Skip to main content
. 2019 Oct 16;71(3):997–1009. doi: 10.1093/jxb/erz451

Table 1.

Parameters of the cell growth and microscale CO2 transport model

Variable Symbol Unit Value Notes and references
Net rate of photosynthesis A µmol m−2 s−1 Calculated
Net hydration of CO 2 to bicarbonate B µmol m−3 s−1 Calculated
Concentration of CO 2 at CO 2 fixation site C c µmol m−3 Calculated
Concentration of bicarbonate at the CO 2 fixation site C HCO3 µmol m−3 Calculated
Diffusivity of CO 2 (25 °C) D l m2 s−1 1.89×109 Lide, 1999
Diffusivity of CO 2 in cell wall C CW m2 s−1 3.78×10–10 Assuming effective porosity of 0.20 (Evans et al., 2009)
Diffusivity of H CO3 D HCO3 m2 s−1 1.17×10–9 Geers and Gros (2000)
Average thickness of tissue d µm Calculated from the topologies
Ratio of final and initial resting lengths of walls F 1 (spongy mesophyll)
1–10 (palisade mesophyll)
See the Materials and methods
Henry’s constant for CO 2 (25 °C) H 0.83 Lide (1999)
Maximum rate of electron transport J max μmol m−2 s−1 233.23 ‘Doloress’ tomato (Berghuijs et al., 2015)
Spring constant of cells aligned along maximum growth direction k min MN m−1 Calculated See the Materials and methods
Turnover rate of carbonic anhydrase k a s−1 3×105 Pocker and Miksch (1978)
Michaelis–Menten constant for carbonic anhydrase hydration K CO2 mol m−3 2.8 Hatch and Burnell (1990)
Equilibrium constant of carbonic anhydrase K eq mol m−3 5.6×10–7 Pocker and Miksch (1978)
Michaelis–Menten constant of Rubisco for CO 2 K m,c mbar 267a Berghuijs et al. (2015)
Michaelis–Menten constant for carbonic anhydrase hydration K HCO3 mol m−3 34 Pocker and Miksch (1978)
Michaelis–Menten constant of Rubisco for O 2 K m,0 mbar 164a Berghuijs et al. (2015)
Conversion efficiency of light to electron transport K 2LL 0.357 Berghuijs et al. (2015)
Length of mesophyll surface exposed to air per leaf width L m Calculated
Length to width ratio of palisade mesophyll cells L:W Variable
Initial resting length of cell wall l n,0 µm Computed Abera et al. (2013)
Maximum resting length of cell wall l n,max µm Computed Abera et al. (2013)
Oxygen concentration in stroma O 2 mbar 210 Assumed
CO 2 permeability of chloroplast envelope P CO2 m s−1 3.5×10–3 Gutknecht (1977), or variable
Mitochondrial respiration R d µmol m−2 s−1 2.65 Berghuijs et al. (2015)
Relative CO 2 /O 2 specificity for Rubisco S C/O mbar µbar−1 3.260 Berghuijs et al. (2015)
Thickness of cell wall t cw µm 0.128 Berghuijs et al. (2015)
Thickness of cytosol t cy µm 0.212 Berghuijs et al. (2015)
Thickness of membrane T mem µm 0.02 Tholen and Zhu (2011)
Rate of triose phosphate utilization T p µmol m−2 s−1 13.6 Berghuijs et al. (2015)
Carboxylation capacity of Rubisco V c,max µmol m−2 s−1 274 Berghuijs et al. (2015)
Concentration of carbonic anhydrase X a mol m−3 0.27 Tholen and Zhu (2011)
Angle expressing directionality of cell wall growth α Computed Abera et al. (2013)
Anisotropy factor β 0 (spongy mesophyll) See the Materials and methods
0–1 (palisade mesophyll)
Polarity of cell growth λ 0≤λ≤1 See the Materials and methods
Convexity factor θ 0.797 Berghuijs et al. (2015)
Time constant for length to reach maximum τ s 200 000 Assumed
CO 2 compensation point Γ* a µbar 0.5O2/SC/O Berghuijs et al. (2015)

a These parameters were converted into µmol m−3 liquid by multiplying by PH/RT, where P=101 325 Pa, H=0.83, R=8.314 m3 Pa K−1 mol−1, and T=298 °K.