Table 2. Hydrophobization and the Properties of the Substrate after Hydrophobizationa.
contact angle (deg) |
|||||||
---|---|---|---|---|---|---|---|
substrate | treatment | hydrophobic coating | before | after | Ecorr (V) | Icorr (A/cm2) | ref |
Mg-5Sn-1Zn | MAO (400 V, 5 min) + chemical modification | stearic acid (SA) | 37.1 | 122.5 | –1.53 | 0.07 × 10–6 | (39) |
Mg-4Li-1Ca | MAO + electrodeposition | zinc stearate | 54.4 ± 0.8 | 153.5 ± 0.5 | –1.65 | 7.68 × 10–8 | (40) |
AZ61 | electrochemical machining + chemical modification | fluoroalkylsilane (FAS) | 30.9 | 165.2 | –1.4221 | 9.68 × 10–8 | (41) |
AZ31B | etching + electroplating + chemical modification | SA | 68.5 | 153 | –0.39377 | (42) | |
Al–Mg | electrochemical etching + low surface energy modification | FAS | 3 ± 0.8 | 160.4 ± 2.2 | –0.52 | (43) | |
AZ31 | MAO + corrosion inhibitor + hydrophobic wax film technologies | hydrophobic wax | 68.71 ± 0.6 | 106.89 ± 1.1 | –1.412 | 5.764 × 10–9 | (44) |
AZ31 | anodized treatment + chemical modification | SA | 13.3 | 150.6 | (45) | ||
sodium laurate | 153.7 | ||||||
myristic acid | 152 | ||||||
PFDTMS | 145.5 | ||||||
Mg-9Al-1Zn | linear laser ablation + annealing treatment | 33 ± 1 | 158.8 ± 2° | –1.556(±0.005) | (6.7 ± 1.2) × 10–6 | (46) | |
Mg–Li | electroplating + SA modification | super hydrophilic Ni–Cu–SiC | 156.0 | –1.209 | 1.43 × 10–3 | (47) | |
AZ31 | laser ablation + chemical etching + chemical modification | SA | >150 | (48) |
Corrosion potential (Ecorr), corrosion current density (Icorr), and 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDTMS); corrosion solution was NaCl.