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Abstract Parkinson’s disease (PD) is a complex neurode-

generative disorder with no cure in sight. Clinical chal-

lenges of the disease include the inability to make a

definitive diagnosis at the early stages and difficulties in

predicting the disease progression. The unmet demand to

identify reliable biomarkers for early diagnosis and man-

agement of the disease course of PD has attracted a lot of

attention. However, only a few reported candidate

biomarkers have been tried in clinical practice at the

present time. Studies on PD biomarkers have often

overemphasized the discovery of novel identity, whereas

efforts to further evaluate such candidates are rare.

Therefore, we update the new development of biomarker

discovery in PD and discuss the standard process in the

evaluation and assessment of the diagnostic or prognostic

value of the identified potential PD biomarkers in this

review article. Recent developments in combined biomark-

ers and the current status of clinical trials of biomarkers as

outcome measures are also discussed. We believe that the

combination of different biomarkers might enhance the

specificity and sensitivity over a single measure that might

not be sufficient for such a multiplex disease.
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Introduction

Parkinson’s disease (PD) is a chronic and progressive

neurodegenerative disorder that results from the loss of

dopamine neurons within the substantia nigra (SN) and

manifests with a broad range of motor and non-motor

symptoms [1, 2]. As the second most common neurode-

generative disorder, PD affects 1% of people older than age

60, and 3% at the age of 80 years or older [3]. Although

great achievements in the understanding of PD have been

made during the over 200-year history of PD research [4],

the diagnostic criteria for PD are still based on the

identification of only motor symptoms, namely bradykine-

sia plus rigidity and resting tremor, which occur years after

the neurodegenerative process has started [2]. Moreover,

even when the new diagnostic criteria are correctly applied,

the misdiagnosis rate is still high (16%–20% by movement

disorder experts) due to substantial clinical overlap among

parkinsonian disorders [5]. Delayed diagnosis and misdi-

agnosis militate against the therapeutic benefits of disease-

modifying therapies. Therefore, there is an urgent need to

make an effort to discover and identify reliable and

accurate biomarkers for PD.

In 1998, the National Institutes of Health Biomarkers

Definitions Working Group defined a biomarker as ‘‘a

measurable indicator of some biological state or condition

that is objectively measured and evaluated to examine

normal biological processes, pathogenic processes, or

pharmacologic responses to a therapeutic intervention’’

[6]. Biomarkers can be classified according to their

functional characteristics: susceptibility risk biomarkers

representing the potential for developing PD [7]; diagnostic

biomarkers are used to confirm the presence of PD; and

prognostic biomarkers indicating disease progression,

treatment-associated changes, or disease recurrence [8].
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For over 20 years, given the urgency of early diagnosis and

effective disease-modifying treatments of PD, great efforts

have been made to discover diagnostic and prognostic

biomarkers [9]. A robust and accurate diagnostic biomarker

can help recognize PD before the motor symptoms appear

or when the motor or non-motor signs are inadequate to

make the clinical diagnosis. It can also be used to make a

differential diagnosis between PD and other neurological

disorders, especially differentiating idiopathic PD from

other forms of parkinsonism. It would be preferable if the

biomarker could be verified in neuropathologically demon-

strated cases of PD [10]. In general, biomarkers include

physiological measurements, bodily fluid or tissue exam-

inations, genetic or metabolic data, imaging measures, and

even rating scales or survey measures that could represent

candidate biomarkers [6].

Although various studies have been conducted in

discovering potential PD biomarkers, only a few biomark-

ers have been translated into clinical practice [11]. PD

biomarker studies have often overemphasized the discov-

ery of novel potential biomarkers, whereas efforts to

further evaluate such candidates are rare [12]. In this

review, we summarize the evaluation measures of biomark-

ers and provide an update on the discovery of promising

candidates in the diagnosis and prognosis of PD. Some

recent developments on combined biomarkers and the

current status of clinical trials using biomarkers as outcome

measures are also discussed.

Process for the Evaluation of PD Biomarkers

Concerning the lack of a coherent pipeline connecting

biomarker discovery with well-established methods for

validation, it is important to establish standard protocols for

the method of biomarker evaluation. Many studies on

biomarkers have suggested pipelines for evaluating and

validating novel biomarkers [8, 13]. In 2010, the National

Academy of Sciences of America recommended a frame-

work for the evaluation of biomarkers at the request of the

Food and Drug Administration, with critical components of

analytical validity, qualification, and utilization [14]. The

framework provides guidelines for the previously non-

uniform process in the evaluation of biomarkers.

Analytical Validation

Analytical validation can be employed to evaluate the

assays and measurement performance characteristics of

potential biomarkers, determining the accuracy and

repeatability of biomarkers [14]. As an assessment of a

biomarker test, analytical validation includes the detection

approaches and the discrimination of the biomarkers.

Establishing appropriate and standard approaches is

crucial to biomarker discovery studies, which can ensure

the quality and reproducibility of results, especially when

comparing across multiple laboratories and clinical settings

[15]. Studies of biomarker discovery usually start by

establishing an accessible and confirmed PD patient cohort

according to clinical diagnostic criteria with specialists. A

meta-analysis of longitudinally-followed participants with

autopsy-confirmed diagnoses shows that a good correlation

between clinical diagnosis and neuropathological diagnosis

can be established if a specialist follows international

diagnostic criteria, and continues follow-up to correct any

initial diagnostic error [10]. It is equally important to set up

a standard sample collection process, and storage proce-

dures for samples such as cerebrospinal fluid (CSF) and

blood. In addition, harmonization of access to biobank

samples streamlines the process of PD biomarker discovery

[11]. Overall, standard metrics exist for all the processes

from biomarker discovery to validation.

As an important evaluation index in characterizing the

performance of a diagnostic biomarker, discrimination

indicates the capability of a test to distinguish between

disease and control, or those with and without an outcome

of interest. When it comes to the discrimination of a

diagnostic biomarker of PD, the ability to distinguish PD

from healthy controls (HCs) is usually not enough. The

inclusion of non-PD neurological disease controls (NDCs),

especially parkinsonian syndrome, is critical in biomarker

validation studies [11]. Sensitivity and specificity are most

commonly regarded in the discrimination analysis. Here,

the receiver operating curve (ROC) is a graphical plot to

illustrate the diagnostic ability of a binary classifier system

by plotting the true-positive rate (sensitivity) against

the false-positive rate (1-specificity) at a range of cutoff

points [13]. Every possible cutoff point of a test result

corresponds to the resulting sensitivity and specificity. The

area under the ROC curve (AUC) is the most widely used

measure of testing discrimination, and can directly com-

pare the diagnostic accuracy of biomarkers. A perfectly

discriminating test would have an AUC of 1. Currently, a

particular AUC value of 0.8 is considered a ‘‘good’’

performance of a test. Many PD biomarker studies have

evaluated the performance characteristics of biomarkers

with relatively small sample sizes, and these approaches

may not yield clinically useful AUC characteristics.

However, in some cases, a higher AUC value may not be

so helpful either, since the clinician may only care about a

single cutoff point selected from the curve to meet special

demands, whereas the AUC refers to the entire curve.
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Qualification

Qualifications can furnish available evidence on associations

between biomarkers and disease states or clinical outcomes.

One of the most important components in qualification is to

evaluate the prognostic value of the biomarker-disease

relationship [14]. Prognostic biomarkers as indicators of

disease progression or treatment-associated changes that must

be conducted by prospective or cohort studies, allow for causal

inferences to be made since biomarkers and measurements of

PD occur simultaneously [16]. Follow-up work in the

prospective studies always takes years or decades, especially

in PD because of its chronic course. On the contrary, cross-

sectional studies enroll a population of interest and collect data

on the characteristics of interest almost at the same time, but

biomarkers found by cross-sectional studies cannot reveal a

prognostic or predictive value [17].

When assessing the relevance for predicting future events,

the calibration of biomarkers should also be considered.

Calibration is used to estimate probabilities that closely

correspond with the outcomes in reality. A simple way of

presenting the calibration value is by plotting observed versus

predicted results [8]. Under some circumstances, biomarkers

may improve the accuracy of a test through an improvement in

calibration without altering the AUC.

Utilization

Utilization is a contextual analysis of the available

evidence about the risks and benefits associated with the

use of biomarkers [14]. The safety and efficacy of

biomarkers should be weighed against their risk of failure

to determine a range of proper performance for each

specific biomarker [8]. Cost-effectiveness analysis is a key

tool in considering the utilization of biomarkers, and can

represent the outcome probabilities and assign values to

particular outcomes [8]. A great deal of research has been

done on how to conduct such studies [18], although

definitive estimates of costs can be made only after the

measurement of clinical outcomes.

Recent Advances in PD Biomarkers

Clinical Biomarkers

It is widely accepted that before the classical motor symptoms

occur, subtle motor dysfunction or non-motor symptoms may

already appear. Non-motor symptoms such as rapid eye

movement sleep behavior disorder (RBD), hyposmia, consti-

pation, and mood disorders are referred to as promising

biomarkers in the detection of prodromal PD [19]. RBD as the

most common and best-characterized parasomnia in PD, is

assumed to be an original symptom of progressive neurode-

generation. Numerous studies have revealed that RBD can

serve as an anticipatory biomarker of prodromal PD and other

synucleinopathies. RBD is strongly associated with PD with a

45% risk of developing neurodegeneration at 5 years and a

76% risk at 10 years, according to a 7-year follow-up study

[20]. Aiming to assess the diagnostic accuracy of the

prodromal criteria introduced by the International Parkinson

and Movement Disorder Society in 2015, one RBD cohort

study found that 39.7% of individuals with RBD converted to

PD/dementia with Lewy bodies. The prodromal criteria had

81.3% sensitivity and 67.9% specificity for conversion to PD

in RBD cohorts at 4-year follow-up [21].

Data on the prevalence of olfactory dysfunction in PD

range from 45% to 90% [22]. There is good evidence that

most PD patients develop olfactory dysfunction 4–6 years

before the motor impairment occurs [23]. However, the

specificity of olfactory dysfunction is lower than RBD and

motor markers [24]. This could be because olfactory

dysfunction is also common in other synucleinopathies and

in older adults. Combined assessment of olfactory dys-

function, motor asymmetry, and a typical finding at

ultrasound (midbrain hyper-echogenicity) can improve

diagnostic accuracy in early PD [25]. Since the specificity

of these non-motor symptoms is generally not sufficient for

the early diagnosis of PD, constructing other objective

measures and auxiliary methods in combination with the

results of non-motor signs would enhance the predictive

value of the clinical biomarkers for PD.

Imaging Biomarkers

An increasing number of imaging tests are promising for

indicating early changes in PD patients and as an independent

measure of disease progression, with the character of less

susceptibility to the effects of subjectivity, medication, and

placebo [26]. Among the imaging studies on PD, neuroimag-

ing of the dopamine system has received the most attention.

Dopamine transporter single-photon emission computed

tomography (DAT-SPECT) and fluorodopa positron emission

tomography (F-DOPA PET) have been used to detect

neurochemical changes in the dopamine system [27]. The

majority of studies on DAT-SPECT imaging of PD patients

have shown a high accuracy of diagnostic performance with a

sensitivity of 79%–100% and specificity of 80%–100%

[27, 28]. Various SPECT radiotracers for imaging DAT also

have been used to evaluate the severity of disease and

differentiate PD from other forms of parkinsonism [29]. In a

4-year clinical follow-up study, the combination of hyposmia

and DAT deficit revealed by DAT-SPECT is able to identify

the risk of PD onset, with a 5% reduction in DAT binding

annually [30]. Similar to studies with DAT-SPECT, F-DOPA
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PET imaging recognizes decreased F-DOPA uptake in the

caudate and putamen of PD patients [31]. Reduced F-DOPA

uptake has been reported to occur contralateral to the

hypokinesia-rigidity symptoms and is correlated with its

severity [quantified by the Unified Parkinson’s Disease Rating

Scale (UPDRS)].

Advanced magnetic resonance imaging (MRI) tech-

niques, including several specific sequences and high field-

strength scanners, have shown promise in the early

diagnosis of PD and monitoring disease progression

[32, 33]. Neuromelanin MRI (NM-MRI) is a novel

technique that reflects the loss of neurons containing

neuromelanin, and the signal intensity of the SN is greatly

reduced on NM-MRI in PD patients [34]. Nigrosome-1

(N1) indicates an area of high signal intensity in the dorsal

part of the SN and is visualized as a ‘‘swallow-tail’’ sign on

high-resolution susceptibility-weighted imaging (SWI)

[35]. Calloni et al. have assessed the loss of N1 on

multiple-echo SWI of 126 PD patients, 30 with non-PD

parkinsonism, and 24 HCs [36]. They found that the

sensitivity and specificity of N1 in discriminating PD from

controls is 96.43% and 85.00%, whereas N1 does not play

a leading role in the differentiation of PD from non-PD

parkinsonism, with a low level of specificity [36]. While

promising, the utility of MRI in early diagnosis and

monitoring the course of PD remains to be defined.

Biofluid-Based Biomarkers

a-Synuclein

Misfolded and aggregated a-synuclein is the major protein

component of Lewy bodies, and is thought to be the

pathological hallmark of PD [37]. Genetic mutations and

post-translational modifications of the a-synuclein protein,

such as phosphorylation, ubiquitination, and oxidization,

participate in the process of protein misfolding [7]. Since

a-synuclein is both genetically and pathologically associ-

ated with PD and can be detected in biofluids, it has

become a widely-used approach in PD biomarker studies

[37, 38]. Rapid progress has been made in the identification

and validation of a-synuclein species as biomarkers for PD

in recent years.

Studies from different laboratories on total a-synuclein in

the CSF have produced consistent results with high analytical

precision and inter-laboratory correlation, collectively show-

ing that total CSF a-synuclein is significantly lower in PD

patients than in HCs and patients with NDCs [38–41]. Othera-

synuclein species such as oligomeric a-synuclein and phos-

phorylated a-synuclein have also been evaluated as potential

biomarkers for PD [42–44]. However, none of these alone has

a satisfactory diagnostic accuracy in distinguishing PD

patients from controls [7]. A meta-analysis of data from 34

studies on total CSF, as well as oligomeric and phosphorylated

a-synuclein in patients with PD, NDCs, or other forms of

parkinsonism, and HCs has been reported. The results

revealed that the sensitivity and specificity of totala-synuclein

for distinguishing PD from controls are 0.72 and 0.65,

respectively, and the sensitivity and specificity of oligomeric

a-synuclein are 0.71 and 0.64 [45]. In longitudinal studies, no

significant change of total a-synuclein in CSF has been found

in patients with early PD and HCs over 6–24 months [46, 47].

A study assessing the combined a-synuclein species showed

that the ratio of CSF oligomeric a-synuclein to total a-

synuclein, together with phosphorylated a-synuclein and

neurodegenerative biomarkers improves the diagnostic per-

formance of oligomeric a-synuclein alone, with an AUC of

0.86%, sensitivity 79%, and specificity 67% [42]. For these

reasons, the majority view is that a single species of CSF a-

synuclein cannot be regarded as a reliable biomarker for PD,

while the combination of a-synuclein species, or with other

CSF biomarkers may furnish encouraging results.

a-Synuclein aggregation in the CSF has aroused great

interest among researchers in recent years for its remarkable

diagnostic accuracy in distinguishing PD patients from

controls [48–50]. a-Synuclein seeding aggregation assays

including protein-misfolding cyclic amplification and real-

time quaking-induced conversion (RT-QuIC) are the main

techniques for measuring pathogenic a-synuclein aggregates

in biofluids [50]. An RT-QuIC assay study showed a-

synuclein aggregation in the CSF of PD patients with a

sensitivity of 95% and a specificity of 100% compared to HCs,

while patients with Alzheimer’s disease (AD), progressive

supranuclear palsy, or corticobasal degeneration give negative

results for a-synuclein aggregation [48]. A more recent study

has detected oligomeric a-synuclein in the CSF of 105 PD

patients and 79 HCs from the BioFIND cohort, a North

American multicenter study of PD patients with standardized

clinical and biospecimen acquisition protocols [17], by

independently cross-validating two different platforms of a-

synuclein seeding aggregation assays [51]. The AUC value for

the diagnosis of PD vs HCs reached 0.95 with a sensitivity of

97.1% and a specificity of 92.5%. Given that these assays

represent a process central to the pathogenesis of PD, and

support the hypothesis that a-synuclein pathology spreads by

a ‘‘prion-like’’ mechanism [52], a-synuclein aggregation

assays in CSF may have the potential to be a surrogate for the

presence of a-synuclein pathology. As for whether a-synu-

clein aggregation can be considered acceptable for its

introduction into clinical practice as a biomarker for PD,

larger cohorts of patients with pathological confirmation of

PD and ongoing longitudinal assessment of prodromal

individuals are needed.

a-Synuclein can be detected in blood due to its high

level of expression and production by red blood cells

(RBCs). Since blood is more easily accessible than CSF in
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clinical circumstances, a body of studies has assessed the

levels of a-synuclein species in RBC, serum, and plasma as

a candidate biomarker of PD [37]. However, these studies

have yielded inconsistent results for the changes in the a-

synuclein level in the blood of PD patients compared to

HCs [53–55]. This could be due to the easy contamination

of RBC and different approaches to sample collection and

determination across studies.

Extracellular Vesicles

Extracellular vesicles (EVs) are a subset of small mem-

branous vesicles derived from the endosomes and released

into biofluids by almost all kinds of tissue, including the

central nervous system (CNS) [56]. They can be catego-

rized into exosomes (50 nm–150 nm), microvesicles (100

nm–1000 nm), and apoptotic bodies ([ 1000 nm) [57].

EVs harbor a cargo of proteins and nucleic acids that are

likely to indicate pathogenic processes in CNS. Therefore,

CNS-derived EVs may hold promise for biomarker dis-

covery in PD.

Increasing evidence has demonstrated that EVs mediate the

transfer and transport of toxic a-synuclein between cells,

suggesting a pivotal mechanism underlying the spread of a-

synuclein aggregates and the acceleration of pathology in PD

[58]. It has been reported that exosomes derived from the CNS

occur in the blood and the level of a-synuclein from CNS-

derived exosomes in plasma is significantly higher in PD

patients, but the performance of plasma exosomala-synuclein

is only moderate (AUC 0.654, sensitivity 70.1%, specificity

52.9%) [59]. Recent findings on a-synuclein from EVs in

plasma are consistent with these results and also lack sufficient

diagnostic performance [60, 61]. Apart from a-synuclein,

changes in other proteins or nucleic acids such as microRNAs

have also been detected [58, 62, 63]. Proteomic analysis of

urinary EVs has shown that the combination of SNAP23 and

calbindin attains a diagnostic performance at an AUC of 0.86

with 77% sensitivity and 85% specificity [64]. It would be

worth evaluating candidate biomarkers in EVs using a larger

clinical PD cohort and investigating panels of combined

biomarkers in EVs to enhance the accuracy of diagnosis.

MicroRNAs

Recent studies have demonstrated that microRNAs are

involved in the regulation of PD-related genes and

alterations of certain microRNAs possibly relevant to

either disease onset or disease progression [65, 66].

MicroRNAs have been considered as potential biomarkers

for the early detection of PD as well as monitoring the

progression of the pathology for their characteristics of

detectability and stable expression in biofluids [67].

Altered expression levels of microRNAs in patients with

PD versus controls have been widely reported. A recent

meta-analysis has shown hsa-miR-221-3p, hsa-miR-214-

3p, and hsa-miR-29c-3p to be significantly differentially

expressed in the blood of PD patients [68]. Yang and

colleagues measured the level of hsa-miR-105-5p in the

plasma of 319 PD patients, 305 patients with NDCs, and

273 HCs and found that it was significantly higher in PD

patients than in HCs (0.163 ± 0.018 vs 0.065 ± 0.011,

P\ 0.001), or patients with NDCs (0.163 ± 0.018 vs

0.047 ± 0.007, P\ 0.001). The discriminative values

(AUC) in differentiating PD from HCs, essential tremor

(ET), and AD are 0.768, 0.786, and 0.787, respectively

[69]. A comprehensive analysis of the microRNA combi-

nations of hsa-miR-335-5p/hsa-miR-3613-3p (95% CI,

0.87–0.94), hsa-miR-3355p/hsa-miR-6865-3p (95% CI,

0.87–0.93), and miR-335-5p/miR-3613-3p/miR-6865-3p

(95% CI, 0.87–0.94) showed that they are closely related

to a high degree of discriminatory accuracy (AUC 0.9–1.0)

[70]. Although several microRNAs have been demon-

strated to be relevant to the onset and progression of PD,

and their combination could present a relatively high

diagnostic accuracy for PD, more effort is needed to further

evaluate the potential of microRNAs and other small

molecules as candidate biomarkers before application in

clinical practice.

Inflammation-Related Biomarkers

Mounting evidence supports the role of inflammation as a

measurable driving force of PD pathology. Neuroinflam-

mation is associated with abnormally activated microglia

and altered levels of inflammatory mediators in the brains

of PD patients. Many studies have shown that CSF and

plasma levels of inflammatory cytokines, such as tumor

necrosis factor (TNF)-a, interleukin (IL)-1b, IL-4, IL-6,

and IL-10 are significantly higher in PD than in HCs

[71, 72]. On account of the expression levels of inflam-

matory cytokines that may not be specifically elevated in

PD, combinations of inflammatory cytokines with other

candidate biomarkers have been investigated to help the

early diagnosis and detection of PD progression [73, 74].

Edison et al. identified a panel of inflammatory factors with

a-synuclein in serum and CSF that can be measured with

stable results regardless of sample collection time; they

distinguish between PD and HCs with 82% sensitivity and

83% specificity, and monitor inflammation as disease

progresses [74]. In addition, several T cell-mediated

immunity-related proteins in the peripheral blood have

been discovered and verified as potential biomarkers of PD.

Lymphocyte activation gene-3 (sLAG-3), an important

marker of helper T cell activity, has been shown to be a

candidate novel biomarker for PD with an AUC of 0.82

(serum sLAG-3) in differentiating PD from HCs [75].
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Recent investigations suggest an important role of gut-

derived inflammation through the microbiota-gut-brain axis

in the pathogenesis of PD [76]. Gut inflammation may

interact with microbiota changes and facilitate the expres-

sion and aggregation of a-synuclein from gut to the brain

via the vagus nerve [76, 77]. Studies have revealed

differences in gut microbiota and microbiota metabolism

between early-stage PD patients and controls [78]. The gut

microbiome has also been shown to be associated with the

severity of constipation and motor phenotype [78]. Pardo

et al. found increased expression of the bacterial endo-

toxin-specific ligand TLR4, CD3? T cells, and cytokines in

colonic biopsies from PD patients [77]. These alterations of

gut microbiota and gut inflammation-related indices may

have the potential to be early diagnostic biomarkers for PD

and deserve further investigation.

Combinations of Biomarkers

An increasing number of studies have revealed that a

combination of biomarkers can improve the diagnostic

accuracy of individual biomarkers. Combined biomarkers

might be able to predict the motor progression or cognitive

impairment of PD. Even though various types of biomark-

ers have been involved in the analysis of combined

biomarkers, a-synuclein is still of the most concern

(Table 1). It is recommended to use the combined novel

biomarkers with existing clinical predictors rather than

expecting a biomarker to simply substitute for clinical

assessment. The use of biomarkers in combination should

span multiple modes (for example, clinical, biochemical,

and imaging-based biomarkers) to maximize their utility.

And yet, very little research has been conducted to evaluate

the performance of combined novel imaging or biofluid-

based biomarkers with clinical assessment. The challenge

is to establish a methodology to unite these biomarkers of

disparate type and strength into merged criteria. Mollen-

hauer et al. have explored a panel of multi-modal

progression biomarkers for PD in a longitudinal cohort

[47]. After 24 months covering non-motor symptoms,

cognitive function, and REM sleep behavior disorder by

polysomnography, voxel-based morphometry of the brain

by MRI, and CSF markers (including total a-synuclein,

amyloid beta 1-42 (Ab42), total and phosphorylated tau

protein, and neurofilament light chain proteins), they found

that biomarkers with relative worsening included the sleep

and imaging measures, whereas the cognitive measures and

selected biofluid-based biomarkers were not significantly

altered in PD compared to HCs [47]. A cohort study

constructed a predictive model by the composition of

multivariate measures including age, UPSIT (University of

Pennsylvania Smell Inventory Test), RBDSQ (Rapid Eye

Movement Sleep Behaviour Disorder Screening

Questionnaire), CSF Ab42, and caudate uptake on DAT

imaging, and found that the five variables in combination

showed the strongest associations with cognitive impair-

ment, allowing prediction of cognitive impairment at

2 years in PD patients (0.80, 0.74–0.87; P = 0.0003

compared to age alone) [95]. Since none of the candidate

biomarkers so far has provided an accurate and early

diagnosis of such a complex disease, our vision for the

future is that a combination of different kinds of biomark-

ers may solve this dilemma.

Conclusions

With an increasing number of novel candidate biomarkers,

it is of great importance to establish a standard evaluation

measure of PD biomarkers, which may help to connect the

discovery to the validation of candidate biomarkers.

Processes in the evaluation of PD biomarkers mainly

consist of analytical validation, quality control, and

utilization, in which standardization of approaches, dis-

crimination value, follow-up work in cohort studies,

calibration, and cost-effectiveness analysis should be taken

into consideration.

Current biomarkers mainly focus on the symptomatic

evaluation of PD, specific neuroimaging changes, and

biochemical measurements of biofluids. Some of these

candidate biomarkers have relatively high diagnostic

performance or predictive value for PD and may have the

potential to be applied in clinical practice after a standard

evaluation. Biomarkers may address many of the critical

issues in clinical trials, such as the selection of appropriate

participants and the assessment of treatment effects. To

date, biomarkers have been applied in several clinical trials

for PD, and most of them are used as surrogate outcomes

for investigating the biological efficacy of a treatment

(Table 2). For instance, total a-synuclein has been pro-

posed as a surrogate biomarker in assessing the efficacy of

drugs targeting a-synuclein in phase 1–2 clinical trials. In

spite of this, biomarkers with the function of identifying a

population by confirming the clinical diagnosis are still

rarely used. Therefore, to improve the diagnostic accuracy

of individual biomarkers, an increasing number of studies

have focused on developing panels of combined biomark-

ers or predictive models involving a combination of

biomarkers. We believe that exploration for biomarkers

will continue. Relative to looking for novel biomarkers,

more effort should be made in systematically proceeding to

the long process of confirming clinical validity and utility

in future studies. As they are validated, more reliable

biomarkers should begin to deliver on their full potential,

with opportunities for clinical trials, personalized treat-

ments, and primary or secondary prevention of PD.
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Table 1 Overview of combined diagnostic and prognostic biomarkers.

Combined biomarkers Diagnostic value Prognostic value Sample size Study

Motor progression Cognitive impairment

Biofluid-based biomarkers

Oligomeric a-synu-

clein/total a-synu-

clein in CSF

NA Correlation with

UPDRS motor

(r = 0.41, P\ 0.01)

NA 121 early PD

patients from the

DATATOP

cohort

Majbour

et al. [79]

Oligomeric a-synu-

clein/total a-synu-

clein,

phosphorylated

a-synuclein, and

phosphorylated tau

in CSF

AUC 0.86, sensi-

tivity 79%, speci-

ficity 67%

NA NA 46 PD patients and

48 HC

Majbour

et al. [42]

Total tau/total a-synu-

clein in CSF

AUC 0.83, sensi-

tivity 70%, speci-

ficity 88% (PD vs

AD)

NA NA 78 PD patients and

20 AD patients

Førland

et al. [80]

Phosphorylated tau/a-

synuclein and TNF-

a in CSF

AUC 0.91, sensi-

tivity 92.9%,

specificity 75%

NA NA 40 PD patients and

40 HC

Delgado-Al-

varado

et al. [81]

NFL, FABP3, and

Ab42 in CSF

AUC 0.87 (NFL/

Ab42)

NA Higher NFL (P = 0.0005), lower

Ab42 (P = 0.00053), and

higher FABP3 (P = 0.0037)

conferred high hazard ratios

for PDD

104 PD patients

and 30 HC

Bäckström

et al. [82]

FABP3 with phospho-

rylated tau and total

a-synuclein in CSF

AUC 0.96 (PDD vs

AD)

NA NA 54 PD, 20 PDD,

and 48 AD

patients

Chiasserini

et al. [83]

Total tau, phosphory-

lated tau, a-synu-

clein, Ab42, NFL,

MCP-1, and YKL-

40 in CSF

AUC 0.95 (PD vs

non-PD

parkinsonism)

NA NA 31 PD and 94 non-

PD parkinsonism

patients

Magdalinou

et al. [84]

DJ-1, total tau and

phosphorylated tau

AUC 0.92, sensi-

tivity 82%, speci-

ficity 81% (PD vs

MSA)

NA NA 43 PD and 23 MSA

patients

Herbert

et al. [85]

Total a-synuclein,

Ab42, GCase, b-

hex, and cathepsin D

AUC 0.83, sensi-

tivity 84%, speci-

ficity 75%

NA NA 79 PD patients and

61 HCs from the

BioFIND cohort

Parnetti

et al. [86]

Serum TNF-a and

CSF a-synuclein

AUC 0.75, sensi-

tivity 82%, and

specificity 83%

NA NA 12 PD patients and

6 HCs at 11 time-

points across 24 h

Eidson et al.

[74]

IFN-c, IL-10, and

TNF-a in serum

AUC 0.87, sensi-

tivity 83%, speci-

ficity 80%

Correlation with postu-

ral instability

(P\ 0.001)

Correlation with cognitive

impairment (P\ 0.001)

72 PD patients and

56 controls

Rathnayake

et al. [87]

Nurr1, TNF-a, IL-1b,

IL-4, IL-6, and IL-

10 in PBMCs

AUC 0.71 NA NA 312 PD patients,

318 HCs, and 332

NDC patients

Le et al.

[73]

MiR-19a, miR-19b,

miR-24, miR-30c,

miR-34b, miR-133b,

and miR-205 in CSF

AUC 0.98 NA NA 28 PD patients and

28 controls

Marques

et al. [88]
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Table 1 continued

Combined biomarkers Diagnostic value Prognostic value Sample size Study

Motor progression Cognitive impairment

Imaging-based biomarkers

NM-MRI and N1

imaging

AUC 0.935, sensi-

tivity 0.85, speci-

ficity 0.92 (PD vs

ET)

NA NA 68 PD and 25 ET

patients

Jin et al.

[89]

DAT-SPECT, DTI,

and sMRI

NA Correlation with the

UPDRS (P\ 0.001)

NA 205 PD patients

and 105 controls

at 1-year follow-

up

Lorio et al.

[90]

NM-MRI and DAT-

SPECT

AUC 0.99, sensi-

tivity 93%, speci-

ficity 100% (PD

vs non-PD

parkinsonism)

NA NA 30 PD and 19 non-

PD parkinsonism

patients

Matsusue

et al. [91]

Multiple models of combined biomarkers

Plasma oligomer a-

synuclein and multi-

ple ESWAN imag-

ing markers

AUC 0.827, sensi-

tivity 0.8, speci-

ficity 0.8

NA NA 60 PD patients and

30 HCs

Chen et al.

[92]

PIGD score, caudate

DAT imaging, and

CSF Ab42

NA Accuracy (AUC 0.684,

95% CI 0.628–0.740)

in prediction of later

development of FOG

NA 393 patients with

newly diagnosed

PD without FOG

at 4 years of fol-

low-up

Kim et al.

[93]

Age, CSF

oligomeric/total a-

synuclein, and b-

glucocerebrosidase

activity

AUC 0.87, sensi-

tivity 82%, speci-

ficity 71%

NA NA 71 PD and 45 NDC

patients

Parnetti
et al. [94]

Age, UPSIT, RBDSQ,

CSF Ab42, and cau-

date DAT imaging

NA Accuracy of prediction

of cognitive impair-

ment (AUC 0.8)

NA 390 PD patients at

2 years of follow-

up

Schrag et al.

[95]

PD, Parkinson’s disease; HC, healthy controls; AD, Alzheimer’s disease; PDD, PD dementia; ET, essential tremor; CSF, cerebrospinal fluid;

AUC, area under the curve; UPDRS, Unified Parkinson’s Disease Rating Scale; NA, not analyzed; DATATOP, Deprenyl and Tocopherol

Antioxidative Therapy for Parkinsonism study; NFL, neurofilament light chain protein; FABP3, fatty-acid-binding protein 3; PBMCs, peripheral

blood mononuclear cells; NM-MRI, neuromelanin-sensitive magnetic resonance imaging; N1, nigrosome-1; DAT-SPECT, dopamine-transporter

SPECT; DTI, diffusion tensor imaging; sMRI, structural magnetic resonance imaging; ESWAN, multiple enhanced T2 star-weighted

angiography; PIGD, postural instability gait difficulty; FOG, freezing of gait; UPSIT, smell identification test; RBDSQ, REM sleep behavior

disorder screening questionnaire.
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