Skip to main content
. 2020 Jan 9;5(2):941–947. doi: 10.1021/acsomega.9b03423

Table 2. Hydrophobization and the Properties of the Substrate after Hydrophobizationa.

      contact angle (deg)
     
substrate treatment hydrophobic coating before after Ecorr (V) Icorr (A/cm2) ref
Mg-5Sn-1Zn MAO (400 V, 5 min) + chemical modification stearic acid (SA) 37.1 122.5 –1.53 0.07 × 10–6 (39)
Mg-4Li-1Ca MAO + electrodeposition zinc stearate 54.4 ± 0.8 153.5 ± 0.5 –1.65 7.68 × 10–8 (40)
AZ61 electrochemical machining + chemical modification fluoroalkylsilane (FAS) 30.9 165.2 –1.4221 9.68 × 10–8 (41)
AZ31B etching + electroplating + chemical modification SA 68.5 153 –0.39377   (42)
Al–Mg electrochemical etching + low surface energy modification FAS 3 ± 0.8 160.4 ± 2.2 –0.52   (43)
AZ31 MAO + corrosion inhibitor + hydrophobic wax film technologies hydrophobic wax 68.71 ± 0.6 106.89 ± 1.1 –1.412 5.764 × 10–9 (44)
AZ31 anodized treatment + chemical modification SA 13.3 150.6     (45)
sodium laurate 153.7
myristic acid 152
PFDTMS 145.5
Mg-9Al-1Zn linear laser ablation + annealing treatment   33 ± 1 158.8 ± 2° –1.556(±0.005) (6.7 ± 1.2) × 10–6 (46)
Mg–Li electroplating + SA modification super hydrophilic Ni–Cu–SiC   156.0 –1.209 1.43 × 10–3 (47)
AZ31 laser ablation + chemical etching + chemical modification SA   >150     (48)
a

Corrosion potential (Ecorr), corrosion current density (Icorr), and 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDTMS); corrosion solution was NaCl.