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Marine natural products have proven, over the last half‐century, to be effective bio-

logical modulators. These molecules have revealed new targets for cancer therapy as

well as dissimilar modes of action within typical classes of drugs. In this scenario,

innovation from marine‐based pharmaceuticals has helped advance cancer chemo-

therapy in many aspects, as most of these are designated as first‐in‐class drugs. Here,

by examining the path from discovery to development of clinically approved drugs of

marine origin for cancer treatment—cytarabine (Cytosar‐U®), trabectedin

(Yondelis®), eribulin (Halaven®), brentuximab vedotin (Adcetris®), and plitidepsin

(Aplidin®)— together with those in late clinical trial phases—lurbinectedin, plinabulin,

marizomib, and plocabulin—the present review offers a critical analysis of the contri-

butions given by these new compounds to cancer pharmacotherapy.
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1 | INTRODUCTION

Natural products have long been used in the treatment of human mal-

adies and set a strong foundation upon which modern pharmacology

has been erected. Particularly for cancer treatment, chemotherapeutic

agents of natural origin have remarkably impacted the field, not only

for their clinical importance but also for allowing the expansion of

knowledge in cancer pharmacology. Natural agents like doxorubicin,

paclitaxel, vincristine, and vinblastine are commonly used as first‐line

treatments for several cancers. The compounds of marine origin have

a more recent history. Nevertheless, studies have shown their unique
© 2019 The British Pharmacological Societyh 3
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chemical structures and new cellular targets and modes of actions,

which are bringing significant innovation to the field.

This review starts with a description of the chemical features that

make the marine natural products versatile as biological modulators,

provided in Section 2. Then, it will examine the contribution of marine

molecules to cancer pharmacology using the discovery and develop-

ment of clinically approved drugs as foundation for the discussion.

Most of these are actually described as “first‐in‐class” pharmaceuti-

cals, and the novelty in their pharmacology will be emphasized.

To date, eight marine‐derived drugs have been approved for clini-

cal use: cytarabine (Cytosar‐U®), vidarabine (Vira‐A®; US

discontinued), trabectedin (Yondelis®), ziconotide (Prialt®), eribulin

mesylate (Halaven®), plitidepsin (Aplidin®), brentuximab vedotin

(Adcetris®), and omega‐3‐acid ethyl esters (Lovaza®; Jiménez, 2018,

www.marinepharmacology.midwestern.edu). Five of them are used in

different anticancer treatments and those will be discussed in depth,

under Sections 3 and 4. Moreover, numerous antibody‐drug conju-

gates that use a marine compound as their cytotoxic principle are also

undergoing clinical trials, and those will be sorted through in Section 4,

when presenting the first approved drug in this class, brentuximab

vedotin (Adcetris). Furthermore, Section 5 will afford grounds for

understanding the potential of marine molecules in cancer therapeu-

tics in the near future. In this section, compounds that are currently

in advanced stages of clinical trials for cancer, such as lurbinectedin

(Zepsyre®), plinabulin, marizomib, and plocabulin, will be surveyed.
2 | CHEMICAL FEATURES OF MARINE
COMPOUNDS: HOW THEIR UNIQUE
STRUCTURES AFFECT MOLECULAR
INTERACTIONS

The structural complexity of natural products differs from synthetic

drug‐like compounds in numerous ways. Natural products have a

higher number of chiral centres, stereocentres, sp3‐hybridized bridge-

head atoms, and hydrogen‐bond donors than synthetic drugs. On

average, they also contain higher carbon, hydrogen, and oxygen con-

tent and less nitrogen content than synthetic drug molecules. Addi-

tionally, natural products have much fewer aromatic rings than

synthetic medicinal agents, as aliphatic systems appear to be favoured

in nature, a fact that may improve selectivity when binding to stereo‐

defined sites (Grabowski & Schneider, 2007). They may also present

original ring systems—for example, macrocyclizations, fused‐rings,

ether crosslinks, and extensive conjugation—with appropriate geome-

tries for spatial side‐chain substitution and conformations that bind to

specific biological targets (Clardy & Walsh, 2004; Rodrigues, Reker,

Schneider, & Schneider, 2016).

Natural products often disobey the drug‐likeness Lipinski's “rule of

five” (Ro5), once they present molecular masses above 500 Da and

high polarities—for example, rapamycin is 914 Da with a polar surface

area of 195 Å2, and paclitaxel is 854 Da and possesses a polar surface

area of 221 Å2 (Chai & Mátyus, 2016). In fact, 18% of the natural

products from the Dictionary of Natural Products database, 31% of
the natural products from the Traditional Chinese Medicine database,

15% of the DrugBank, and 9% of the ChEMBL database do not com-

ply with the Ro5 (Chai & Mátyus, 2016).

Several approaches may potentiate natural products discovery pro-

grams and improve the number of natural product‐derived drugs mak-

ing it to the market. The use of moderate, instead of hard cut‐offs for

drug‐likeness property rules during the in silico selection of drug‐lead

candidates, is reasonable (Chai & Mátyus, 2016). Furthermore,

advances in synthetic biology and synthetic drug design may also pave

the way towards that direction. Structurally complex frameworks of

natural products can be dissociated into smaller and complex

fragment‐like scaffolds bearing high ligand efficiency to simplify drug

design. Moreover, approaches founded on fragment‐based de novo

design using natural product‐derived fragments to infer the bioactiv-

ities and biomolecular targets of such molecules can support the

development of natural product‐derived drugs (Rodrigues et al., 2016).

Marine natural products (MNPs) are a well‐established subfield of

NPs, which have been gaining increased attention in the last decades.

Marine environments are complex systems with variations in luminos-

ity, temperature, oxygen levels, pH, salinity, and pressure. Therefore,

marine organisms had to adapt and evolve differently from their ter-

restrial counterparts. They developed distinct biosynthetic pathways,

which produced novel bioactive secondary metabolites with

unmatched and complex structures (Hu, Ying, Zhang, Qiu, & Lu,

2018). Many marine organisms—such as sponges, tunicates, and

shell‐less molluscs, as well as microorganisms, such as fungi, bacteria,

and cyanobacteria—have provided secondary metabolites with inter-

esting pharmacological properties (Blunt et al., 2018).

MNPs present much novelty in chemical scaffolds, compared to

terrestrial natural products (Kong, Jiang, & Zhang, 2010). In this con-

text, a preclinical cytotoxicity screening from the USA National Cancer

Institute revealed 10 times higher incidence of antitumour properties

for marine samples than for terrestrial samples (Munro et al., 1999).

These compounds usually present unique structures due to the spe-

cific carbon arrangements with several stereochemical features for

the presence of non‐essential amino acids; they also have interesting

ring systems, besides the incorporation of halogen atoms, such as

chloride, bromide, iodine, and fluorine, which are covalently attached

to organic compounds.

MNPs also present appropriate geometries for spatial side‐chain

substitution and conformations that bind to specific biological targets

(Clardy & Walsh, 2004; Rodrigues et al., 2016). Figure 1 shows the

chemical structures discussed in this review; trabectedin and

lurbinectedin have been boxed and highlighted for some of the chemical

features. Lurbinectedin is a derivative of trabectedin used as an example

to illustrate those unique chemical features found in compounds from

marine sources, such as several heteroatoms (oxygen, red; nitrogen,

green; and sulphur, orange) and many stereo sites (blue circles).

This structural complexity of MNPs has attracted the attention of

organic chemists, as if it was an interesting puzzle to be solved. The

elucidation of chemical structures from marine sources is often diffi-

cult, considering the structural intricacy of several of these com-

pounds. The structure of trabectedin (ecteinascidin 743, ET‐743)—

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8926
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8718
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8405
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2536
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6813
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6813
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6772
http://marinepharmacology.midwestern.edu/clinical_pipeline.html


FIGURE 1 Marine natural products and their derivatives of pharmacological relevance. In the box, the tetrahydroisoquinoline rings (pink)—in
which both A and B rings have been proven essential for bioactivity due to their involvement in the interaction with DNA minor groove—are
highlighted in the chemical structure of trabectedin. For lurbinectedin, further noteworthy chemical features particularly found in marine natural
products are emphasized, such as stereochemical carbons (blue spheres), complex intra‐cyclization, and a high number of heteroatoms generating
different chemical functions comprising oxygen (red), nitrogen (green), and sulphur (orange) atoms
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the bioactive compound responsible for anticancer activity from

extracts of the tunicate Ecteinascidia turbinata—took over 20 years

to be fully elucidated (Rinehart et al., 1990; Wright et al., 1990).

The chemical scaffolds of MNPs support prolific bioactivities and

preferred structural ligand–protein binding motifs to interact with bio-

logical space. This is not fully understood, although attempts to

explain this singularity are based on hypotheses that consider co‐

evolution, synergistic effects, xenohormesis, natural selection, and

enzymatic mode of generation of MNPs (Howitz & Sinclair, 2008; Ji,

Li, & Zhang, 2009). Undoubtedly, there is still much to discover in

the field of MNPs. Adopting drug discovery strategies such as

“multi‐component therapeutics” rather than “one‐disease–one‐tar-

get–one‐drug” may benefit the discovery of cancer therapies and pre-

vent the development of resistance against anti‐infective, antimalarial,

and anticancer drugs.
3 | THE EARLIEST DAYS OF MARINE
PHARMACOLOGY: CYTARABINE
INTRODUCED MARINE DRUGS AS A
GROUND‐BREAKING CANCER THERAPY

Throughout the 1940s and 1950s, Werner Bergmann, a researcher

from Yale University, and his collaborators published several articles

in a series called “Contributions to the Study of Marine Products”

(Bergmann & Feeney, 1951; Lester & Bergmann, 1941). The best

known among these works, in 1951, described the isolation of two

arabinonucleosides, which were named spongothymidine and

spongouridine, from the Caribbean marine sponge Tectitethya crypta

(Bergmann & Feeney, 1951).

The discovery of such odd nucleosides unfolded into, at least, two

important scientific elaborations. The first challenged the current para-

digm, which argued that a nucleoside would only have a biological func-

tion if it contained ribose or deoxyribose in its structure. And the second

introduced the pharmacological concept of antimetabolites in the con-

text of anticancer chemotherapy, thus guiding the synthesis of ana-

logues, such as cytosine arabinose (Ara‐C or cytarabine; Figure 1).

An antimetabolite drug has a similar structure to a naturally pro-

duced metabolite, but it lacks the ability to perform its function,

thereby misleading normal cell metabolism. Within the cell, cytarabine

is converted into its respective triphosphate arabino‐nucleoside

through sequential phosphorylation. The cytarabine triphosphate then

becomes a substrate of DNA polymerase and, in place of a cytidine, is

subsequently incorporated into the DNA strand. Because arabinose

has replaced deoxyribose, a phosphodiester bond between the two

pentose residues cannot be established and, therefore, hinders the

extension of the strand, thus interrupting the process of DNA synthe-

sis and repair (Schwartsmann, da Rocha, Berlinck, & Jimeno, 2001).

Efforts in producing modified nucleosides were already being car-

ried out before cytarabine. However, the unconventional nucleosides

from the marine sponge transformed how the rational design of

unnatural nucleosides was being conceived and handled by proving

that both the sugar and the nitrogenous base, could be substituted
to achieve the projected antimetabolite effect. Moreover, besides

anticancer, the principle of taking a non‐functional nucleoside to

inhibit the elongation of the DNA strand was also used strategically

in other chemotherapeutic treatments, such as antiviral, for example

the use of AZT as an anti‐HIV drug.

Cytarabine, the first drug in this series, was approved for clinical

use as Cytosar‐U in 1969, and it is still widely used in the treatment

of various types of leukaemia, such as acute lymphocytic leukaemia

(ALL), acute myeloid leukaemia (AML), chronic myeloid leukaemia

(CML), and non‐Hodgkin's lymphoma (NHL). Although this molecule

is a synthetic analogue and not the natural product itself, cytarabine

is historically reported as the first example of a commercially available

marine drug. Moreover, the extensive list of nucleoside analogues cur-

rently undergoing trials and the ones that have been recently

approved for clinical use demonstrate the value of this therapy

(Jordheim, Durantel, Zoulim, & Dumontet, 2013). One such example,

nelarabine (Ara‐GTP), a synthetic arabinonucleoside, was approved in

October 2005 for the treatment of the rare T‐cell lymphoblastic leu-

kaemia (Buie, Epstein, & Lindley, 2007), whereas thiarabine (T‐Ara‐C)

is an arabinonucleoside in Phase I clinical trials for haematological

malignancies and solid tumours (Parker, Waud, & Secrist, 2015).
4 | FIFTY YEARS LATER: CLINICALLY
APPROVED ANTICANCER DRUGS OF
MARINE ORIGIN

4.1 | Trabectedin (Yondelis): Beyond DNA alkylation

Trabectedin (Figure 1), also referred to as ecteinascidin or ET‐743, is

an alkaloid isolated from extracts of the tunicate E. turbinata. It took

over 20 years from the detection of biological activity in these extracts

to the complete structural elucidation of the compound (Rinehart

et al., 1990; Wright et al., 1990), as the description of the three fused

tetrahydroisoquinoline rings, designated A, B, and C (highlighted in

pink in Figure 1), posed a major challenge.

The peculiar and complex mode of action (Figure 2) for trabectedin

has been established. This compound binds to the DNA minor grooves

(D'Incalci & Galmarini, 2010) while conventional alkylating drugs gen-

erally bind to guanine at N‐7 or O‐6, trabectedin binds to guanine at

N2 in GC‐rich sequences (Pommier et al., 1996). Both the A and B

rings interact with DNA minor grooves, and the carbinolamine moiety

present in ring A is mandatory for its activity. Ring C, in turn, is not

responsible for the cytotoxicity of trabectedin (Erba et al., 2004); how-

ever, it bends DNA towards the major groove, providing a unique fea-

ture for trabectedin, when compared to other minor groove binders

(Zewail‐Foote & Hurley, 1999).

Additionally, trabectedin inhibits transcription by binding to tran-

scribing RNA polymerase II (Pol II) and blocking its activity (Feuerhahn

et al., 2011). This causes rapid degradation of Pol II, a process depen-

dent on the transcription factor called transcription coupled‐

nucleotide excision repair (TC‐NER; Aune et al., 2008). TC‐NER defi-

cient cells were found resistant to trabectedin (Zewail‐Foote & Hurley,



FIGURE 2 Overview of the multiple mechanisms of action of anticancer marine drugs in clinical use. Inhibition of the respective molecular
targets by plitidepsin (upper left), trabectedin (lower left), eribulin (upper right), and ADCetris® (lower right) triggers tumour cell stress, which
culminates in cell death by apoptosis. Plitidepsin hinders the pro‐oncogenic function of eukaryotic elongation factor 1A2 (eEF1A2), which impairs
transportation of misfolded proteins to the proteasome and causes accumulation of non‐functional proteins. Additionally, by inhibiting eEF1A2, it
further blocks activation of the aggresome and, therefore, prevents protein digestion by autophagy. The marked accumulation of non‐functional
proteins leads to cell death by apoptosis. Trabectedin is a DNA‐alkylating agent that specifically inhibits the activity of RNA polymerase II, thus not
affecting basal transcription. The selective inhibition of transcription induced by trabectedin decreases the levels of P‐glycoprotein, assuring a
potent cytotoxicity against resistant tumours. Modulation of tumour micro‐environment is a valuable and interesting feature of this compound,
which is attained by the specific depletion of macrophages (Mϕs), tumour‐associated macrophages (TAMs), and circulating monocytes (Mos) by
apoptosis. Eribulin is an antitubulin agent that blocks tubulin polymerization, further leading to cell cycle arrest and mitotic catastrophe.
Additionally, eribulin induces the formation of non‐functional tubulin aggregates and triggers apoptosis. ADCetris, an antibody‐drug conjugate
(ADC), is selectively recognized and internalized by CD30+ cells through endocytosis. The warhead, monomethyl auristatin E, is released into the
cytosol after digestion in endolysosomes and blocks tubulin polymerization, causing persistent mitotic arrest and induction of apoptosis.
Furthermore, ADCetris also induces antibody‐dependent cellular phagocytosis (ADCP) by Mϕs via Fc‐FcγR binding
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1999), revealing the dependency on this system for activity of the

compound. Furthermore, TC‐NER activity is increased in cell lines

resistant to platinum compounds, which justifies the later approval

of trabectedin as second‐line treatment for patients with platinum

resistant tumours (Soares et al., 2011).

Trabectedin was the first compound described with the ability to

specifically displace an oncogenic transcription factor from its target

promoters (D'Incalci, 2013). Bonfanti et al. (1999) showed trabectedin

displaced NF‐Y from its DNA consensus sequence at μM concentra-

tions, suggesting its potential to inhibit multidrug resistance (MDR)

activation, which was later demonstrated by Jin, Gorfajn, Faircloth,

and Scotto (2000) using human colon carcinoma cell line SW620. In

fact, inhibition of activated MDR1, but not constitutive MDR1

induced by trabectedin, involves a complex mechanism that eventually

blocks P‐glycoprotein transcription, as demonstrated in human epi-

dermoid KB carcinoma cells (Kanzaki et al., 2002).

The biological activity of trabectedin was demonstrated in a variety

of cell lines and xenograft models (Table 1). In the NCI‐60 cell line panel,

trabectedin (NSC 648766) presented a mean GI50 of 1.94 nM (www.
dtp.cancer.gov, accessed 04 August 2019). However, the NCI screening

does not include sarcoma cells, and it was against these tumours that

trabectedin proved to be more effective than other treatments

(Li et al., 2001). The efficacy of trabectedin in sarcoma subtypes, such

asmyxoid liposarcoma and Ewing's sarcomas, is also related to its ability

to inhibit transcription by decreasing the transactivating ability of chi-

meric proteins, such as FUS‐CHOP, EWS‐CHOP, and EWSFli1, and

eventually leading to adipocytic differentiation and apoptosis (D'Incalci

& Galmarini, 2010; Forni et al., 2009).

Preclinical in vivo data reinforced the potential of trabectedin and

other ecteinascidins (ET‐729 and ET‐722) as anticancer compounds

since the first description of the activity on murine melanoma B16

and leukaemia P388 tumours (Rinehart et al., 1990; Sakai, Rinehart,

Guan, & Wang, 1992). Many studies using human xenograft models

in nude mice confirmed its in vivo activity using different schedules

of drug administration, from twice a day during three consecutive days

to once a day every 4 days on Days 0, 4, and 8; and doses ranging

from 0.025 to the maximum tolerated dose 0.2 mg·kg−1. On B‐16

and osteosarcoma models, trabectedin showed significant in vivo

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=768
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=768
https://dtp.cancer.gov/
https://dtp.cancer.gov/
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activity especially when associated with dexamethasone (revised by

Van Kesteren et al., 2003).

Clinical evidence of trabectedin first suggested its use for soft tis-

sue sarcoma (STS) with multiple Phase I studies covering its isolated

use or in combination with other chemotherapies, such as doxorubicin

and cisplatin, and suggested the recommended dose of 1.5 mg·m−2 as

a 24‐hr continuous intravenous infusion every 3 weeks (Taamma et al.,

2001). Phase II studies demonstrated positive results, especially for

liposarcoma (LMS) and leiomyosarcoma (LPS), and determined a

median overall survival (OS) of 9.2 months (Monk et al., 2012). Phase

III studies concluded that trabectedin was superior in comparison to

dacarbazine in patients with advanced LPS and LMS after failure of

prior chemotherapy (Demetri et al., 2017). A summarized description

of the clinical evidence for ovarian carcinoma is found in Table 1.

The European Medicines Agency (EMEA) approved trabectedin for

therapeutic use and commercial trading to PharmaMar (S.A., Madrid,

Spain) under the name Yondelis in 2007, when it became the first

marine drug identical to the original natural product to obtain market-

ing authorization. At that time, the European Commission allowed the

use of trabectedin for the treatment of patients with advanced STS

after failure of anthracyclines and ifosfamide. Two years later, the

drug was also approved for the treatment of patients with relapsed

platinum‐sensitive ovarian cancer in combination with pegylated lipo-

somal doxorubicin (Puyo, Montaudon, & Pourquier, 2014). Still, it was
FIGURE 3 Milestones of anticancer drugs from marine origin on the ma
and the approval of the commercial product was 17 years for trabectedin
halichondrin (Halaven®), and 24 years for dolastatin (ADCetris®)
nearly a decade later, in 2015, that the United States Agency Food

and Drug Administration (FDA) authorized Yondelis for clinical use

(available from www.fda.gov, accessed 19 February 2019). A timeline

between the discovery of trabectedin and the full development of

Yondelis is shown in Figure 3.

A recent study evaluated treatment options for STS and demon-

strated that patients receiving trabectedin presented a median OS of

21.3 months (Le Cesne, 2018). Additionally, 53% of patients showed

long‐term tumour control when trabectedin was administered early

in the treatment scheme, and, even more encouraging, 65.5% of

patients achieved disease control (Le Cesne, 2018). In order to evalu-

ate the 10‐year period of trabectedin use after approval for STS treat-

ment, a cohort of 86 patients was accessed, and the main results

indicated that trabectedin was chosen by the majority as a second‐

or third‐line treatment. Only 22% of cases presented side effects,

mainly related to myelosuppression and no treatment‐related deaths

were observed (Shamai & Merimsky, 2017).

Despite the approved clinical status for Yondelis, further studies

have been conducted to better understand this molecule and its activ-

ity on different cancer models. Until now, other four effects of ET‐743

were discovered, explaining its effective anticancer activity. First,

trabectedin modulates the tumour micro‐environment (TME). It specif-

ically depletes monocytes and tumour‐associated macrophages (TAM),

decreases indirectly the production of inflammatory mediators, such as
rket. The length of time between the isolation of the natural molecule
(Yondelis®), 22 years for dihydrodidemin B (Aplidin®), 24 years for

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7069
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5343
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7201
https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm430302.htm
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IL‐6, CXCL8, and VEGF, and compromises the expression of genes

involved in extracellular matrix (Galmarini, D'Incalci, & Allavena, 2014).

Second, trabectedin also appears to be involved in alternative lengthen-

ing of telomeres (ALT), a preventive strategy for telomere shortening

that assures immortality of cancer cells. Such changes are found in

10% to 15% of tumours, and ALT positive cells seem to be more sensi-

tive to trabectedin (Pompili, Leonetti, Biroccio, & Salvati, 2017). Third, a

three‐stranded nucleic acid structure referred as R‐loops induces

genome instability caused by DNA damage dependent of RNA–DNA

hybrid assemblies. Researchers have demonstrated that high levels of

R‐loops may enhance the activity of trabectedin, opening prospects

for treatment of cancers with high levels of these events (Tumini et al.,

2018). Finally, the involvement of trabectedin in the repression of genes

regarding cancer stem cell phenotype, and their related pathways was

also documented (Martinez‐Cruzado et al., 2017).
4.2 | Eribulin mesylate (Halaven): Do we still need
one more antitubulin agent?

Eribulin mesylate (Figure 1) is a synthetic analogue of the natural prod-

uct halichondrin B (Figure 1), initially identified by Hirata and Uemura

(1986) in extracts from the marine sponge Halichondria okadai, found

in the Miura Peninsula, in Japan. Subsequently, halichondrin B was also

isolated from other species of marine sponges, such as Axinella sp.,

(Pettit et al., 1991), Phakellia carteri (Pettit et al., 1993), and

Lissodendoryx sp. (Litaudon, Hart, Blunt, Lake, &Munro, 1994). The nat-

ural compound belongs to a class of polyether macrolides and showed a

potent in vitro and in vivo antitumour activity (Hirata & Uemura, 1986).

Eribulin, in turn, is a halichondrin B derivative based on

pharmacophoric‐driven structural simplification, but it still represents

the most complex drug supplied through total synthesis (Yu, Kishi, &

Littlefield, 2011). The eribulin synthesis route mostly repeated themac-

rocyclic ring cytotoxic core of halichondrin B, but the side chain was

omitted, thus losing almost half of the original molecular weight.

Eribulin is a potent microtubule‐destabilizing anticancer agent. This

molecule interferes in the mitosis phase of the cell cycle through a

peculiar mechanism of action that differs from other antimitotic

agents, such as the vinca alkaloids. A non‐taxane microtubule dynam-

ics inhibitor, eribulin predominantly binds with high affinity to the plus

ends of the microtubules, preventing polymerization of tubulin with-

out affecting depolymerization (Figure 2). However, this molecule

can also bind to the soluble α and β tubulin, thus decreasing the avail-

ability of the subunits for polymerization. Thus, suppression of the

microtubule dynamics induces a cell cycle arrest at the G2/M phase,

which then signals for mitotic catastrophe, further leading to cell death

by apoptosis (Eslamian, Wilson, & Young, 2017; Okouneva, Azarenko,

Wilson, Littlefield, & Jordan, 2008).

In preclinical cancer models, eribulin has shown antitumour activity

against colon cancer, glioblastoma, head and neck cancer, melanoma,

non‐small cell lung cancer (NSCLC), ovarian cancer, pancreatic cancer,

and small cell lung cancer (Towle et al., 2012). It has been shown to go

beyond the inhibition of microtubule dynamics, as it participates in
other important regulatory processes of tumour cell biology, such as

epithelial‐to‐mesenchymal transition (EMT), vascularization, and hyp-

oxia, which shows the promising potential of this drug to contribute

to clinical benefits. Table 1 summarizes the preclinical and clinical data

obtained for eribulin.

In fact, recent studies using breast and sarcoma tumours have

shown the non‐antimitotic effects of eribulin on tumour biology and

in the TME, such as reversal of EMT, decreased capacity for migration

and invasion, and vascular remodelling and perfusion (Funahashi et al.,

2014; Yoshida et al., 2014). Moreover, preclinical studies in triple nega-

tive breast cancer (TNBC) cell cultures showed that treatment with

eribulin increased gene expression of epithelial markers (i.e., CDH1

and KRT18) and downgraded the levels of mesenchymal markers (i.e.,

CDH2, VIM, TWIST1, SNAI2, ZEB1, and ZEB2), leading to the reversal

of EMT after 7 days of exposure to eribulin (Yoshida et al., 2014). Com-

bination of two antitubulin agents—eribulin and paclitaxel—resulted in a

synergistic antiproliferative effect on TNBC cells in vitro. Exposure to

eribulin increased E‐cadherin expression and decreased the expression

of mesenchymal markers inMDA‐MB‐231 andHs578T cells, showing a

clear phenotypic switch from mesenchymal to epithelial state (Oba &

Ito, 2018). Loss of phenotypic characteristics of mesenchymal cells

and gain of epithelial phenotypic characteristics indicate a possible

decrease in malignancy and, consequently, in tumour aggressiveness.

Findings reported by Funahashi et al. (2014) showed that a single dose

of eribulin increased tumour perfusion and generated changes in vascu-

larization. The authors further observed that microvessel density and

proportion of small vessels both increased. These changes were associ-

ated with reduced hypoxia and, subsequently, with the prevention of

drug resistance and metastasis (Funahashi et al., 2014).

Clinical studies supported the use of eribulin treatment for advanced

or metastatic breast cancer and also suggested that it could help in the

treatment of solid tumours resistant to other classes of microtubule

dynamics inhibitors. The recommended doses for an injection of eribulin

are slightly different in theUnited States (1.4mg·m−2 of the salt, eribulin

mesylate) from those recommended in Europe (1.23 mg·m−2 of the

active substance,eribulin). The administration of eribulin is scheduled

on the first and eighth day of a 21‐day cycle (Goel et al., 2009; Tan

et al., 2009). In this setting, eribulin has demonstrated efficacy in Phase

II studies involving patients who previously received both, an

anthracycline and a taxane (Aogi et al., 2012; McIntyre et al., 2014;

Vahdat et al., 2009), or this combination with the addition of capecita-

bine (Cortes et al., 2010). Advanced or recurrent HER2‐positive breast

cancer has been treated with eribulin combined with trastuzumab

(Sakaguchi et al., 2018; Wilks et al., 2014) or pertuzumab (Araki et al.,

2017), which presented an acceptable treatment option supported by

a high objective response rate (ORR), a prolonged median progression‐

free survival (PFS), and an acceptable safety profile. The most common

drug‐related grades 3–4 toxicities were neutropenia, leukopenia,

peripheral neuropathy, and febrile neutropenia (Aogi et al., 2012;

McIntyre et al., 2014; Vahdat et al., 2009).

In 2011, the first non‐randomized multicentre Phase II study

involving eribulin and previously treated progressive or high‐grade

STS was published (Schöffski et al., 2011), which yielded median PFS

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4998
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=821
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=963
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=858
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6799
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6799
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5082
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5046
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of 2.1 to 2.9 months in patients with different types of STS (Schöffski

et al., 2011). Another open‐label, multicentre, and non‐randomized

Phase II trial evaluated patients with advanced or metastatic STS. This

study found a median PFS and ORR for LPS/LMS patients of 5.5 and

17.0 months, respectively, against 2.0 months for both parameters in

other subtypes (Kawai et al., 2017). Furthermore, a Phase III study

comparing eribulin (1.4 mg·m−2 intravenously on Days 1 and 8) with

dacarbazine (850 mg·m−2, 1,000 mg·m−2 intravenously on Day 1)

every 21 days in patients with advanced LPS or LMS showed an

improvement in OS and PFS for eribulin‐treated patients versus those

who received dacarbazine alone (Demetri et al., 2017).

In November 2010, Halaven was approved by the FDA as a third‐

line therapy for advanced or metastatic breast cancer patients who

were previously treated with an anthracycline and a taxane, and, in Jan-

uary 2016, it became the second line of treatment for unresectable or

metastatic liposarcoma (available from www.fda.gov, accessed 10

August 2019). In fact, eribulin was the first drug approved for patients

with advanced, metastatic, or inoperable STS that demonstrated an

improvement in overall survival. A timeline from the discovery of

halichondrin B to the full development of Halaven is shown in

Figure 3.
4.3 | Warhead drugs (brentuximab vedotin,
Adcetris): Special delivery to overcome toxicity

In 1970, extracts obtained from the mollusc Dolabella auricularia,

found in the Indian Ocean, stood out for their pronounced anticancer

activity (Pettit, Day, Hartwell, & Wood, 1970). The active principles, a

series of peptides called dolastatins, were highlighted for their potent

antiproliferative activities against several tumour cell lines, especially

dolastatins 10 and 15, with IC50 values in the pM‐range (Pettit et al.,

1987). It was then found that tubulin is the main target of action of

these peptides, inducing blockade of microtubule polymerization

and inhibiting cell proliferation (Pettit, 1997). Despite the potent

in vitro activity of dolastatins, none of these peptides—or their syn-

thetic derivatives, such as auristatin (soblidotine), cematodine, and

synthatodine—have progressed into clinical trials beyond Phase II

(Perez et al., 2005; Vaishampayan et al., 2000) due to toxicity and lack

of efficacy (Newman & Cragg, 2017). However, monomethylauristatin

E (MMAE), an auristatin derivative, successfully entered the composi-

tion of the antibody‐drug conjugate (ADC) brentuximab vedotin,

which was further developed by Seattle Genetics (Doronina et al.,

2003; Senter & Sievers, 2012).

ADCs are recent formulations that seek to improve selectivity and

overcome the toxicity of anticancer therapy by delivering the pharma-

cological agent to specific tumour cells. Such systems comprise three

main components: a monoclonal antibody that will guide the ADC to

the target cells; a potent cytotoxic compound (dubbed a payload or

a warhead), which should kill the tumour cells; and a linker that will

covalently connect both parts and is further accountable for releasing

the payload inside the target cell (Ducry & Stump, 2010; Storz, 2015).

In the specific case of brentuximab vedotin, the monoclonal antibody
cAC10 is directed to the human CD30 membrane protein, a TNF

receptor, and is also recognized as a tumour marker for some lympho-

mas (Younes, 2011). In fact, CD30 had previously shown to be a prom-

ising antigen for anticancer immunotherapy based on in vitro and

in vivo preclinical evidence generated by exposure to cAC10. How-

ever, in clinical trials, this kind of therapy displayed only limited effi-

cacy (Wahl et al., 2002).

Vedotin (vcMMAE) is the second part of the conjugate and com-

prises the linker and the cytotoxic principle, MMAE. Linker technology

is important for the success of ADCs, as it must guarantee stability of

the system under physiological conditions and allow enough time for

the conjugate to reach the target cell, but it should also be specifically

cleaved to free the payload inside the cell. For brentuximab vedotin, a

cathepsin cleavable valine‐citrulline linker was chosen, as it met these

criteria and, moreover, allowed for better water solubility and satisfac-

tory pharmacokinetics of the drug (Doronina et al., 2003). Recognition

of the brentuximab antibody by CD30 protein leads to the internaliza-

tion of the ADC which, within the cell, releases vedotin—nearly four

units of the agent per complex—by a selective proteolytic cleavage

carried out by lysosome cysteine proteases. In turn, free MMAE

reaches its target, blocks cell division in G2/M by disrupting microtu-

bule dynamics, and, ultimately, induces cell death (Doronina et al.,

2003; Senter & Sievers, 2012).

Preclinical studies demonstrated that conjugation with MMAE did

not alter the affinity of the CD30 antibody with the surface antigen.

In fact, brentuximab vedotin showed enhanced cytotoxicity when

assessed against CD30+ cell lines originating from Hodgkin's lym-

phoma and systemic anaplastic large cell lymphoma (ALCL), with IC50

values in the pM range. In turn, in CD30− cells lines, the conjugate

showed a reduced toxicity by nearly 1,000 times, thus displaying an

antigen‐dependent effect (Francisco et al., 2003; Yi, Kim, & Kim,

2017). Further in vivo findings showed favourable outcomes in mice

bearing xenograft tumours of human Hodgkin's lymphoma and ALCL

cells, with tumour regression, and prolonged survival of treated ani-

mals. Moreover, in a single‐dose treatment scheme with the ADC,

xenograft mice models injected with 1 to 3 mg·kg−1 exhibited

regressed and even cured tumours. Such efficacy allowed for a wide

therapeutic window, once the maximum tolerated dose was

established at 100 mg·kg−1 (Senter & Sievers, 2012). Table 1 summa-

rizes preclinical and clinical data for brentuximab vedotin.

In a clinical trial conducted on CD30‐positive haematological can-

cers, a large percentage of patients had a complete response to treat-

ment with brentuximab vedotin. A Phase I trial that used escalating

doses of intravenously administered ADC in 45 patients every 3 weeks

showed an ORR in ~40% of patients, including complete remission for

~25% (Younes, 2011). Furthermore, Phase II trials in patients with

Hodgkin's lymphoma and ALCL showed ORR of 73% (with 32% com-

plete responses) and 86% (with 57% complete responses) respectively

(Younes, Yasothan, & Kirkpatrick, 2012).

ADCetris (brentuximab vedotin) was approved by the FDA in 2011

for the treatment of Hodgkin's lymphoma and systemic ALCL, types of

cancer distinguished by the high expression of CD30. Recently,

between 2017 and 2018, the FDA expanded the approval of ADCetris

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9075
https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm430302.htm
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1877
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for treatment of CD30‐expressingmycosis fungoides (MF), a cutaneous

T‐cell lymphoma, and for CD30‐expressing peripheral T‐cell lymphomas

(PTCL; available at www.fda.gov, accessed 22 February 2019).

Furthermore, as shown inTable 2, MMAE and other auristatin deriv-

atives, mainly their phenylalanine variant monomethyl auristatin F

(MMAF), are being used in the composition of several ADCs that are

currently undergoing clinical trials in which the antibody of the complex

is directed to a profusion of relevant membrane discriminators of

assorted tumour types. For polatuzumab vedotin, an ADC undergoing

Phase III clinical trials, the warhead MMAE is linked to the monoclonal

antibody anti‐CD79b, a specific B lymphocyte antigen receptor, which

is highly expressed in the majority of B‐cell lymphomas and NHL (New-

man & Cragg, 2017). Also, in Phase III clinical trials, depatuxizumab

mafodotin, which carries MMAF as a payload, and a monoclonal anti-

body directed at the epidermal growth factor receptor (EGFR). This

ADC is being tried for the treatment of brain tumours, mainly against

glioblastoma carrying amplification of the EGFR gene, which may be

present in ~50% of glioblastoma patients (Lassman et al., 2019).

Nevertheless, based on the encouraging data generated by these

trailblazing studies, there are more entries of ADCs in clinical testing,

as seen by the broad list of such drugs in earlier trial phases, which

is also shown in Table 2. Moreover, this technology, a combination

of immunotherapy and chemotherapy, is attracting various pharma-

ceutical companies to undertake the development of auristatin

microtubule‐disruptor ADCs, which is further evidence of their ample

potential and success in cancer treatment. It is worth mentioning that

some biological targets have been well explored within the anticancer

immunotherapy arsenal, such as HER2, and are recurrent in this ADC

setting yet are functionalized with a cytotoxic compound connected

with a perfected linker. This conjugation has shown to improve the

efficacy of immunotherapy and add specificity to chemotherapy.
4.4 | Plitidepsin (Aplidin): Targeting protein synthesis

The cyclic depsipeptides plitidepsin (dehydrodidemnin B) and

didemnin B are chemically related compounds; the only structural dif-

ference is the oxidation (carbonyl group) of the hydroxyl group at the

lactoyl‐proline in didemnin B (Figure 1). Whereas didemnin B was iso-

lated from the Caribbean tunicate Tridedmnum solidum back in 1981

(Rinehart et al., 1981), plitidepsin was isolated from the Mediterranean

tunicate Aplidium albicans over 10 years later (Sakai et al., 1996).

One of the greatest challenges related to this class of molecules

was the elucidation of their mechanism of action. The first studies

focused on describing the ability of didemnin B in inhibiting protein

synthesis and on the strong correlation of this effect with antiprolifer-

ative properties (Li et al., 1984). However, inhibition of cell prolifera-

tion was observed at much lower concentrations (nM range) than

those required to inhibit protein synthesis (μM range; Ahuja et al.,

2000). The elongation factor eEF1A1 was then suggested as a target

of didemnin B, but the affinity of such molecules for this component

was still assessed in the μM range (Crews, Collins, Lane, Snapper, &

Schreiber, 1994). Elongation factors are ubiquitous in most cells, as
they deliver aminoacyl‐tRNA to the ribosome during the elongation

cycle of protein biosynthesis (Mateyak & Kinzy, 2010). Despite simi-

larities between the two isoforms of eEF1A, their expression is mutu-

ally exclusive and they are attributed a different functionality. Thus

while the first isoform is widespread in mammalian tissues and is

responsible for the elongation function itself, the second presents

non‐canonical pro‐oncogenic properties and has a more limited distri-

bution (Sun et al., 2014). In this context, new evidence concerning the

molecular mechanism underlying protein synthesis inhibition triggered

by didemnins pointed to a crucial role for the non‐canonical elongation

factor—eEF1A2—in such processes (SirDeshpande & Toogood, 1995).

The observed affinity constant (KD) for molecular interaction for

plitidepsin and eEF1A2 is 80 nM, with a target residence of 9 min.

Moreover, sensitivity to plitidepsin is correlated with eEF1A2 expres-

sion. While resistant cells exhibited reduced eEF1A2 expression,

ectopic expression of eEF1A2 restored sensitivity in these cells. The

biological effects resulting from this interaction include inhibition of

the transportation of misfolded proteins to the proteasome, which

leads to an accumulation of toxic proteins in the tumour cells (Losada

et al., 2016). It is further suggested that plitidepsin also inhibits the

activation and subsequent destruction of the aggresome in the lyso-

some, which also accumulates an excess of misfolded proteins in the

cells, which then triggers apoptosis (available from www.pharmamar.

com, accessed 22 February 2019). Figure 2 illustrates the mechanism

of action for plitidepsin in tumour cells.

Preclinical data demonstrated in vitro activity of plitidepsin in sev-

eral cancer cell lines in the sub‐nM range. Haematological cell lines

were the most sensitive ones, with IC50 means of 28 nM for ALL,

24 nM for AML, 74 nM for CML, 77 nM for multiple myeloma

(MM), and 78 nM for NHL (Depenbrock et al., 1998). In vivo assays

were carried out in xenograft models mainly with haematological

tumours including MM, T‐cell lymphoma, diffuse large B‐cell lym-

phoma (DLBCL), and Burkitt lymphoma, with promising results

(revised by Alonso‐Álvarez et al., 2017). Table 1 summarizes preclinical

and clinical data with plitidepsin.

In 1986, didemnin B was the first marine natural product to enter

clinical trials in patients with advanced cancer, but due to neuromus-

cular toxicity and low efficacy, its further development was

interrupted (Vera & Joullié, 2002). Despite the similarities of didemin

B and plitidepsin and the failure of didemnin B in clinical trials, the

increased potency of ptilidepsin and a better pharmacokinetic profile

(Alonso‐Álvarez et al., 2017) stimulated the beginning of Phase I trials

with ptilidepsin by PharmaMar in 1998. It is important to point out

that although didemnin B showed a very short half‐life, as it was con-

verted to an unidentified metabolite (Dorr, Kuhn, Phillips, & von Hoff,

1988), plitidepsin was found to have a longer half‐life, low clearance,

and a high volume of distribution (Nalda‐Molina et al., 2009).

Clinical studies with plitidepsin were conducted in groups of

patients with haematological cancer and, although the results for use

as a single drug were not very encouraging, the combination of

plitidepsin with other drugs was promising, especially for patients with

MM (Alonso‐Álvarez et al., 2017; Mateos et al., 2010; Ocio et al.,

2016). The addition of dexamethasone in the treatment of patients

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm601935.htm
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8404
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2852
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7970
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7970
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1797
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2019
https://www.pharmamar.com
https://www.pharmamar.com
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with relapsed or refractory MM receiving plitidepsin improves the

overall response rate (ORR) from 13% to 22% (Mateos et al., 2010).

The concomitant treatment of MM patients with infusion of

plitidepsin during 4 weeks at 4–5.0 mg·m−2, dexamethasone (oral)

and bortezomib (s.c.) provided an ORR of 56% (Ocio et al., 2016).

The observed toxicity was manageable, including anaemia and throm-

bocytopenia among the most severe haematological effects, and mus-

cle toxicity was a dose‐limiting side effect (Faivre et al., 2005; Mateos

et al., 2010; Ocio et al., 2016). The ADMYRE Phase III study was con-

ducted with 255 patients with relapsed/refractory MM, comparing the

efficacy of plitidepsin in combination with dexamethasone to that of

dexamethasone alone (available from www.clinicaltrials.gov, accessed

25 January 2019). The results available so far indicate a 35% lower risk

of disease progression or death in patients treated with the drug com-

bination (Alonso‐Álvarez et al., 2017).

Considering other haematological malignancies, such as leukaemia

and lymphoma, plitipesin has been tested in at least four different clin-

ical studies, but ORR is variable, from non‐objective response to a

maximum of 20.7% for non‐cutaneous peripheral T‐cell lymphoma

(Aspeslagh et al., 2017; Ribrag et al., 2013). Studies conducted in

patients bearing solid tumours—including melanoma, renal, advanced

colorectal, prostate, thyroid, and NSCLC, among others—were not

very promising, and the ORRs were generally not significant (revised

by Alonso‐Álvarez et al., 2017).

The treatment of refractoryMMwith the combination of plitidepsin

and dexamethasone in patients that relapse after three lines of treat-

ment, was approved by the Australian regulatory agency in December

2018 (available from www.ebs.tga.gov.au, accessed 20 February

2019). The EMEA, on the other hand, refused marketing authorization

for Aplidin (plitidepsin) in Europe. According to the re‐examination car-

ried out by EMEA's Committee for Medicinal Products for Human Use,

the benefits of plitidepsin do not outweigh the risks, since toxicity is

observed at higher frequencies and there is merely a modest increase

in patient response compared to that of dexamethasone alone (available

from www.ema.europa.eu, accessed 21 February 2019). Still, Aplidin

has received orphan drug designation in the European Union and in

the United States. The timeline between the discovery of plitidepsin

and the full development of Aplidin is showed in Figure 3.
5 | WHAT IS NEXT? MARINE NATURAL
PRODUCTS IN CLINICAL TRIALS

5.1 | Lurbinectedin

Based on the unique features of trabectedin, PharmaMar designed a

synthetic analogue, lurbinectedin (Figure 1; Zepsyre, PM01183). The

main difference is attributed to the substitution of the tetrahy-

droisoquinoline with a tetrahydro β‐carboline, resulting in increased

antitumour activity of lurbinectedin (Leal et al., 2010). The mechanism

of action of lurbidectadin is similar to that of trabectedin, as it also binds

to CG‐rich sequences in the DNA minor groove, inhibits active tran-

scription, and degrades Pol II through the ubiquitin/proteasome system
(Santamaria Nuñez et al., 2016). Furthermore, lurbinectedin can cause a

detachment of transcription factors, such as ASCL1, NeuroD1 andNFIB

in small cell lung cancer (SCLC), from their target promoters, inducing

blockade of their transactivating activity (Farago et al., 2019) and

exerting important effects on TME (Belgiovine et al., 2017) as well as

upon cancer stem cells (Yokoi et al., 2018).

Lurbinectedin has also shown positive results against other tumour

types, such as ovary carcinoma, Ewing sarcoma, and pancreatic ductal

adenocarcinoma (Harlow et al., 2016; Takahashi et al., 2016; Zhang,

Feng, & Kennedy, 2017). As with trabectedin, TC‐NER deficient cells

showed resistance to lurbinectedin, whereas those deficient in homol-

ogous recombination were markedly more sensitive. Lurbinectedin

also showed good antitumour activity in several in vivo tumours and

xenografts models, including MNMCA1 mouse fibrosarcoma and

HOC18 human ovarian carcinoma, however with a different spectrum

of activity and distinct pharmacokinetics properties when compared to

the parent compound (Romano et al., 2013).

A Phase I study that evaluated the efficacy of lurbinectedin and

doxorubicin in patients with relapsed SCLC observed durable response

rates in 91.7% of patients with sensitive disease and in 33.3% and

20.0% of resistant disease as second‐ and third‐line treatments

respectively. Additionally, tumour shrinkage was maintained in 88%

of patients who switched to lurbinectedin alone (Calvo et al., 2017).

A Phase II trial conducted with patients that received different

chemotherapy‐free intervals showed a 52% partial response when

intervals were above 90 days. Additionally, 40% of cases presented

disease stabilization, with a progression‐free survival of 4.2 months

(Perez et al., 2018). A Phase III trial involving 600 patients who had

failed one prior platinum‐containing treatment is currently under

investigation (ATLANTIS NCT02566993); they are being treated with

a combination of doxorubicin and lurbinectedin, versus topotecan or

the VCR (cyclophosphamide, doxorubicin, and vincristine) combination

(Farago et al., 2019; Table 1). With this evidence, the FDA granted

lurbinectedin, in August 2018, orphan drug status for SCLC.
5.2 | Plinabulin

Plinabulin (NPI‐2358, Figure 1) is a synthetic tert‐butyl analogue related

to the naturally occurring fungal diketopiperazine halimide, also known

as phenylahistin (Gomes, Lefranc, Kijjoa, & Kiss, 2015). In fact, halimide

was isolated by Fenical, Jensen, and Cheng (1999) from the fermenta-

tion broth of a marine fungus, Aspergillus sp., found in association with

the algae Halimeda sp., collected in the Philippines. At the same time,

phenylahistin was described as a fungal metabolite obtained from the

terrestrial Aspergilus ustus (Kanoh et al., 1997, 1999).

The natural product is a potent cytotoxic compound, as it arrests

cell cycle in mitosis by inhibiting tubulin polymerization through inter-

action with the colchicine‐binding site (Kanoh et al., 1997). An in vivo

study using P388 leukaemia and Lewis lung carcinoma showed very

promising results, increasing the mean survival of mice bearing the

haematological cancer in 51% of cases at 30 mg·kg−1 and reduced

tumour growth by 81% in mice with the solid tumour at 100 mg·kg−1.

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6391
https://www.clinicaltrials.gov
https://www.ebs.tga.gov.au
https://www.ema.europa.eu
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These results stimulated the synthesis of more potent analogues

(Kanoh et al., 1999). The establishment of essential structural require-

ments for eliciting effective cytotoxicity by (−)‐phenylahistin contrib-

uted to the design of the clinical candidate, plinabulin, in 2006

(Nicholson et al., 2006). The new analogue demonstrated a potent

activity against human colon adenocarcinoma (HT‐29), prostate ade-

nocarcinomas (PC‐3 and DU 145), breast adenocarcinoma (MDA‐

MB‐231), NSCLC (NCI‐H292), and T‐cell leukaemia (Jurkat) cell lines,

including those with MDR profiles. Additionally, plinabulin promoted

an increased permeability in HUVECs, which is consistent with a

tumour vascular collapse. Such evidence showed plinabulin to be a

vascular disrupting agent (Nicholson et al., 2006).

Evaluation of the effects of plinabulin on MM demonstrated that

besides the anti‐angiogenic potential on vascular endothelial cells, it

induced cell death through caspase activation and showed an obliga-

tory role of JNK during plinabulin‐induced MM cell death (Singh

et al., 2011). An immune‐mediated mechanism of action was recently

proposed, supported by an increase in dendritic cell maturation and

subsequent cytokine release, which occurs through activation of the

guanine nucleotide exchange factor (GEF‐H1; available from www.

beyondspringpharma.com, accessed 24 February 2019).

Efficacy of plinabulin in Phase I trials was shown for different

human tumours. However, a meaningful response was obtained in

murine NSCLC, either alone or synergistically with docetaxel

(Millward et al., 2012). Moreover, plinabulin presented a favourable

safety profile evaluated by its half‐life, clearance, and distributive vol-

ume in NSCLC patients (Mita et al., 2010). A Phase II study demon-

strated that combined treatment of plinabulin and docetaxel

promoted an increased OS rate and PFS in patients with advanced

NSCLC, and more recently, the association of plinabulin with the

anti‐hPD1 nivolumab was tested for the treatment of five patients

with recurrent or metastatic NSCLC, but the study was prematurely

terminated because the immunotherapy was approved for NSCLC in

the first‐line setting (www.clinicaltrials.gov, accessed 10 August

2019).
5.3 | Marizomib

Salinosporamide A (Figure 1), also named NPI‐0052 or marizomib, is a

cytotoxic β‐lactone‐γ‐lactam produced by the strictly marine bacterium

Salinispora tropica. It was isolated in 2003 and its chemical structure,

cytotoxic activity, and pharmacological targets described by Feling

et al. (2003). The compound exhibited low‐nM GI50 values on the NCI

60 cell line panel (Feling et al., 2003), and preclinical development was

strongly favoured by the supply ensured by saline fermentation of the

S. tropica wild strain itself, an unprecedented process for sourcing an

active pharmaceutical ingredient (Tsueng, Teisan, & Lam, 2008).

Genome sequencing of S. tropica allowed disclosure of the salinos-

poramide A peculiar biosynthetic pathway (Udwary et al., 2007),

uncovering a new chlorination mechanism and a unique starter unit in

polyketide biosynthesis, resulting in the production of this densely func-

tionalized molecule (Eustáquio, Pojer, Noel, & Moore, 2008).
Salinosporamide Awas then shown to be a novel proteasome inhib-

itor, differentiated from other drugs in this class. It also has interesting

advantages that fulfil unmet clinical needs, such as enhanced potency,

wider inhibition spectrum, and effectiveness against tumour cells resis-

tant to clinically available proteasome inhibitors (Potts et al., 2011). The

ubiquitin‐26S proteasome complex contains a proteolytic 20S core

comprising three pairs of catalytic subunits, which have caspase‐,

trypsin‐, and chymotrypsin‐like (CT‐L) activities, where protein degra-

dation occurs (Lowe et al., 1995; Sala et al., 2018). Salinosporamide A

irreversibly inhibited all three catalytic functions of the 20S proteasome,

with IC50 values ranging from low to mid nM (Feling et al., 2003; Potts

et al., 2011). Peptide boronic acids, for example, bortezomib (Velcade)

and delanzomib, block only theCT‐L activity and in a slow and reversible

fashion (Groll, Berkers, Ploegh, & Ovaa, 2006).

Translational studies have demonstrated the activity of marizomib

against solid tumours and haematological malignancies as a single

agent or in combination with clinically used drugs. As a single agent

in in vivo models for haematological malignancies, such as MM,

NHL, Waldenstrom's macroglobulinemia, ALL, AML, and chronic lym-

phocytic leukaemia (CLL), as well as in solid tumours, such as colon, gli-

oma, and pancreatic cancer, this compound has been achieving good

results (Potts et al., 2011; Sala et al., 2018). Studies in animal models

using marizomib in combination with standard of care drugs confirmed

the broad activity spectrum of this compound. Moreover, marizomib

re‐sensitizes resistant MM cells to apoptosis induced by chemothera-

peutic and immunotherapeutic drugs. Particularly interesting results

indicate an enhanced anti‐MM activity of low‐dose treatment of

marizomib combined with bortezomib (Chauhan, Hideshima, & Ander-

son, 2006), revealing that this vertical combination targeting one

oncogenic pathway at several levels provided greater inhibition. Addi-

tionally, marizomib displayed better results than bortezomib when

used in combination with other treatments, for example, with immu-

notherapy and histone deacetylase inhibitors for ALL (Chauhan

et al., 2010; Miller et al., 2009).

Marizomib entered clinical trials just 3 years after its discovery. To

date, nine clinical trials, either alone or in combination with other can-

cer therapies, are listed with marizomib, among which four are still

ongoing and wish to establish optimal practices for this agent. These

studies include MM, refractory MM, relapsed MM, NSCLC, pancreatic

cancer, melanoma, lymphomas, ependymoma, glioblastoma, and newly

diagnosed glioblastoma (available from www.clinicaltrials.gov,

accessed 25 January 2019), which seem to demonstrate this drug is

well tolerated as monotherapy and in combination with other chemo-

therapy or radiotherapy. Marizomib exhibits wider, faster, and more

durable proteasome inhibition than bortezomib without the limiting

toxicities associated with the latter and other clinically approved pro-

teasome inhibitors, such as neutropenia, thrombocytopenia, and

peripheral neuropathy. Most side effects occurred in the early cycles

of therapy and neither new nor cumulative toxicities were produced

with longer periods of treatments (Potts et al., 2011; Richardson

et al., 2016). The most common side effects related to marizomib

administration were fatigue, nausea, vomiting, dizziness, diarrhoea,

and pain at the infusion site (Harrison et al., 2016; Richardson et al.,

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=518
https://www.beyondspringpharma.com/en/pipeline/
https://www.beyondspringpharma.com/en/pipeline/
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6809
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7335
http://www.clinicaltrials.gov
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2410
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=848
https://www.clinicaltrials.gov
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2016). Recently, a consortium comprising Celgene Corporation,

Triphase Accelerator Corporation, and the European Organization for

Research and Treatment of Cancer has sponsored Phase I and II clini-

cal trials with marizomib in glioblastoma patients. Ongoing Phase II

and III trials focuses on glioblastoma and MM (available from www.

clinicaltrials.gov, accessed 25 January 2019).
5.4 | Plocabulin

Plocabulin, or PM060184 (Figure 1), is a polyketide currently under

three clinical studies for cancer treatment. This tubulin inhibitor and

its chlorinated analogue, PM050489, were isolated from the Madagas-

can sponge Lithoplocamia lithistoides (Martín et al., 2013; Pera et al.,

2013). Based on the high success of anticancer drugs targeting tubulin,

added to its powerful tubulin inhibition rates, this marine molecule has

become a promising alternative to cancer treatment, and with some

advantages over current antitubulin drugs. Plocabulin showed potent

antitumour activity in a panel of tumour xenograft models, including

MDA‐MB‐231 (breast), HCT‐116 (colon), H‐460 (lung), 22RV1 (pros-

tate), HGC‐27 (gastric) and Caki‐1 (renal), and displayed particularly

high cytotoxic against P‐glycoprotein overexpressing cell lines. In

these latter cells, paclitaxel and vinblastine lacked or had lower

potency compared to PM060184. This feature supports the use of

plocabulin in tumours resistant to antitubulin agents (Martínez‐Díez

et al., 2014).

Plocabulin binds, in a sub‐ or low‐nM range, to a site different from

than that of vinblastine, although it still affects binding of this drug.

During mitosis, cells display multipolar figures and lagging chromo-

somes in the metaphase plate (Martínez‐Díez et al., 2014; Pera et al.,

2013). Still, upon interphase cells, these undergo disorganization and

fragmentation of the microtubule network, along with the inhibition

of cell migration. Additionally, PM060184 inhibits angiogenesis both

in vitro and in vivo (Galmarini et al., 2018; Martínez‐Díez et al., 2014).

Currently, there is one Phase I clinical trial completed and two

ongoing studies in Phases I and II with PM060184 alone or in combi-

nation with other antitumour drugs in patients with advanced solid

tumours (available from www.clinicaltrials.gov, accessed 25 January

2019). The finalized clinical study highlighted mild to moderate toxic-

ities, such as abdominal pain, myalgia, fatigue, nausea, vomiting, and

disease stabilization. Furthermore, myelosuppression was transient

and manageable and the main dose‐limiting toxicity (DLT) reported

was an expected grade 3 peripheral sensory neuropathy (PSN). Other

DLTs were tumour lysis syndrome and cardiac failure and myalgia (Elez

et al., 2019). PM060184 has a half‐life of ~4 hr and extensive diffusion

to peripheral body tissues. Furthermore, antitumour responses were

observed in cervix carcinoma and in pretreated metastatic NSCLC

patients. Disease stabilization for longer than 3 months was observed

in patients with colorectal, breast, thymic, and gastrointestinal stromal

tumours, among others (Elez et al., 2019).

It is worth mentioning that the recent success of ADCs in the

treatment of cancer has revitalized the interest in antitubulin drugs.

As this strategy combines specificity and a dramatic decrease of
toxicity, it enables the use of highly potent and otherwise unaccept-

ably toxic compounds. In this sense, although PM060184 studies are

only just beginning, they already have shown many properties and

possibilities for a successful use in cancer treatment, in the future.
6 | CONCLUDING REMARKS

There is no doubt the oceans will play a fundamental role in society for

the next decades and will provide new tools to face the health chal-

lenges affecting the world's population in the years to come. We have

argued that MNPs may represent a renewed hope in drug discovery,

as these have been applied for pharmacologically orphaned cancers,

for the treatment of cancers with particular characteristics and have

also overcome cases of tumour drug resistance. It is rather noticeable

that four of the five marine‐derived drugs that make up the anticancer

arsenal have been approved over the past 12 years. This is, most cer-

tainly, a reflection of the advances of science and technology in multi-

disciplinary fields of knowledge, particularly in analytical chemistry and

biology. Even though this review only discussed the successes, these

marine molecules definitely illustrate the pharmacological potential

that lies beneath the salty waters of our globe, which actually

accounts for the largest section of our planet.

A global estimate of the value of anticancer marine pharmaceuticals

yet to be discovered ranged fromU$ 563 billion to U$ 5.69 trillion, con-

sidering the projected marine biodiversity in the oceans (Erwin, López‐

Legentil, & Schuhmann, 2010). It is still soon to presume whether this

estimate is accurate, because, as discussed here, most of the marketed

drugs were launched in recent years. For example, the sales of Yondelis

amounted to €74.2 million in 2018 compared to €84.6 million in 2017,

showing indeed a retraction of 12% (Annual Report 2018 available at

www.pharmamar.com, accessed 10 August 2019), while Adcetris net

product sales increased from U$ 307.6 million in 2017 to U$ 476.9 mil-

lion in 2018, an increase of 55% (Annual Report 2018 available at www.

seattlegenetics.com, accessed 10 August 2019). Halaven sales are also

growing as the number of sarcomapatients using this therapy increased,

especially in Japan (www.elsai.com, accessed 10 August 2019). As

Aplidin was only approved on December 2018, data on yearly sales

are not yet available.

As promising as these molecules may be, research and develop-

ment of marine drugs have been afflicted by their share of difficulties.

Collecting natural samples is not a simple task, as marine environments

pose many abiotic and physiological restrictions to human assessment.

Also, from a legal point of view, the collection of samples in interna-

tional oceanic waters has been often discussed. In this context, the

adoption of the Nagoya Protocol in 2010, established under the Con-

vention of Biological Diversity from 1992, was an attempt to legiti-

mize access to marine genetic resources, exploration, and benefit‐

sharing between the signatory countries (Lallier et al., 2014).

Natural samples and their derived extracts are chemically complex

samples, as these consist of many different compounds from distinct

chemical classes. Therefore, the yields of pure compounds that can

be isolated from natural sources may be quite low. Besides, marine

https://www.clinicaltrials.gov
https://www.clinicaltrials.gov
https://www.clinicaltrials.gov
https://www.pharmamar.com
http://www.seattlegenetics.com
http://www.seattlegenetics.com
http://www.elsai.com
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natural products come, generally, in structural arrangements of high

complexity, making the elucidation and synthesis or even semi‐

synthesis of such molecules a complicated process. Therefore, the

supply of sufficient amounts of such compounds for bioassays and

structure–activity relationships studies or for clinical trials is certainly

one of most challenging issues to overcome. Additionally, the intrinsic

toxicity of marine compounds is also an important issue to cope with.

Understanding the pharmacophoric structural requirements of bioac-

tive molecules is key for the development of improved anticancer

drugs, furnished with enhanced efficacy, better selectivity, and mini-

mum adverse effects. In this context, technology is probably the best

ally in the effort to reduce toxicity, as witnessed in the successful

stories of the ADCs (Senter & Sievers, 2012).

Still, to make a study ecologically viable, conscious researchers

must be careful to collect a sufficient amount of each sample without

endangering the existence of the species. Yet information on the

conservation status for most marine species assessed in a drug dis-

covery perspective is scarce, as these weigh largely towards fish

and larger metazoans (Arrieta, Arnaud‐Haond, & Duarte, 2010). To

illustrate this point, an online search was done on The Red List of

Endangered Species of the International Union for Conservation of

Nature (IUCN) for species mentioned in the scope of this review—

E. turbinata, H. okadai, D. auricularia, and A. albicans—and returned

no results for any of these entries (Available from www.iucnredlist.

org, accessed 5 March 2019).

Nevertheless, the predatory nature of field sampling of marine

invertebrates used in the development of new medicines has signifi-

cantly reduced their natural population due to oversampling. One

important example is the halichondrin‐producing sponges, where

600 kg of H. okadai was collected off the coast of Aburatsubo, in

the Miura Peninsula of Japan (Hirata & Uemura, 1986); then, another

200 kg of Lissodendoryx sp. was taken from the Kaikoura Peninsula in

New Zealand (Litaudon et al., 1994). In this context, there is increasing

evidence of the important roles of the microbiota in the production of

secondary metabolites by holobiont systems, including corals, ascid-

ians, and sponges.

All these issues make marine‐based drug development a time‐ and

money‐consuming endeavour. From compound discovery to market-

ing of the finished product has taken between 17 and 29 years, with

an average of 23 years (examples in Figure 3). Molecules derived from

microbial sources seem to speed up this process, as large‐scale fer-

mentation allows for the necessary supply to warrant preclinical and

clinical studies, as seen with marizomib (Feling et al., 2003; Tsueng

et al., 2008). Still, this shows the importance of investing in science

as means to find creative and sustainable strategies to overcome these

difficulties, as well as the disproportionate requirements for identify-

ing a marketable product as a condition for granting support for

MNP bioprospecting projects in the field of health sciences, once

these projects have the duration of 3 to 5 years.

MNP research is improving and advancing, but it is still a risky,

time‐consuming, and costly endeavour. However, once even more

life‐saving drugs are added to this equation, the potential gains will

surely outweigh the risks.
6.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

commonportal for data from the IUPHAR/BPSGuide to PHARMACOL-

OGY (Harding et al., 2018), and are permanently archived in the Concise

Guide to PHARMACOLOGY 2017/18 (Alexander, Fabbro et al., 2017a,

2017b; Alexander, Kelly et al., 2017a, 2017b).
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