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An integrated analysis of public genomic
data unveils a possible functional
mechanism of psoriasis risk via a long-
range ERRFI1 enhancer
Naoto Kubota1,2 and Mikita Suyama1*

Abstract

Background: Psoriasis is a chronic inflammatory skin disease, for which genome-wide association studies (GWAS)
have identified many genetic variants as risk markers. However, the details of underlying molecular mechanisms,
especially which variants are functional, are poorly understood.

Methods: We utilized a computational approach to survey psoriasis-associated functional variants that might affect
protein functions or gene expression levels. We developed a pipeline by integrating publicly available datasets
provided by GWAS Catalog, FANTOM5, GTEx, SNP2TFBS, and DeepBlue. To identify functional variants on exons or
splice sites, we used a web-based annotation tool in the Ensembl database. To search for noncoding functional
variants within promoters or enhancers, we used eQTL data calculated by GTEx. The data of variants lying on
transcription factor binding sites provided by SNP2TFBS were used to predict detailed functions of the variants.

Results: We discovered 22 functional variant candidates, of which 8 were in noncoding regions. We focused on the
enhancer variant rs72635708 (T > C) in the 1p36.23 region; this variant is within the enhancer region of the ERRFI1
gene, which regulates lipid metabolism in the liver and skin morphogenesis via EGF signaling. Further analysis
showed that the ERRFI1 promoter spatially contacts with the enhancer, despite the 170 kb distance between them.
We found that this variant lies on the AP-1 complex binding motif and may modulate binding levels.

Conclusions: The minor allele rs72635708 (rs72635708-C) might affect the ERRFI1 promoter activity, which results in
unstable expression of ERRFI1, enhancing the risk of psoriasis via disruption of lipid metabolism and skin cell
proliferation. Our study represents a successful example of predicting molecular pathogenesis by integration and
reanalysis of public data.
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Background
Genome-wide association studies (GWAS) are useful means
for identifying trait- or disease-associated single nucleotide
polymorphisms (SNPs) [1]. Many GWAS have been con-
ducted for various phenotypes, with a large number of trait-
associated SNPs accumulated in public databases, such as
the GWAS Catalog [2]. However, understanding why these
SNPs are associated with diseases has been difficult because

they usually lie within noncoding regions. Such variants are
predicted to affect gene expression via cis-regulatory ele-
ments, such as enhancers or repressors. If the responsible el-
ements and target genes can be identified, noncoding
variants may be useful not only as diagnostic markers but
also to further shed light on the molecular pathogenesis of
diseases. Thus, elucidating the mechanisms of how noncod-
ing variants are associated with diseases is critical.
In recent years, various genomic and epigenetic data

have accumulated due to next-generation sequencing
(NGS). Epigenetics is the study of heritable changes
without changes in the DNA sequence, including DNA
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methylation, histone modifications, and chromatin re-
modeling [3]. Advanced epigenetic studies have made it
possible to predict the location of cis-regulatory elements,
such as promoters, enhancers, and repressors in noncoding
regions. Furthermore, over the past decade, many experi-
mental methods to discern the higher-order genomic struc-
ture have been developed [4]. Hi-C, which is the NGS-based
method of capturing genome-wide DNA–DNA interactions,
has revealed that the genome is partitioned into megabase-
scale structural domains called topologically associating do-
mains (TADs) [5–7]. These data have also been used to
detect locality and contact between gene promoters and dis-
tant cis-regulatory elements in various living tissues and cells.
Recent studies have shown that noncoding variants associ-
ated with diseases affect the regulation of distant genes, even
at megabase distances [8–17]. Therefore, integrated analysis
of various epigenetic data, including Hi-C data, can help in
the functional annotation of noncoding sequences involved
in the long-range regulation of gene expression, disruptions
of which lead to various diseases.
In this study, we focused on psoriasis, an autoimmune

and chronic inflammatory skin disease characterized by
overproliferation of keratinocytes. This is one of the most
common diseases in the European population, and the in-
volvement of genetic factors has been strongly suggested,
with many susceptibility loci identified by GWAS [18–31].
Several risk markers have been reported to have potential
regulatory functions, especially in immune cells [30]. How-
ever, the detailed mechanisms governing the onset of psor-
iasis via cis-regulatory elements, in particular which are
true causal variants, have not been thoroughly investigated.
To understand the molecular pathology of psoriasis and de-
velop therapeutic strategies, we used public data regarding
psoriasis risk variants and constructed a computational ana-
lysis pipeline to further discover functional variants. We
collected variants in high linkage disequilibrium with risk
variants and searched for those with changed amino acids,
modulated splicing, or variants located in transcriptional
regulatory sequences. In particular, for variants of regula-
tory sequences, we identified target genes using expression
quantitative trait loci (eQTL) data and enhancer–promoter
correlations. Physical interactions were then validated using
Hi-C and ChIA-PET data. Additionally, we searched for
transcription factors (TFs) affected by the variants. Through
this analysis, we reported several previously unknown func-
tional variants of psoriasis and have shown that long dis-
tance transcriptional regulation may be affected by one
noncoding variant. This study revealed a new aspect of the
molecular pathogenesis of psoriasis.

Methods
Psoriasis GWAS SNPs and LD variants
We obtained a summary of tag SNPs associated with
psoriasis risk from the GWAS Catalog [2], which is a

curated database of published GWAS. The data of vari-
ants reported to be associated with “Psoriasis”, “Cutane-
ous psoriasis”, and “Psoriasis vulgaris” from 2008 to
2018 were used for the following analysis. LDlink [32]
was programmatically used to obtain data about variants
strongly linked (r2 > 0.8) with psoriasis risk SNPs in the
European population, of which genotype data originated
from Phase 3 (Version 5) of the 1000 Genomes Project
(Utah Residents from North and West Europe, Toscani
in Italia, Finnish in Finland, British in England and
Scotland, Iberian population in Spain) [33].

Exonic and splice site variant annotation
We performed annotation of exonic or splice site vari-
ants linked with psoriasis risk SNPs using the Ensembl
Variant Effect Predictor [34]. For exonic variants, we ex-
tracted deleterious ones, such as missense variants anno-
tated as “probably damaging” or “possibly damaging” per
the PolyPhen-2 score [35], frameshift, start lost, and/or
stop gained variants. For variants in splice acceptor or
donor sites, we defined those, of which differences of the
MaxEntScan scores [36] between protective and risk al-
leles are more than 5, as deleterious splice site variants.
The effect on gene expression was assessed using eQTL
data provided by GTEx Analysis V7 [37, 38]. The statis-
tical significance was ascertained by GTEx project
(https://storage.googleapis.com/gtex-public-data/Portal_
Analysis_Methods_v7_09052017.pdf).

Noncoding variant annotation
For variants in the promoter regions, those located 2 kb
upstream of the transcription start site as defined by
NCBI RefSeq were used for further analysis. The BED
format file of promoter regions was downloaded using
the UCSC Table Browser and intersected with the BED
format file of variants using BEDTools [39]. For identify-
ing enhancer variants and their targets, we used enhan-
cer–promoter correlation data across a broad panel of
cells from the FANTOM5 project [40]. We integrated
the promoter or enhancer variant data with eQTL data
to obtain variants that affected expression levels of their
target genes. Next, we used data regarding variants on
TFBSs as analyzed by SNP2TFBS [41] to discover those
that affect binding levels of TFs. To verify that the
TFBSs were indeed functional, peak files of the corre-
sponding TF ChIP-seq were obtained using DeepBlue
API access [42].

Enrichment analysis
Using ChIP-Atlas [43], we performed the enrichment
analysis of histone marks for 104 promoter regions in-
cluding LD variants and 119 promoter regions associated
with enhancers including LD variants. 36,069 promoter
regions defined by NCBI RefSeq were used as control.
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The parameters were set as follows: “Antigen class”-
“Histone”, “Cell type Class” – “All cell types”, “Threshold
for Significance” – “50”.

Functional analysis of genomic elements
ChIP-seq signals of six cell lines (GM12878, H1-hESC,
HSMM, HUVEC, K562, NHEK, and NHLF) for H3K4me3,
H3K4me1, and H3K27ac were displayed by a transparent
overlay method. For identifying chromatin states of gen-
omic regions of interest across various tissues and cells, we
used the imputed 25-STATE MODEL characterized by
ChromHMM software, which can integrate multiple data-
sets, such as ChIP-seq data of various histone modifica-
tions. All tissues or cells we used for the analysis (Liver,
Foreskin Fibroblasts, Foreskin Keratinocytes, Foreskin Me-
lanocytes, Adipose Nuclei, Lung, Ovary, Skeletal Muscle Fe-
male, Skeletal Muscle Male, Thymus, Pancreatic Islets,
Spleen, Stomach Mucosa, Small Intestine, Sigmoid Colon,
Hematopoietic stem cells, T helper memory cells from per-
ipheral blood, T CD8+ naive cells from peripheral blood, T
cells from cord blood, T cells from peripheral blood,
Hematopoietic stem cells G-CSF-mobilized Female,
Hematopoietic stem cells G-CSF-mobilized Male, T helper
naive cells from peripheral blood, B cells from cord blood,
B cells from peripheral blood, Neutrophils from peripheral
blood, T helper cells from peripheral blood, Monocytes
from peripheral blood, T CD8+ memory cells from periph-
eral blood) were processed by the Roadmap Epigenomics
Project [44]. ChIP-seq data of various proteins (p300, MAFK,
MAFF, JUND, MAX, MAZ, MXI1, BHLHE40, CEBPB, COR-
EST, ARID3A, C-JUN, CHD2, BRCA1, SMC3, RFX5, NRF1,
Pol2, Pol2 S2, RAD21, TBP, USF2, CEBPZ, and IRF3) for
HepG2 cells were visualized using annotation tracks in the
UCSC Genome Browser (ENCODE Transcription Factor
Binding Tracks, SYDH TFBS). BHLHE40 ChIP-seq signals
and peaks for K562, HepG2, GM12878, and A549 cells were
also visualized using annotation tracks in the UCSC Genome
Browser (ENCODE Transcription Factor Binding Tracks,
SYDH TFBS). The logos of the searched motifs, Bach1::Mafk,
FOS, JUND, Arnt, and BHLHE40 were generated using
WebLogo [45] based on a position frequency matrix provided
by the JASPAR CORE database [46] (MA0591.1, MA0476.1,
MA0491.1, MA0004.1, and MA0464.2, respectively).

Quantitation of enhancer and promoter activities
Data of enhancer and promoter activities quantified based
on CAGE were obtained using FANTOM Human Pro-
moters (http://slidebase.binf.ku.dk/human_promoters) and
FANTOM Human Enhancers (http://slidebase.binf.ku.dk/
human_enhancers).

Visualization of chromatin interactions
Contact profiles of chromosomes in the liver and IMR90
cells were generated from Hi-C data using the 3D

Genome Browser [47], and each was visualized with CTCF
ChIP-seq signals (ENCODE accession number of Liver CTCF
ChIP-seq: ENCFF555SBI and table name of IMR90 CTCF
ChIP-seq in the UCSC Genome Browser: wgEncodeSydhTfb-
sImr90CtcfbIggrabSig). 4C-like outputs of Hi-C data were
generated using 3DIV [48]. Pol II ChIA-PET signals and inter-
action data of K562 cells (wgEncodeGisChiaPetK562Pol2Si-
gRep1, wgEncodeGisChiaPetK562Pol2InteractionsRep1) and
MCF-7 cells (wgEncodeGisChiaPetMcf7Pol2SigRep3, wgEn-
codeGisChiaPetMcf7Pol2InteractionsRep3) were visualized in
the UCSC Genome Browser along with the enhancer–pro-
moter correlations data from the FANTOM5 project. The in-
tensity of the lines of ChIA-PET interactions indicated signal
strength. CTCF binding motif and their orientations were
searched using the JASPAR CORE database.

Genomic sequence alignments
For comparing multiple species’ genomic sequences, we
used the UCSC Genome Browser and GenomeCons [49]
to confirm the evolutionary conservation of searched mo-
tifs. We used the following species’ genomic sequences
(assembly): Human (GRCh37/hg19), Chimp (WUGSC
Pan_troglodytes-2.1.4/panTro4), Gorilla (gorGor3.1/gor-
Gor3), Orangutan (WUGSC 2.0.2/ponAbe2), Gibbon
(GGSC Nleu3.0/nomLeu3), Rhesus (BGI CR_1.0/rhe-
Mac3), Crab-eating macaque (Macaca_fascicularis_5.0/
macFas5), Baboon (Baylor Pham_1.0/papHam1), Green
monkey (Chlorocebus_sabeus 1.0/chlSab1), Mouse
(GRCm38/mm10), Rabbit (Broad/oryCun2), Cow (Baylor
Btau_4.6.1/bosTau7), Cat (ICGSC Felis_catus 6.2/felCat5),
Dog (Broad/canFam3), Elephant (Broad/loxAfr3), Chicken
(ICGSC Gallus_gallus-4.0/galGal4), X. tropicalis (JGI 7.0/
xenTro7), Zebrafish (Zv9/danRer7), Lamprey (WUGSC
7.0/petMar2).

Analysis of TF binding levels
We downloaded mapped read data of JUND ChIP-seq
(ENCFF263ZVJ) and input (ENCFF235CCD) in bam for-
mat from the ENCODE database and used MACS2 [50]
for peak calling (Q < 0.01). The called peaks that con-
tained “TGAGTCAT” or “TGAGTCAC” sequences were
used to compare signal strengths. Peaks containing both
motifs were excluded from the analysis. We used the
GGGenome (https://gggenome.dbcls.jp/ja/) to obtain
BED format files of the sequences of interest, and BED-
Tools was used to extract peaks containing the motifs.
We used the Mann–Whitney U test to compare their
signal strengths (P < 0.05).

Statistical tests, visualization, and tools used
Development of an analysis pipeline and all statistical
tests were done in the Python 3.7 and the GNU Bash 3.2
environment. All graphs except for the GTEx violin
plots were made using the seaborn Python package.
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Results
A computational genome-wide survey of functional
variants by integrating multiple public datasets
Using a variety of public genomic datasets, we constructed
a pipeline to comprehensively identify functional variants
(Fig. 1a). First, SNPs reported to be associated with psoria-
sis were extracted from GWAS Catalog-registered data,
and then variants with high linkage disequilibrium were
obtained and used in subsequent analysis. As for the gene
regions, we surveyed genetic variants that lead to amino
acid substitutions expected to affect protein structure and
function; in addition, variants at splice sites were also ex-
plored. As for regulatory variants, we looked for those lo-
cated in active enhancers that disrupted binding motifs for
TFs and were expected to affect binding affinities. Al-
though few previous studies have been conducted, the
bindings of TFs were confirmed by comprehensively
obtaining peak files of corresponding ChIP-seq data using
the DeepBlue web server [42]. Through this analysis, we
attempted to identify functional variants, TFs, and verified
target genes (Fig. 1b).

Candidate functional variants newly identified in gene
regions
We identified 14 deleterious variants in the gene regions
(Table 1) and some of them affected their own gene
expression (Additional file 1: Figure S1). Most variants
were previously reported to be associated with auto-
immune diseases, but some were newly identified. An
identified variant, rs2549797, was highly linked with
psoriasis risk SNP rs2910686 [25] (r2 = 0.8051) and
located near the 5′ canonical splice site of ERAP2 gene
exon 15, forming a new splice site (Additional file 1:
Figure S2a). This variant remarkably altered the signal
strength of the splice site from − 1.440 (for risk allele A)
to 5.463 (for protective allele G) (Additional file 1: Fig-
ure S2b). The transcript derived from the risk allele
(rs2549797-A) encodes for the full-length ERAP2 pro-
tein. The transcript derived from the protective allele
(rs2549797-G) contains a premature stop codon that
might cause nonsense-mediated decay (NMD) [51]. In
addition, we found that rs2549797 is completely linked
with rs2248374 (r2 = 1.0000) located on the 5′ canonical
splice site of ERAP2 gene exon 10, which was previously
reported to alter the signal strength of the canonical
splice site and a noncanonical transcript containing a
premature stop codon, leading to NMD [52]. Referring
to the GTEx eQTL data, these completely linked
variants that might cause NMD (rs2549797-G and
rs2248374-G) markedly decreased ERAP2 gene expres-
sion in all analyzed tissues and cells (Additional file 1:
Figure S1). ERAP2 encodes for endoplasmic reticulum
aminopeptidase 2, which is responsible for trimming
peptides to optimal sizes for antigen presentation by

MHC class I [53]. ERAP2 variants are associated with
various immune diseases, including psoriasis [54, 55].
Together, these results showed that the protective haplo-
type (rs2549797-G and rs2248374-G) almost certainly
caused NMD to decrease ERAP2 gene expression, which
appeared to reduce the risk of psoriasis.
We also identified the rs60542959 variant in the

COQ10A gene region. The protective allele rs60542959-
T changes the first codon ATG (methionine) to ATT
(isoleucine), causing a start lost mutation. This variant is
highly linked with three psoriasis risk SNPs (rs2066807,
rs2066808, and rs2066819; r2 = 0.9523, 0.9388, and
0.9517, respectively) [21, 24–27, 29] located within the
STAT2 gene region (Additional file 1: Figure S3a). The
COQ10A gene has two transcript variants (NM_
144576.3, NM_001099337.1) (Additional file 1: Figure
S3b), and the transcript NM_144576.3 that has a start
lost mutation by rs60542959 is highly transcribed in nat-
ural killer cells, T cells, and lymphocytes of B cell
lineage, whereas another transcript NM_001099337.1 is
not (Additional file 1: Figure S3c–d). This suggested that
rs60542959 may have a significant effect on COQ10A ex-
pression in immune cells. The start codon is widely con-
served among mammals, indicating the functional
importance of this transcript (Additional file 1: Figure
S3e). The GTEx eQTL data showed that the rs60542959-
T allele significantly reduces COQ10A gene expression in
one tissue type (esophagus mucosa) (Additional file 1:
Figure S1, S3f). COQ10A encodes for coenzyme Q-binding
protein homolog A, which is required for coenzyme Q
function in the respiratory chain [56]. Several associations
of coenzyme Q10 with immune function have been
reported [57, 58]. The association between COQ10A and
psoriasis is unclear, but it may have some impact on risk.

Candidate functional variants in promoters and enhancers
For regulatory sequence variants, we looked for those lo-
cated within promoters or enhancers and changed the ex-
pression level of target genes. Previous studies reported
that GWAS-identified noncoding SNPs are enriched
among enhancers in several types of immune cells (e.g.,
CD8+ T cells and CD4+ T cells) [30]. We also performed
the enrichment analysis using ChIP-Atlas function [43].
The results showed that H3K27ac ChIP-seq peaks were
enriched among promoter regions including LD variants
and promoter regions associated with enhancers including
LD variants in several types of blood cells, including T
cells (Additional file 1: Figure S4). This indicated that our
pipeline reproduced previous findings for noncoding
variants on enhancers in immune cells.
We identified 6 variants in promoters and the associ-

ated TFs whose binding sites were disrupted by these
variants (Table 2, Additional file 1: Figure S5–S6). We
found that rs3132089, a promoter variant of the HCP5

Kubota and Suyama BMC Medical Genomics            (2020) 13:8 Page 4 of 14



gene, is highly linked with psoriasis risk SNP rs3134792
(r2 = 0.9253) [18] (Additional file 1: Figure S7a) and
located on the binding motif of ARNT and BHLHE40
proteins, which is predicted to result in decreased bind-
ing (Additional file 1: Figure S7b). ChIP-seq data showed
that BHLHE40 binds to the motif in K562 and HepG2
cells (Additional file 1: Figure S6, S7c). Its minor allele
(rs3132089-A) decreases HCP5 expression in the thyroid
and sun exposed skin of lower leg (Additional file 1: Figure

S5, S7d). HCP5 encodes for a long noncoding RNA, which is
highly expressed in immune cells (Additional file 1: Figure
S7e) and involved in inflammatory, adaptive, and innate
immune responses [59, 60]. A variant rs2395029, located on
HCP5 gene body, were previously reported to be associated
with psoriasis [19]. Although the molecular mechanism of
how HCP5 transcript controls immune responses remains
unclear, these findings provided evidence that the differential
expression of HCP5 depending on rs3132089 genotype in

Fig. 1 An overview of this study. a Schematic diagram of the analysis pipeline integrating multiple public datasets. b Functional variants to be
searched in this analysis pipeline. For gene regions, we searched for deleterious missense, frameshift, stop gain, start lost, and splice site variants.
For promoters and enhancers, we looked for variants called eQTLs and those that alter the binding sequences of TFs. The binding of the TFs
were confirmed using public ChIP-seq peaks data
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the skin alters the immune response level, leading to the
increased/decreased risk of developing psoriasis.
We identified two candidate functional variants in en-

hancers and associated TFs whose binding sites were
disrupted by the variants (Table 3). To identify target

genes of enhancers that contain functional variants of
psoriasis risk, we analyzed enhancer–promoter correla-
tions using CAGE datasets provided by the FANTOM5
project [40]. In the FANTOM5 project, CAGE technol-
ogy was used for quantitative detection of transcribed

Table 1 Candidate functional variants in exons or splice sites associated with psoriasis risk

Chr. Position Variant Alleles
(P/R)

RAF Gene AA InterPro annotation Marker (P-value, Study) r2

Known functional variants

Splice site

6 31,380,000 rs199503730 G/− 0.0447 MICA 5′ ss – rs2395029 (2.00E-26, [19]) 0.8860

Exon

1 25,291,010 rs6672420 A/T 0.4791 RUNX3 I/N – rs7536201 (2.00E-12, [25];
2.00E-08, [29])

0.9046

1 67,705,958 rs11209026 A/G 0.9384 IL23R Q/R – rs11209026 (7.00E-07, [24]) 1.0000

rs9988642 (1.00E-26 [25];
7.00E-14, [29])

0.8520

6 31,473,957 rs3134900 (C/G)? NR MICB I/M MHC class I-like antigen
recognition-like, MHC
classes I/II-like antigen
recognition protein

rs3134792 (1.00E-09, [18]) 0.8008

6 111,913,262 rs33980500 C/T 0.0855 TRAF3IP2 D/N – rs33980500 (1.00E-16, [23];
4.00E-45, [25]; 1.00E-23, [29])

1.0000

17 78,178,893 rs11652075 T/C 0.5099 CARD14 W/R – rs11652075 (3.00E-08, [25]) 1.0000

19 10,463,118 rs34536443 C/G 0.9712 TYK2 A/P Protein kinase domain,
Protein kinase-like domain,
Serine–threonine/tyrosine–
protein kinase, catalytic
domain, Tyrosine–protein
kinase

rs34536443 (9.00E-31, [25]) 1.0000

19 10,469,975 rs12720356 C/A 0.9076 TYK2 S/I Protein kinase domain,
Protein kinase-like domain,
Serine–threonine/tyrosine–
protein kinase, catalytic
domain, Tyrosine–protein
kinase

rs12720356 (4.00E-11, [25]) 1.0000

19 49,206,674 rs601338 G/A 0.4414 FUT2 W/* – rs492602 (7.00E-13, [30]) 0.9920

19 49,206,985 rs602662 G/A 0.4682 FUT2 G/S – rs492602 (7.00E-13, [30]) 0.8822

22 21,982,892 rs2298428 C/T 0.1769 YDJC A/T Glycoside hydrolase/
deacetylase, beta/alpha-
barrel

rs181359 (2.00E-07, [29]) 0.8941

rs4821124 (4.00E-08, [25]) 0.9477

Newly identified functional variants

Splice site

5 96,245,518 rs2549797 G/A 0.5199 ERAP2 5′ ss – rs2910686 (2.00E-08, [25]) 0.8051

Exon

12 5,660,905 rs60542959 T/G 0.9344 COQ10A I/M – rs2066807 (5.00E-12, [27]) 0.9523

rs2066808 (6.00E-10, [26]) 0.9388

rs2066819 (5.00E-17, [25]) 0.9517

17 73,874,071 rs4600514 G/A 0.1650 TRIM47 R/W B-box-type zinc finger,
Zinc finger RING/FYVE/
PHD-type

rs55823223 (1.00E-08, [30]) 0.9075

An asterisk in “AA” column indicates a stop codon. As for rs3134792 and its functional variants, the direction of effects is unknown
P/R protective/risk, RAF risk allele frequency, NR not reported, AA amino acids, 5′ ss 5 prime splice site, r2 r-squared value between functional
variants and GWAS variants
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enhancers (eRNA) in high nucleotide resolution. The
CAGE-defined transcripts dataset enables direct pairwise
correlation between enhancers and putative target genes.
The identified enhancer variants were rs72635708 and
rs11231770, which target the ERRFI1 and PPP1R14B
genes, respectively. Based on eRNA expression levels, we
found that the enhancer element in which rs72635708 is
located was highly active in the hepatocytes, fibroblasts,
and various epithelial cells, and the enhancer element in
which rs11231770 is located was highly active in various
epithelial cells, especially in the intestinal epithelial cells
(Fig. 2). Although the identified variants might be in-
volved in psoriasis risk, we focused on rs72635708 and
the ERRFI1 gene for further analyses for ease of inter-
pretation of the association with psoriasis risk.

A candidate functional variant rs72635708 and the ERRFI1
gene are within the same spatial regulatory unit
A candidate variant rs72635708, which is in the 1p36.23
region, is located within an enhancer element targeting
the ERRFI1 gene, despite the 170 kb distance between
them. This variant is highly linked with two risk SNPs
(rs417065 and rs11121129; r2 = 0.9832 and 0.6547, re-
spectively) identified by two independent GWAS [25, 27],
strongly supporting that this is a susceptibility locus of
psoriasis. To further confirm the functional interaction
between the enhancer element and the ERRFI1 promoter,
we analyzed Hi-C and ChIA-PET data to detect the spatial
structure of chromosomes. The higher-order structure of
chromosomes and gene function are closely related; thus,
it is very important to use chromosome conformation data

to confirm physical contact in order to detect enhancer–
promoter interactions. We tested spatial contacts between
this enhancer and the ERRFI1 promoter using Hi-C data
for the liver and IMR90, which is an immortalized cell line
derived from fibroblasts. The Hi-C contact map showed
that the ERRFI1 promoter and a candidate functional va-
riant rs72635708 are located on the same TAD, which is a
spatial functional unit of chromosomes [6, 7, 61], in both
the liver and IMR90 (Additional file 1: Figure S8). The
prominent peaks of CTCF ChIP-seq signals—CTCF is
well known as an insulator protein that defines TADs, and
its polarity determines the genome looping [62]—were
found at distinct boundary regions of the TAD struc-
ture. 4C-like representation of Hi-C data by anchoring the
ERRFI1 promoter also supported the long-range contact
between the candidate functional variant and ERRFI1 pro-
moter in the liver and IMR90 (Fig. 3). Focusing on RNA
polymerase II ChIA-PET signals in this region, there was
no enhancer–promoter contact in K562, an immortalized
cell line derived from blood cells, but there was a strong
contact signal in MCF-7, an immortalized cell line derived
from mammary epithelial cells (Additional file 1: Figure
S9). Combined with enhancer–promoter correlation data
defined by eRNA and mRNA expression profiles, we
observed that there was a strong functional interaction be-
tween the ERRFI1 promoter and the enhancer that con-
tains rs72635708. In addition to these results, binding
regions and motif orientations of CTCF were also ex-
plored, and we found distinct boundary regions of TAD
structure with convergent orientations of the CTCF bind-
ing motifs (Additional file 1: Figure S9). Taken together,

Table 2 Candidate functional variants in promoters associated with psoriasis risk

Chr. Position Variant Alleles (P/R) RAF Gene TF Marker (P-value, Study) r2

6 31,371,100 rs6906175 G/C 0.2952 MICA REST rs13437088 (3.00E-40, [25]) 1.0000

6 31,430,009 rs3132089 (G/A)? NR HCP5 ARNT, BHLHE40 rs3134792 (1.00E-09, [18]) 0.9253

6 31,462,134 rs3130923 (G/A)? NR MICB TCF3 rs3134792 (1.00E-09, [18]) 0.8762

12 56,728,257 rs11358218 A/− 0.9304 PAN2 SPI1 rs2066807 (5.00E-12, [27]) 0.9541

rs2066808 (6.00E-10, [26]) 1.0000

rs2066819 (5.00E-17, [25]) 0.8933

16 30,968,588 rs4889599 C/T 0.3658 SETD1A EGR1 rs10782001 (9.00E-10, [22]) 0.9703

rs12445568 (1.00E-16, [25]) 0.8876

rs13708 (2.00E-08, [27]) 0.9915

20 43,989,513 rs2741432 G/A 0.7744 SYS1 CEBPB rs1008953 (1.00E-07, [22]) 0.9943

As for rs3134792 and its functional variants, the direction of effects is unknown
P/R protective/risk, RAF risk allele frequency, NR not reported, TF transcription factor, r2 r-squared value between functional variants and GWAS variants

Table 3 Candidate functional variants in enhancers associated with psoriasis risk

Chr. Position Variant Alleles (P/R) RAF Gene TF Marker (P-value, Study) r2

1 8,257,959 rs72635708 T/C 0.2286 ERRFI1 ARNT, BACH1, FOS, MAFK, NFE2 rs417065 (8.00E-07, [27]) 0.9832

11 64,140,624 rs11231770 A/G 0.6292 PPP1R14B SP1, SP2, ZNF263 rs645078 (2.00E-06, [25]) 1.0000

P/R protective/risk, RAF risk allele frequency, NR not reported, TF transcription factor, r2 r-squared value between functional variants and GWAS variants
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these results strongly suggested that the enhancer in
which the predicted functional variant rs72635708 is lo-
cated belongs to the same regulatory unit as the ERRFI1
gene and may directly regulate its expression level, despite
the long distance between them, especially in the liver,
fibroblasts, and epithelial cells, but not in blood cells.

rs72635708 may affect ERRFI1 expression by modulating
the binding level of the AP-1 complex
Next, we examined the genomic and epigenetic features
of the enhancer element in which rs72635708 is located
in order to understand its effects on the enhancer. We
used chromatin state data as defined by ChromHMM
[63], and high enhancer activity was found in many tis-
sues, including the liver and skin fibroblasts, but not in
various blood cells (Fig. 4a). ChIP-seq data from HepG2,
an immortalized cell line derived from hepatocytes,

showed binding of many proteins, including p300, which
is an active element marker that functions as histone
acetyltransferase, and MAFK, MAFF, and JUND, which
are members of the AP-1 complex family. As shown in
Table 3, when combined with TFBS logos based on the
position frequency matrix, we found that the rs72635708
risk allele (rs72635708-C) disrupts the binding motif of
the AP-1 complex (Fig. 4b). This binding motif was
strongly conserved among primates, indicating its import-
ant role retained through evolution (Additional file 1:
Figure S10a). To investigate the effect of the risk allele
rs72635708-C on enhancer activity, we analyzed the bind-
ing level of JUND by using ChIP-seq peak data. We se-
lected MACS2 peaks containing “TGAGTCAT” (protective
form) or “TGAGTCAC” (risk form) from all genomic re-
gions and compared the signal strength between the motifs
(excluded peaks containing both motifs). The result showed

Fig. 2 The eRNA-based quantified activity of enhancers. The “Percentage of Expression” for each cell type refers to how much of the total
expression (normalized CAGE counts from all cells) the enhancer emits for each cell type. a The top 10 cells highly expressing eRNA from a
CAGE-defined enhancer (hg19: chr1: 8,257,762-8,258,040) in which rs72635708 is located. b The top 7 cells highly expressing eRNA from a CAGE-
defined enhancer (hg19: chr11: 64,140,304-64,140,795) in which rs11231770 is located

Kubota and Suyama BMC Medical Genomics            (2020) 13:8 Page 8 of 14



that the signal strength of peaks with motifs in the risk
form was significantly lower than that with motifs in the
protective form (P < 0.001, Mann–Whitney U test) (Add-
itional file 1: Figure S10b), suggesting that at this locus,
JUND binding to the enhancer element might be affected
by the rs72635708 risk allele. Furthermore, referring to the
results of previously reported allele-specific mapping of
DNase-seq [64], this variant was strongly predicted to affect

TFs occupancy. This result was consistent with previous re-
ports stating that the AP-1 complex recruits chromatin re-
modeling factors and alters chromatin accessibility of
regulatory sequences [65, 66]. Taken together, we suggested
that rs72635708-C may decrease enhancer activity by alter-
ing the binding affinity of the AP-1 complex and reducing
chromatin accessibility. Regarding the effect of rs72635708
on ERRFI1 expression, no significant difference but a

Fig. 3 The enhancer, in which candidate functional variant rs72635708 is located, physically interacts with the ERRFI1 promoter in the liver and
fibroblasts. The upper panel and middle panel are 4C-like representations of Hi-C data for the liver and IMR90 cell line by anchoring the ERRFI1
promoter. The blue waveform represents the bias-removed interaction frequency, and the magenta dot represents the distance normalized
interaction frequency. Regions where the distance normalized interaction frequency exceeds two are connected to the ERRFI1 promoter by blue
arcs. The bottom panel is the RefSeq Curated Genes annotation track. The location of candidate functional variant rs72635708 is indicated by a
vertical red line
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decreasing trend was observed in the liver, and a significant
effect was observed in fibroblasts (Fig. 4c).

Discussion
Many trait-associated SNPs have been identified by GWAS.
However, the roles of these SNPs in molecular pathogenesis
have not been clearly interpreted because they lie within
noncoding sequences. Herein, we constructed a pipeline in-
tegrating different types of public datasets to survey func-
tional variants from GWAS SNPs. As a result, we identified
several functional variants involved in psoriasis risk present

in both gene and regulatory regions. Although GWAS Cata-
log contains many suggestive SNPs that do not satisfy
genome-wide significant threshold, we confirmed that all
psoriasis risk markers linked with identified functional vari-
ants have strong signals with significant p-values in each
GWAS (Tables 1, 2 and 3). These results are predictions, so
the validation using independent cohorts or functional
experiments will be needed to make a new aspect of the
molecular pathogenesis of psoriasis more convincing.
In particular, we proposed a model for the genetic

mechanism of psoriasis risk SNP rs417065 and

Fig. 4 The functional impact of rs72635708. a At the top, the layered ChIP-seq signals of H3K4me3, H3K4me1, and H3K27ac are shown. At the
middle, ChromHMM annotation (25-STATE MODEL) for various tissues and cells is shown. At the bottom, ChIP-seq density signals of various
proteins for the HepG2 cell line are shown. The location of rs72635708 is indicated by a vertical red line. b The sequence logos based on the
position weight matrix of binding sites for Bach1::Mafk (MA0591.1), FOS (MA0476.1), and JUND (MA0491.1) are represented with genomic
sequences. The location of rs72635708 is indicated by a dotted box. c Comparison of ERRFI1 expression levels among rs72635708 genotypes in
the liver and fibroblasts. The plots were generated by the GTEx project. The horizontal axis shows genotypes with the number of individuals in
parentheses. The asterisk indicates statistical significance
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functional variant rs72635708 via a long-range ERRFI1
enhancer in the 1p36.23 region. In cells with a protective
allele (rs72635708-T), the AP-1 complex binds to the
enhancer element and leads to chromatin remodeling
and other protein binding, resulting in stable expression
of the ERRFI1 gene (Fig. 5a). However, in cells with a
risk allele (rs72635708-C), the AP-1 complex may not
access the enhancer element, and chromatin accessibility
might not be enough to be activated by other proteins,
which causes unstable expression of the ERRFI1 gene
(Fig. 5b). Thus, we concluded that ERRFI1 is a novel
target gene for psoriasis risk SNPs and involved in the
pathogenesis in hepatocytes and fibroblasts. Many stud-
ies have focused on immune cells since psoriasis is an
autoimmune disease, but our analysis highlighted the
importance of functional variants in other cells, such as
hepatocytes and fibroblasts. For further support for our
hypothesis, the AP-1 complex ChIA-PET data gleaned
from hepatocytes and fibroblasts would be required for

validating the predicted interaction between the enhan-
cer and ERRFI1 promoter.
ERRFI1, also known as Mig-6, is a ubiquitously

expressed gene and well known as an EGF and Erbb sig-
naling inhibitor that binds directly to EGFR and HER2
[67–69]. A previous study reported that Errfi1 gene
knockout in mice caused the hyperactivation of EGF sig-
naling, leading to overproliferation and impaired differ-
entiation of skin cells [70]. In human tissues, ERRFI1
expression is downregulated in various cancers and in
skin with chronic inflammation [70], supporting a role
for negative regulation of cell proliferation. Thus, we
speculated that the functional variant rs72635708 might
target ERRFI1. Moreover, it has been reported that
ERRFI1 regulates cholesterol and glucose metabolism in
the liver. Errfi1 liver-specific knockout in mice altered
expression of lipid and glucose metabolism-related genes,
resulting in increased blood cholesterol and fasting glu-
cose levels and leading to insulin resistance [71–73]. In

Fig. 5 A model for the regulation of ERRFI1 promoter activity by a long-range enhancer. Chromatin illustrations were obtained from the
TogoPictureGallery (https://togotv.dbcls.jp/togopic.2017.10.html). a With a protective allele (rs72635708-T), the AP-1 complex can bind to the
enhancer element. This leads to chromatin remodeling around the element, resulting in the stable expression of ERRFI1. b With a risk allele
(rs72635708-C), the binding levels of the AP-1 complex to the enhancer element are reduced so that chromatin accessibility might not be
enough to be activated by other TFs. This results in the unstable expression of ERRFI1
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recent years, psoriasis has been strongly suggested for
clinical association with nonalcoholic fatty liver disease
(NAFLD) [74], type 2 diabetes (T2D) [75, 76], and meta-
bolic syndrome [77]. Thus, it is assumed that decreased
ERRFI1 expression levels, attributed to the distant enhan-
cer containing the risk variant (rs72635708-C) that re-
duces transcriptional activity, might lead to the acquisition
of insulin resistance and overproliferation of epithelial
cells, recapitulating a condition that is clinically con-
sidered to induce a high risk for psoriasis.
Additionally, ERRFI1 is deeply involved in various

physiological and pathogenic events, such as lung de-
velopment [78], endometrial epithelial cell proliferation
[79], lung tumorigenesis [80–82], gliomagenesis [83, 84],
hepatocellular carcinoma [85, 86], and neointimal hyper-
plasia in vascular smooth muscle cells [87]. Unveiling
the regulatory landscape of ERRFI1 could contribute to
further understanding of the molecular basis of these
events. Notably, it has been reported that upregulation
of ERRFI1 is associated with acquired resistance to the
EGFR tyrosine kinase inhibitor (TKI) in a cancer cell line
[88]. Therefore, rs726365708 might be a useful genetic
marker to detect ERRFI1 activity and the level of EGFR-
TKI resistance, enabling personalized clinical application
of EGFR-TKIs for patients with cancer or psoriasis.
Although HLA gene variants have been reported as a

risk factor for psoriasis in previous studies [89], we were
unable to identify exonic functional variants of HLA
genes in our analysis pipeline. Since the LDlink, which is
a software used in the present analysis, could detect only
linkage disequilibrium of biallelic variants, it seemed that
the variants of HLA genes, which usually have more
than 2 alleles, could not be detected. By developing new
software for calculating linkage disequilibrium for vari-
ants with more than 2 alleles, we will be able to search
for functional variants that we missed in this study. In
addition, some of the functional variants identified in
the present analysis were concentrated in the nearby
chromosomal regions. For example, we identified 1
splice site variants, 2 exonic variants, and 3 promoter
variants on chromosome 6, and whether they are
independent is not clear. Thus, in future, prioritization
procedure will be needed in our pipeline for identifying
true causal variants.

Conclusions
In this study, we investigated the genetic mechanism of
psoriasis, especially detailing how noncoding SNPs influ-
ence enhancer activity and target genes via a computa-
tional approach. We would like to emphasize that it is
important to integrate and reanalyze public data to study
genetic diseases. This study showed that such analyses
can reveal molecular pathogenesis. Although this study
focused on one disease, our approach can be applied to

other disease-associated SNPs and phenotypes of which
pathogenesis remains unclear.
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