracy than the default energy function or the
CONEmodel.Owing toRosetta’sMonteCarlo sampling strat-
egy (45), the experimental data can be used directly without
analysis or background correction. Thus, aswith other forward
modeling approaches (46), the quality of the primary spectro-
scopic data can be significantly poorer than what would
ordinarily be required for rigorous transformation into distance
distributions using common fitting strategies. This method
reinforces the utility of DEER in conjunction with computa-
tional modeling to accurately model protein structures.
MATERIALS AND METHODS

Assembly of diverse experimental data sets

RosettaDEER was implemented in the Rosetta software suite (45), trained

on distance data gathered in T4 lysozyme obtained from the laboratory of

Hassane S. Mchaourab, and tested and cross-validated using both raw spec-

troscopic and analyzed distance data gathered in five laboratories

(Table S1). Data for the ExoU C-terminus (11), Bax (47), and Mhp1 (14)

were obtained from and analyzed by the laboratories of Dr. Jimmy Feix,

Dr. Enrica Bordignon, and Dr. Hassane S. Mchaourab, respectively. New

ExoU double-cysteine mutants were purified, spin labeled, measured, and

analyzed as previously described (Fig. S1; (11)). Raw data for CDB3

(48) and bovine rhodopsin (49) were obtained from the laboratories of

Dr. Albert Beth and Dr. Wayne Hubbell, respectively, and were analyzed

using DEERAnalysis2016 (38); the last 200 and 500 ns were removed

from experimental decay traces shorter and longer than 1.5 ms, respectively.
Generation of DEER distance distributions

The accuracy of various methods that simulate distance distributions between

spin labels were compared using Bax (Protein Data Bank, PDB: 1F16, NMR

state 8), ExoU (PDB: 3TU3), CDB3 (PDB: 1HYN chains R/S), rhodopsin

(PDB: 1GZM chain A), and Mhp1 (PDB: 2JLN). The methods compared

were MMM (32), MDDS (35), MtsslWizard (33), Pronox (34), and TagDock

(18) (Fig. 1,A andB; Table S2).MMM2017was run locally on both cryogenic

mode (175K) and ambientmode (298K)with default settings.MDDSwas run

using the CHARMM-GUI web server (50) with default settings. MtsslWizard

was run locally fromPymol 1.7.2.1 using tight fitting unless no rotamers could

be placed, in which case loose fitting was used (because Mhp1 residue 324

could not be labeled using loose fitting, distances between it were omitted).

Pronox was run from the University of Southern California web server using

a biasof 0.9 and avanderWaals radius scaling factorof0.75, the latter ofwhich

was reduced to 0.4 if rotamers could not be placed. TagDock was run locally

with SCWRL4 (51) and a bump radius of 0.85. Measurements using the

CONE model (5,7) were determined by adding 1.79 Å to the Cb-Cb distance.
RosettaDEER method description

The Rosetta rotamer library for the paramagnetic probe methanethiosulfo-

nate spin label (MTSSL) (30) served as the basis for the coarse-grained ro-

tameric ensemble used in this study. For each of 54 possible rotameric

configurations, the unpaired electron was assumed to occupy the nitroxide

bond midpoint; it was from these coordinates that distances would be

measured. These coordinates were consolidated into a common frame

defined by the Ca atom at the origin, the backbone carbonyl carbon along

the z axis, and the backbone nitrogen in the y-z plane (Fig. 1 C). The
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FIGURE 1 Simulations of distance distributions

between nitroxide probes using RosettaDEER. (A)

An example of an experimentally observed distance

distribution in apoMhp1 51/278, shown in black. Dis-

tance distributions were simulated using Rosetta-

DEER, MMM, and MDDS from the occluded

Mhp1 structure (PDB: 2JLN). The average distance

between Cb atoms and the average distance calculated

using the CONE model shown in light gray and dark

gray, respectively. (B) The estimated average time

required to simulate distance distributions (*the lower

limit of quantitation exceeded the Cb-Cb distance

compute time). (C) Coarse-grained rotameric

ensemble representation of the methanethiosulfonate

spin label. Centers of mass, shown in purple, are

used for clash evaluation, whereas electron coordi-

nates, shown in gray, serve as measurement coordi-

nates. (D) Distance distributions between residues

are simulated by superimposing coordinates, evalu-

ating clashes and measuring all resulting pairwise

distances.
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remainder of each rotamer was represented by a single pseudoatom with a

radius of 2.4 Å that was placed at 87.5% of the distance between each nitro-

xide bond midpoint coordinate and an idealized Cb coordinate; if this

pseudoatom clashed with the protein model, its corresponding electron

coordinate was not used for distance measurements. The placement of

this pseudoatom coincides with the center of mass of the nitroxide ring

of MTSSL (Fig. S2; Table S3). For cases in which the steric environment

prevented the placement of any rotamers, the van der Waals radii of the

pseudoatoms were gradually lowered until at least one rotamer could be

accommodated. Distance distributions between two residues reflect all pair-

wise distance measurements between their respective coordinates after

evaluating clashes; we smoothed each of these distance values into

Gaussian distributions with a 0.5 Å standard deviation. The resulting

distance distributions were then binned to 0.5 Å.

The resulting coordinate frame, which consisted of 54 unweighted coor-

dinates and their positions with respect to protein backbone, did not account

for the dynamics of the spin label (e.g., the configurations and positions it

preferentially occupies) and was highly redundant, with coordinates often

being placed<1 Å apart (Fig. S3). We addressed both issues using a scheme

outlined in Fig. S3. Neighboring coordinates were merged using k-means

clustering to generate a series of coordinate sets ranging from three posi-

tions to 53 total positions. The weights of these resulting positions were

then optimized using 49 previously published experimental distance distri-

butions between 37 residues gathered in T4 lysozyme (35). During each of

half a million iterations, a Monte Carlo Metropolis algorithm randomly

modified the weight of a coordinate and either accepted or rejected the

change based on the improved agreement with the experimental T4 lyso-

zyme distance data. This algorithm was carried out on each set of clustered

coordinates 1000 times. The resulting set of weights with the best agree-

ment consisted of 17 coordinates, four of which were fit to be zero. This

set was introduced as the default set of coordinates for RosettaDEER and

was used for all subsequent experiments described here.
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Simulation of DEER dipolar coupling decay traces
and comparison to experimental values

Because the simulation of DEER decay traces has been extensively

described (16,22,38,40), here we limit our discussion to their generation

from distance distributions for the purpose of evaluating protein structural

models. The traces simulated by RosettaDEER ðVsimÞ reflect coupling

between spin labels attached to the same macromolecule ðVintraÞ, as well
as an intermolecular ‘‘background’’ component reflecting coupling between

spin labels across different macromolecules:
Vsim ti; l; k; r;wð Þ ¼ ekt 1� l 1� Vintra ti; r;wð Þð Þð Þ (1)

This background is assumed to be homogeneous across three dimensions

and is modeled using a slope k and a modulation depth l. The simulated dis-

tribution consists of a vector of distances r (in nanometers) and their corre-

sponding amplitudes w. Simulated traces obtained this way are converted

into scores ðSDEERÞ by comparing them to the corresponding experimental

spectra ðVexpÞ using the following cost function:

SDEER ¼ 1

n

Xn
i¼ 1

Vexp tið Þ � Vsim ti; l; k; r;wð Þ� �2
; (2)

where n is the number of time points in the data.

To convert a distance distribution into a spectroscopic signal that can be

compared to experimental data, RosettaDEER first simulates Vintra for each

0.5 Å bin j between 15 and 100 Å:
3 cos2 qÞm0m
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where t is the time point of a trace in ms, mB is the Bohr magneton, m0 is the

vacuum permeability constant, gX is the g-factor of electron X, q is the

angle between the interelectron vector and the bulk magnetic field, and m

is the number of distance bins.

Background parameters k and l are then determined and optimized in

two stages. Initial values for both parameters were first determined by

incrementing l with step size 0.01 and log-transforming Eq. 1 to determine

k using linear regression:

bk ¼
Xn
i¼ 1

ti ln
Vexp tið Þ

1� l 1� Vintra ti; r;wð Þð Þ
� � ! Xn

i¼ 1

t2i

 !�1

(4)

Subsequent attempts to fit simulated intramolecular decay traces were

achieved using gradient minimization to solve for l and linear regression

to solve for k. Convergence was reached when jDl j < 0.0025. The iterative

strategy used to obtain the initial guess was repeated for cases in which l

exceeded reasonable values, the lower and upper bounds of which are

defined by default as 0.02 and 0.50. This range corresponds to modulation

depth values that would ordinarily be obtained from Q-band DEER on well-

labeled double-cysteine mutants without using an arbitrary waveform

generator. Deviations from experimentally observed values for these two

parameters were found to frequently occur during the initial stages of

extended chain de novo folding, in which simulated distance distributions

deviated drastically from experimental values and led to erroneous

background parameter results.
Rosetta model generation and evaluation

Rosetta models were generated with two approaches to not only sample a

large conformational space but also ensure native-like models at a high den-

sity. The native-like models were generated with RosettaCM (52) using

either full-length or truncated native models as inputs. Coverage of a large

conformational space was accomplished by de novo protein folding without

experimental restraints. Bax, ExoU, and CDB3 were scored using the

ref2015 energy function (53), and rhodopsin and Mhp1 were scored using

RosettaMembrane (54). The transmembrane regions for rhodopsin and

Mhp1 were predicted using OCTOPUS (55). These models were evaluated

using RMSD100SSE, which measures the size-normalized root mean-square

deviation (RMSD) over residues in secondary structures (56). Enrichment

of these models was evaluated as log TPP;Score � Ntotal

� �
=

�
P� Ntotalð ÞÞ,

where Ntotal refers to the total number of models being considered, P refers

to the proportion of models considered native-like by Ca RMSD100SSE, and

TPP;Score refers to the number of true positives identified in the top P� Ntotal

models by score (9). We treated the top 10% of models as native-like (P ¼
0.1), thus scaling the metric from �1 (none of the top 10% of models by

RMSD100SSE were in the top 10% by score) to 1 (all of the top 10% of

models by RMSD100SSE were also in the top 10% by score), with a value

of 0 indicating that the number of native-like models found in the top

10% by score was equal to what is expected by chance.

Oscillation frequencies of decay traces for distributions with an average

distance ravg (in angstroms) were calculated as ravg
3=ð5:2� 104Þ ms (40).

Decay traces with fewer than three oscillations were not used to evaluate

enrichment as a function of decay trace duration.
De novo protein structure prediction benchmark

The protein structure prediction protocol we used largely follows a previ-

ously published template (57) and consists of three stages. In the first

stage, 10,000 models were generated using extended chain AbInitio

with either RosettaDEER restraints, CONE model restraints (5), or no re-

straints. This protocol relies on the insertion of fragments obtained from a

July 2011 copy of the Protein Data Bank and was obtained from the
Robetta online server (58); homologous protein structures were excluded

from these fragment libraries. The contribution of the RosettaDEER score

term was adjusted so that its dynamic range was similar to that of the

Rosetta energy function (57). Because the proportion of DEER restraints

relative to the protein length was comparable for Bax and ExoU, the

impact of the number of restraints on the weight of the score term was

not considered (59).

Models generated this way were then clustered to a radius of 7.5 Å Ca

RMSD100 using Durandal (60). Each cluster was evaluated by scoring its

models using both RosettaDEER and the full-atom Rosetta energy

function (53), obtaining the cluster averages for both values, and adding

their Z-scores with respect to those of other clusters. After discarding

sparsely populated clusters (<5% of the size of the largest cluster), the

top 10 best-scoring models by combined Z-score were selected from the

five best-scoring clusters for subsequent modeling.

An additional 1200 models were generated from these 50 models using

RosettaCM (52), which also relies on fragment insertion but ensures that

the input model’s topology is retained throughout the modeling process.

The scripts were obtained from a recently published refinement protocol

(61), and no experimental restraints were used. Models generated during

this stage were again clustered to 7.5 Å Ca RMSD100 and scored, except

only the RosettaDEER scorewas used to evaluate the quality of these models.

During the third and final stage, models in the best-scoring cluster were

minimized using FastRelax (62), which introduces and repacks side chains

while performing gradient descent on a full-atom depiction of the entire

model. Models generated at this stage were scored exclusively using the

native Rosetta energy function, with the lowest-scoring model selected as

the output model.
RESULTS

Modeling nitroxide spin labels using
RosettaDEER

A strategy to model proteins using DEER data must reliably
simulate distance distributions between spin-labeled resi-
dues. To quantify the computational cost and efficiency of
this task, we considered a panel of five proteins in which
both atomic-detail structures and experimental DEER data
were available (Table S1; (11,14,47–49)). Distance distribu-
tions between residue pairs that have been previously
measured experimentally were simulated using a number
of methods, and the resulting error was quantified as the dif-
ference between the average values of the simulated and
experimental distance distributions (example shown in
Fig. 1 A). In addition, we measured how rapidly each pro-
gram calculated these distance distributions. (Fig. 1 B).
Consistent with previous results (10,26,33), the average
values of experimental distance distributions gathered in
monomeric proteins, but not the homodimer CDB3, agree
more closely with those of simulated distributions than their
corresponding Cb-Cb distances, from which restraints such
as the CONE model are derived (Table S2; (5)). By contrast,
none of the methods examined here reliably reproduced the
width of the distance distributions. This is likely attributable
to oversampling of available conformational space of the
spin label, which results from the exclusive use of van der
Waals repulsive energies to limit possible rotameric config-
urations. Finally, the data revealed how simulation times
varied substantially between these methods.
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These results further illustrate that increasing computa-
tional complexity did not lead to more accurate distance
distributions. We hypothesized that, for the same reason,
decreasing the computational complexity would not
lead to less accurate distance distributions. Therefore,
RosettaDEER’s design prioritized computational effi-
ciency (see Materials and Methods). Rather than measure
distances from full-atom rotamers or mobile dummy
atoms, RosettaDEER uses a probability density function
to capture high-occupancy electron positions that would
be explored by MTSSL and map them onto the protein
structure (Fig. 1, C and D). For each of these coordinates,
an evaluation of a potential van der Waals overlap was per-
formed between a pseudoatom representing the nitroxide
ring’s center of mass and the rest of the protein. Placing
this pseudoatom at an idealized location, consistent with
spin-labeled protein structures in the PDB (Fig. S2;
Table S3), reduced the number of atoms for this evaluation
to one per rotamer, thus maximizing computational effi-
ciency. Fig. 1, A and B demonstrate that RosettaDEER’s
simplified representation of the spin label allows the gener-
ation of distance distributions three to five orders of magni-
tude faster than other approaches but with comparable
accuracy.
FIGURE 2 RosettaDEER simulations of distance distributions and decay

traces. The forward approach taken by RosettaDEER contrasts with the pre-

processing required by the CONE model. (A) A flowchart illustrating how

both the CONE model and RosettaDEER use experimental DEER data to

model proteins (example shown is T4 lysozyme residues 93 and 123). (B)

Incorporation of DEER experimental restraints into Rosetta structure pre-

diction pipeline. (C) Recovery of experimental background coupling and

modulation depth parameter values.
Comparison of simulations with experimental
DEER decay traces

Most existing methods that leverage DEER experimental
data for structural modeling require that the primary spec-
troscopic readout first be processed into a distance distribu-
tion. A conventional approach, such as the Rosetta CONE
model, is outlined in Fig. 2 A. This involves 1) manually
identifying and removing the ‘‘background’’ signal, which
corresponds to coupling between spin labels across macro-
molecules; 2) using Tikhonov regularization to convert the
remaining intramolecular signal into a distance distribution;
and 3) selecting a single distance value from this distribution
to restrain the modeling process (3). An additional bias is
often required to convert these distance data into backbone
restraints (5,6,30,63).

We reasoned that these preprocessing steps could be
avoided by simulating a spectroscopic signal from candidate
models for direct comparison to the experimental data. As
with other forward approaches to fitting DEER data
(40,46), the steps are as follows: 1) the model is used to
generate a distance distribution, 2) this distance distribution
is converted into a spectroscopic signal consisting solely of
the effect of coupling between spin labels attached to the
same macromolecule, and 3) the slope of the ‘‘background’’
coupling and depth of modulation needed to optimally fit the
simulated and experimental decay traces are determined.

This final step represents the outstanding challenge in the
proposed pipeline because most modeling programs,
including Rosetta, focus on isolated protein structural
370 Biophysical Journal 118, 366–375, January 21, 2020
models. We instead used a two-parameter exponential func-
tion to simulate the background coupling ðkÞ and modula-
tion depth (l) (see Materials and Methods). The values of
these parameters were determined by minimizing the sum
of the squared residuals. The optimum values obtained
strongly correlated with those obtained using DeerAnalysis
(38), with r2 values exceeding 0.90 for both parameters
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(Fig. 2 C), despite the fact that the inaccuracies in the dis-
tance distributions affected the fit (Fig. S4). In fact, we
found that this correspondence correlated less strongly
with the goodness of fit in the distance domain than it did
with the quality of the experimental data in the time domain
(Fig. S5; Table S2).
FIGURE 3 Evaluation of models using DEER decay traces. Models with

Ca RMSD100SSE ranging from 0.5 Å to 20.0–30.0 Åwere scored using both

the Rosetta energy function and RosettaDEER.
Enrichment of native-like models using
experimental decay traces

Being able to simulate DEER traces from candidate struc-
tural models without any preprocessing offers the possibility
to reframe the problem currently faced by translating the
DEER traces into distance distributions. Whereas methods
such as Tikhonov regularization convert individual DEER
traces into distance distributions, RosettaDEER, in conjunc-
tion with Monte Carlo modeling, would instead seek to
determine the structural model most consistent with both
an energy function and the experimental data. To investigate
whether unprocessed DEER traces can be used to discrimi-
nate native-like models from incorrectly folded models, we
generated a series of 1000–2000 misfolded models for each
of the five proteins in our test set and scored their agreement
with experimental DEER data. In addition, we generated
1000 docked models of the homodimer CDB3, which re-
tained the native fold for the protomer but not the oligomeric
interface. Similarity to the native model was measured by
Ca RMSD100SSE (56), which is the size-normalized
RMSD across secondary structural elements (Fig. 3).
RosettaDEER’s effectiveness at this task was measured by
the enrichment parameter, which is defined in the Materials
and Methods and quantifies a scoring function’s ability to
discriminate native-like models from incorrectly folded
models.

RosettaDEER consistently scored native-like models of
the monomeric proteins more favorably than poorly folded
models (Fig. 3). This was also observed with correctly
docked models of CDB3. Moreover, it generally outper-
formed the CONE model in enriching native-like models
(Fig. S6). Perhaps unsurprisingly, the simultaneous use of
Rosetta’s energy function often improved enrichment
because it overwhelmingly considers short-range interac-
tions and is therefore expected to complement the evalua-
tion of longer-range, fold-level information provided by
DEER restraints (Fig. S6; (53)). We note that RosettaDEER
could not effectively identify misfolded models of CDB3,
which we attribute to the fact that DEER restraints reflect
distances across the center of symmetry rather than within
the protomer. Nevertheless, these results suggest that Roset-
taDEER’s inability to perfectly recreate the experimental
DEER data did not impede its ability to identify correctly
folded models, suggesting that it could be effectively used
for structure prediction.

The fact that structuralmodels are scoredbasedon their con-
sistency with the primary spectroscopic data led us to hypoth-
esize that they could beevaluatedusing lower-qualitydata than
what would be necessary for conversion into precise distance
distributions. We were specifically interested in evaluating
the importance of the experimental data’s timewindow, which
must undergo roughly 0.8 and 1.6 oscillations for Tikhonov
regularization to accurately identify a distance distribution’s
average and standard deviation, respectively (22). This hy-
pothesis was tested by artificially truncating the experimental
data in the time domain and measuring enrichment as a func-
tionofhowmanyoscillationswere included (seeMaterials and
Methods, Fig. S6). Strikingly, RosettaDEER could enrich
native-like models of Bax, ExoU, rhodopsin, and Mhp1 with
highly truncated data (<0.8 oscillations), albeit to a reduced
degree. We found that the addition of data in the time domain
beyond one oscillation failed to lead to any measurable im-
provements in enrichment, despite its importance in allowing
RosettaDEER to identify the correct background coupling pa-
rameters (Fig. S5). These results suggest that RosettaDEER is
more permissive than Tikhonov regularization with respect to
the effect of data quality on protein structural modeling.
Biophysical Journal 118, 366–375, January 21, 2020 371



FIGURE 4 Structure prediction of Bax and ExoU using DEER decay

data. (A) De novo protein folding of native-like models using DEER

decay restraints with RosettaDEER, Cb-Cb distance restraints with the

CONE model, or no restraints. Inset: spread of all models generated using

these three methods. (B) Accuracy of de novo folded models (gray dots)

and clusters (black circles) as a function of combined DEER and Rosetta

Z-score.
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De novo folding of Bax and ExoU

To further illustrate RosettaDEER’s capability to identify
native-like models, we folded Bax and ExoU de novo using
experimental DEER decay data. These two proteins were
chosen because native-like models cannot be identified
using the default Rosetta energy function alone (Figs. 3
and S6). The structure prediction protocol we used is similar
to one used to model proteins using other types of sparse
data (57,58) and is illustrated in Fig. 2 B and described in
detail in Materials and Methods. We first generated an initial
set of 10,000 models using Rosetta AbInitio folding supple-
mented by experimental restraints through RosettaDEER,
experimental restraints through the CONE model (5), or
no restraints. These models were then clustered, and models
from the best-scoring clusters were refined and recombined
into 1200 new models without using experimental data.
After a second round of clustering, models from the cluster
with the best agreement to the experimental data were
refined and minimized, and the model with the best Rosetta
energy score was returned as the predicted model.

In the absence of experimental restraints, few of the
models generated by AbInitio folding resembled the native
fold (Fig. 4 A). Perhaps strikingly, providing DEER
restraints with the CONE model had no effect on the
proportion of native-like models of ExoU generated this
way (a measurable improvement was observed when
folding Bax). This contrasts with the proportion of native-
like models generated using RosettaDEER, which was
substantially higher in the case of both proteins.

Although agreement between models and experimental
structures loosely correlated with both RosettaDEER score
and Rosetta energy score for both proteins, an abundance
of incorrectly folded models obscured this trend (Fig. 4 B;
RosettaDEER and Rosetta energy scores were jointly
considered by adding the Z-scores of each). As a result,
we were unable to identify native-like models for either
Bax of ExoU from score values alone. The 10 best-scoring
models by these metrics were generally incorrectly folded
(5–10 Å Ca RMSD100SSE) and buried amphipathic features
found on the surface of the native model. This shortcoming
is typically addressed by clustering because native-like
models are more likely to be found near the centers of large
clusters with favorable average scores (64). We therefore
clustered Bax and ExoU models with a radius of 7.5 Å
and evaluated these clusters by taking the Z-scores of both
the average Rosetta energy and RosettaDEER score and
adding them together (Fig. 4 B). In the case of both proteins,
this step placed native-like models in the best-scoring clus-
ters. Focusing our attention on the five best-scoring clusters
allowed us to discard 85.3% of the Bax models and 61.3% of
the ExoU models while retaining a majority of the native-
like models in each case.

Each cluster at this stage represented a broad population
of models that satisfied the DEER data. To test whether
372 Biophysical Journal 118, 366–375, January 21, 2020
refining models without experimental restraints would
reveal the native fold, 10 models from each of the top
five clusters were refined and recombined using
RosettaCM (52). This step retained the topology of the
input models but permitted minor backbone rearrange-
ments that allowed misfolded models to optimize away
from conformations consistent with the experimental
data. As a result, the cluster with the most native-like
models after this resampling stage scored the most favor-
ably by RosettaDEER. After minimization of models in
this cluster (62), the best-scoring model by Rosetta score
for both Bax and ExoU had near-native folds (<3.5 Å Ca

RMSD100SSE; Figs. 5 and S8).
DISCUSSION

RosettaDEER predicts and refines protein structures by inte-
grating DEER spectroscopy data and Rosetta computational
modeling protocols. To our knowledge, the novel aspects of



FIGURE 5 Predicted models of Bax and ExoU at 3.2 and 2.1 Å Ca

RMSD100SSE. (Top) Models were obtained from 10,000 de novo folded

models, the best-scoring of which were refined into 1200 additional models.

Native models shown in white. (Bottom) Example DEER traces in which

the best model outperformed the native. Corresponding residues indicated

as circles in (A) and (B).
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this method are a simplified representation of the commonly
used spin label MTSSL and a strategy to rapidly simulate
DEER decay traces for comparison to uncorrected experi-
mental traces. The robustness of the method was demon-
strated by benchmarking every step on five sparse data
sets. Despite the simplified spin label representation, the dis-
tance distributions simulated by RosettaDEER are compara-
ble to those generated using more computationally complex
rotamer library approaches. Moreover, even though simu-
lated spectra fail to perfectly fit experimental DEER traces,
this integrated approach efficiently identifies conformations
that simultaneously satisfy the data and the Rosetta energy
function. Our findings illustrate how RosettaDEER can
complement similar methods that are more computationally
intensive but able to use DEER decay data to perform high-
resolution refinement of protein structures (16).

The de novo folding benchmark with the small soluble
proteins ExoU and Bax highlights the success of this strat-
egy. Both proteins possess surface-exposed amphipathic re-
gions that insert into the membrane. Bax transitions from a
soluble monomer into a membrane-bound oligomer using
its C-terminal helix (47), whereas ExoU is hypothesized
to move into the membrane using a flexible loop between
its two C-terminal helices (65). Consistent with previous re-
sults (10,11), the Rosetta energy function favored models
that packed these substructures in the protein core, leading
to incorrectly folded models and lack of correlation between
the Rosetta score and model accuracy. As a result, orthog-
onal experimental data that define the structure are critical
to de novo folding. Our folding benchmark suggests that
RosettaDEER more effectively leverages the experimental
data than the Cb-based CONE model. Moreover, even
low-quality data can be used to discriminate native-like
from incorrectly folded models. We appreciate that, for
larger proteins, structure determination from DEER experi-
ments alone would require extensive experimental data.
Integrating RosettaDEER with other types of sparse
experimental data could therefore reduce the number of
DEER restraints required for accurate modeling.

The strategy of RosettaDEER to predict the structures of
these two proteins leverages the experimental data by folding
and optimizing protein structures with and without restraints,
respectively. The first step leads to a substantial reduction in
the search space and a concomitant increase in the number of
models that satisfy the restraints, although not all of these
models are correctly folded. After clustering the models to
remove those that correspond to narrow energy minima, the
second step, optimization without restraints, allows clusters
with incorrectly folded models to reach energy minima
inconsistent with the data. This filtering procedure restores
the experimental data’s ability to identify native-like models
because the most native-like models of Bax and ExoU at this
stage were not identifiable using the Rosetta energy function.
Overall, this protocol decreases both the number of incor-
rectly folded structures that fit the data and the conforma-
tional search space inherent to the protein folding problem.

Despite its success illustrated here, the current implemen-
tation of RosettaDEER assumes that a single protein confor-
mation describes the data. For example, the distance
distributions of Mhp1, the most conformationally flexible
protein examined in this data set, were generally more poorly
simulated using available methods than those collected in
other proteins. Experimental applications of the DEER tech-
nique often focus on monitoring ensembles of protein confor-
mations and require computational methods that interpret this
data with the capability to generate multiple models and
examine their consistency with sparse experimental data.
This is the next step for RosettaDEER. Furthermore, a
Rosetta de novo folding protocol for membrane-associated
proteins that includes a model membrane would be desirable
for proteins such as Bax and ExoU.
SUPPORTING MATERIAL
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