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Abstract

In recent years, the role of epidemic models in informing public health policies has progressively 

grown. Models have become increasingly realistic and more complex, requiring the use of 

multiple data sources to estimate all quantities of interest. This review summarises the different 

types of stochastic epidemic models that use evidence synthesis and highlights current challenges.
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1 Background

Epidemic models have become increasingly central to public health decision making, 

providing quantitative support to the efficient planning of health-care resources, the 

determination of optimal control strategies and the assessment of interventions to interrupt 

disease transmission. All of these require knowledge on hidden aspects of epidemics, such 

as current disease prevalence, severity, incidence and transmission, which can only be 

indirectly inferred through modelling. As a consequence of this crucial role of models, the 

methodologies underpinning epidemic modelling have come under increasing scrutiny. This 

has lead to more frequent adoption of rigorous approaches to linking models to data [21], 

increasing realism and, therefore, model complexity, and the need to use rich data arrays to 

guarantee reliable estimation. The result has been a recent proliferation of models 

incorporating data from multiple sources (e.g., [1, 13]).

Europe PMC Funders Group
Author Manuscript
Stat Sci. Author manuscript; available in PMC 2020 January 23.

Published in final edited form as:
Stat Sci. 2018 ; 33(1): 34–43. doi:10.1214/17-STS631.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



We will summarise and review some selected key examples in this literature by 

characterising models using a common construct. Most epidemic processes can be expressed 

through a state vector Xt representing unobservable characteristics of the epidemic and a 

vector of observable quantities Yt, under a generalised parameter-driven state-space 

framework:

Xt X1: t − 1,Y1: t − 1 ∼ pϕ( ⋅ Xt − 1)
(state equation),

(1.1)

Yt X1: t, Y1: t − 1 ∼ p(ϕ, η)( ⋅ Xt)
(observation equation),

(1.2)

where t = 1,…, T and the p(·|·) are appropriately chosen probability density functions [10]. 

Equation (1.1) governs the development of the epidemic system, characterised by a vector of 

parameters ϕ. Equation (1.2) relates the underlying epidemic process to relevant potential 

data Yt. These data are typically imperfect observations associated with Xt, constrained by 

the limitations of surveillance schemes and subject to (a vector of) nuisance parameters, η. 

State vectors consist of all latent quantities that may change over time, usually 

probabilistically, and ϕ governs their temporal development. In some cases, the state vector 

is simply a deterministic function of ϕ. More commonly, epidemic models are 

compartmental, partitioning a population according to, for example, infection status. The 

distribution of individuals in each model compartment is part of the state vector, as is any 

quantity describing model dynamics that evolves over time, for example, incidence of 

infection λt [6] or the transmission potential βt, the disease transmission rate conditional on 

contact between an infectious and a susceptible individual [34].

The focus of the statistical analysis could be to estimate unobserved system states X1:T 

either sequentially (filtering) or retrospectively (smoothing), and/or to make inference about 

components of θ = (ϕ, η) that have some crucial interpretation. These parameter components 

might measure some headline statistic for the epidemic, such as the epidemic’s reproductive 

number R0, the average number of secondary infections caused by a single primary infection 

in a wholly susceptible population, or the effect of an intervention. This inference, ideally, 

would be based on direct observations Yt on the states Xt, that is,

Yt = Xt + ηTεY , t, whereεY , t ∼ N(0, I) . (1.3)

However, equation (1.3) implies observation of, for instance, new infections as they occur, 

which, especially in large populations, is rarely feasible. More realistically, data are 

indirectly related to the quantities of interest and inference becomes possible only through 

the integration of data from multiple sources. Thus, given θ , Yt = (Yt
1, …, Yt

N) is a collection 

of N independent data sources with observed values yt = (yt
1, …., yt

N) .

Evidence does not just come in the form of data. There are also modelling assumptions that 

underlie the parametric forms of pϕ(·) and p(ϕ,η)(·), based on relevant literature, expert 
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opinion and/or collateral data not included in the model. In particular, pragmatic choices 

might need to be made over which parameter components can realistically be estimated by 

the available data, and which components it is prudent to assume to be known from literature 

(but can be varied as part of a sensitivity analysis). Synthesis of these kinds of evidence can 

be formalised by adopting a Bayesian framework centered on the posterior distribution

p( θ , x1:T y1:T)
∝ p(y1:T x1:T, θ )p(x1:T θ )p( θ ),

(1.4)

where p(θ), the prior distribution for θ, encodes all that is known of θ from sources external 

to the present study. The posterior distribution represents a natural synthesis of this 

additional external information with y1:T.

In this paper, we shall provide an overview of evidence syntheses in stochastic epidemic 

modelling where multiple types of data are explicitly used in an integrated analysis. In 

Section 2, we will focus on nonmechanistic statistical models for epidemic data, that is, 

where transmission is not explicitly modelled. Initially, these models will be static, and the 

aim of the analysis is to estimate the current state of an epidemic. This setup will then be 

extended by adding a time dimension, initially to estimate time-varying disease incidence. In 

Section 3, we consider how multiple sources of data are used for inference in mechanistic 

models for disease transmission. In Section 3.1, the dynamics governing transmission are 

assumed to be deterministic [i.e., var (Xt |Xt−1) = 0, ∀t], so that stochasticity is only 

provided by the observational component (1.2). Section 3.2 reviews evidence syntheses in 

epidemic models with stochastic dynamics [i.e., var (Xt |Xt−1) ≠ 0]. The paper concludes 

with a discussion, identifying some ongoing and future challenges in the use of multiple 

datasets in stochastic epidemic modelling.

2 Nonmechanistic Epidemic Modelling

2.1 Static Models

Often estimation of the state of an epidemic at a particular point in time is of interest. In 

such examples, static or ‘snapshot’ models are used, and the temporal evolution in equations 

(1.1) and (1.2) is not relevant:

X ∼ pϕ( ⋅ ),

Y ∼ pθ( ⋅ X) .

In many cases, X will be a deterministic function of ϕ, that is, X ≡ X(ϕ), or can be integrated 

out of the analysis entirely if estimation of ϕ is the focus. We shall therefore write θ = (ϕ, η, 
X).

As anticipated in Section 1, data come in the form of N independent components y = (y1,…, 

yN), where each yn,n ∈ 1,…, N may be multivariate. The aim of the evidence synthesis is to 

estimate a set of K basic parameters θ = (θ1,…, θK) from the complete array of information. 

Each dataset yn is assumed to inform a function ψn = ψn(θ) of the basic parameters, where 
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ψn is denoted a functional parameter. If ψn(θ) ≡ θk, the data yn are said to directly inform 

θk, whereas if the function is more complex and/or a function of multiple components of θ, 

yn indirectly informs one or more parameters. Denote by ψ the collection of functional 

parameters (ψ1,… ψN) informed by y. Assuming conditional independence of each dataset, 

the likelihood is then

L( θ ; y) = ∏
n = 1

N
Ln( ψn ( θ ); yn),

where each Ln(ψn(θ); yn) is the contribution of yn to the basic parameters. Either this 

likelihood is maximised, in a frequentist setting, or in the Bayesian setting we consider here, 

a posterior distribution is obtained [equation (1.4)], summarising all information, both direct 

and indirect, as well as prior, on the basic parameters.

Such an evidence synthesis model can be represented as a directed acyclic graph (DAG) that 

encodes the conditional independence assumptions [25]. In the example of Figure 1, each 

basic parameter θk ∈ θ, denoted by double circles, is a founder node of the DAG, that is, 

using family relationships to describe the relationships between nodes, it has no parents, 

only descendants. Functional parameters ψn ∈ ψ (single circles) are children of the basic 

parameters of which they are functions, with the dashed arrows denoting the (deterministic) 

functional relationship. By contrast, a solid arrow denotes a distributional (stochastic) 

relationship between nodes. Squares denote observed quantities yn. In a more complex 

hierarchical model with multiple levels, consequential nodes internal to the DAG may be 

either deterministically or stochastically related to their ancestors or descendants. Repetition 

over variables is represented by ‘plates’, rounded rectangles surrounding the repeated nodes 

as, for example, the repetition of each yn, n ∈ 1 … N informing a different functional 

parameter ψn in the figure.

Evidence synthesis methods in the context of healthcare were introduced in a synthesis of 

HIV prevalence data from different groups, reviewed in [1]. These have inspired a 

proliferation of comprehensive evidence syntheses for static models of infectious diseases, 

including Hepatitis C virus (e.g., [28]), influenza severity (e.g., [35]) and campylobacter 

infection [2]. A key example is the estimation of HIV prevalence, undiagnosed prevalence in 

particular, in different European countries [11, 14, 31], including annually for the United 

Kingdom (UK) (https://www.gov.uk/government/statistics/hiv-in-the-united-kingdom). 

Estimates are produced from multiple routine HIV surveillance datasets combined with 

contemporaneous cross-sectional survey data.

Figure 2(a) presents a DAG of this general approach, summarised in [14]. Here, the ψ are 

expressed as a function of basic parameters θ = {(ρg, πg, δg) : g ∈ 1,…, G}, where ρg is the 

proportion of a population in a particular risk group g for HIV; πg is the proportion of group 

g infected; and δg is the proportion of infections in group g that are detected (diagnosed). 

Example functional parameters include ψng (θ) = πg(1 − δg), the prevalence of undiagnosed 

infection and ψmg (θ) = Nρgπgδg, the number of diagnosed infections in group g. As the 

data are either proportions or counts, the likelihood is comprised of binomial and Poisson 

terms whose parameters are the functional parameters ψ. Two key challenges in building 
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such an evidence synthesis are: sparse data leading to identifiability issues and requiring 

hierarchical models to borrow strength, that is, extending the DAG of Figure 2(a) vertically; 

and in contrast, multiple data sources informing the same parameter, with a resultant 

potential for these data to conflict. Such conflicts are typically due to unaccounted biases, 

and need to be detected, measured and resolved (see [13] and references therein).

The motivation behind evidence synthesis is to frame all the available information on the 

state of an epidemic within a single integrated analysis to address identifiability. For a 

number of reasons, however, including computational efficiency, conflict assessment or 

uncertainty in model structure, it may be convenient to break the problem into smaller 

components, for example, [28] fit a model for HCV prevalence in two stages. Although this 

‘modular’ approach is often reasonable and computationally convenient, merging the 

resulting submodels into a single analysis is nontrivial (see Section 4).

2.2 Dynamic Models

When interest is in estimating the temporal evolution of an epidemic, and the rates of 

infection in particular, dynamic models are necessary. There are two alternative approaches 

depending on the nature of the available information: linking the snapshot analyses of 

Section 2.1 over time; or using routine time series data on the sequelae of infection. In the 

first approach, at time t, the observational model is

Yt ∼ pθ ⋅ Xt ,

and the snapshots are linked over time via some smoothing of the state variables Xt. In the 

case of the HIV prevalence example (Figure 2), for a generic risk group g and a series of 

snapshots over time, this linkage is achieved by embedding a continuous-time multi-state 

model in the serial snapshot evidence synthesis [27]. The population is partitioned into 

disease states Xt and model dynamics are described by a system of ordinary differential 

equations. Time-varying transition rates, including HIV incidence, are the basic parameters 

ϕ = λt, which are identifiable through the inclusion of additional demographic data zt, 

contributing to the likelihood as Poisson or binomial terms. The basic parameters θt = (ρt, 

πt, δt) of the prevalence model are now deterministic functions θt = f (Xt) of the disease 

states in the dynamic model.

Such temporally linked snapshot evidence syntheses can be used also to estimate state 

vectors, Xt, that represent log-incidence, as in a study of toxoplasmosis [38], where temporal 

smoothing of the state vector is through a random walk, for example,

log Xt ∼ log Xt − 1 + ϕTεX, t .

In the second (dynamic) approach, when the available data are time series counts of clinical 

endpoints, back-calculation has been widely employed to estimate disease incidence by 

combining the time series with information on the time from infection to the end point (the 

incubation period). The basic convolution equation
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μ(t) = ∫
0

t
h(s) f (t − s)ds (2.1)

expresses the link between the rate of occurrence of a clinical end point, μ(t), the rate h(·) at 

which new infections occur and the distribution of the time from infection to the end point, f 
(·).

To estimate HIV incidence, equation (2.1), initially based on AIDS diagnoses, has been 

developed extensively to incorporate additional data, for example, to: improve identifiability 

of h(·) in the recent past [12], identify recent infections amongst new diagnoses (e.g., [43]) 

and provide a more comprehensive description of the epidemic.

In particular, various discrete-time multi-state back-calculations have been proposed, where 

states are defined by CD4 cell counts ([6] and references therein). Through such an 

approach, estimation of the number of undiagnosed infections is possible, by incorporating 

data on HIV diagnoses and CD4 counts taken at diagnosis. In such models, the distribution f 
(·) in equation (2.1) is characterised by progression rates through disease states and 

diagnosis probabilities, dt. Together with incidence, ht, these quantities are modelled by [6] 

using random walks and the backcalculation can be framed as a state-space model as in 

equations (1.1) and (1.2) [40]. Here, the state vector, Xt = (ht, dt, Et), comprises the infection 

and diagnosis rates, as well as the state occupancies, Et. As new infections are assumed to 

occur according to a Poisson process, the likelihood is tractable when marginalised over the 

Et, which greatly improves the efficiency and accuracy with which inference on (ht, dt) can 

be drawn. In this case, the diagnoses are Poisson distributed and the CD4 data follow a 

multinomial distribution. The challenge here is to be able to incorporate additional sources 

of data, such as information from tests for recent infection performed on new diagnoses, 

whilst maintaining this tractability.

3 Evidence Synthesis in Mechanistic Transmission Models

The classic approach to tracking the spread of an epidemic is through compartmental models 

that partition the population into Susceptible/Infected/Removed (SIR) states [3], or one of 

many similar variants. In the epidemic modelling literature, these models are labelled as 

mechanistic transmission models. They differ from the multi-state models of Section 2 due 

to the explicit modelling of the transmission mechanisms, where rates of infection are a 

function of the prevalent number of infected and infectious individuals. The dynamics of 

such mechanistic models unfold according to a system of ordinary or stochastic differential 

equations or their discrete-time difference approximations.

3.1 Deterministic Epidemic Dynamics

Models with a deterministic state relationship, but for which states are imperfectly observed, 

can be expressed as
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Xt = f ϕ Xt − 1 ,
Yt ∼ pθ ⋅ Xt ,

(3.1)

where fϕ (·) is a deterministic function, characterised by parameter ϕ, and Xt represents the 

distribution of the population in the SIR states, that is, Xt = (St, It, Rt). Typically, ϕ will 

include rates of transition between model states, relative rates of contact between different 

population strata and the transmission potential. Movements between model states will be 

unobserved, and as in Section 2, the use of multiple data sources becomes necessary to 

identify both parameters and latent quantities. A number of examples exist where traditional 

epidemic surveillance information is augmented by additional serological, demographic, 

administrative or environmental data.

Surveillance and serological data—Serological data, from testing of blood samples to 

detect the presence of antibodies, provide crucial information on the level of immunity in a 

population. The important role played by this type of data in uncovering an epidemic’s 

dynamics is highlighted in applications to influenza data from Israel [42] and from England 

[8]. Due to the presence of asymptomatic infection, the magnitude of the epidemic cannot be 

estimated while the epidemic is ongoing from influenza-like illness data and associated 

virological swabbing alone. This idea is extended in [16], where changes in the immunity 

profile of a population and the fluctuating transmissibility of the virus between temporally 

distinct waves of infection are estimated.

In the language of transmission modelling, serological data Yt
sero provide direct evidence on 

the number of people in the susceptible state. Incorporation of these data extends the 

observation model characterised by pθ in equation (3.1). The additional component, at time 

t, is typically binomial:

Yt
sero Xt ∼ Bin nt

sero, pt
sero ,

where

pt
sero = ℙ seropositive at time t = 1 − St /N

and nt
sero is an assumed known sample size and N is the population size.

However, serological data can hold richer information than mere binary responses. In an 

application to the Dutch A/H1N1pdm influenza outbreak [37], data obtained from more 

sensitive micro-array assays are used to give a probabilistic interpretation of immunity. This 

is achieved via the specification of a mixture model for the log-titre values, classifying 

individuals into groups who are susceptible, recently infected or have long-held immunity. 

Here, the Yt
sero are continuous responses distributed as
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Yt
sero ∼

St
N p ⋅ θs +

S0 − St
N p ⋅ θr +

N − S0
N p ⋅ θi ,

where the p(·|θ) for θ = (μ, σ) are normal density functions, corresponding to the distribution 

of log-titre values for susceptible (s), recently infected (r) and immune (i) subgroups.

The impact of serological data can be significant. Adapting figures from [8], Figures 3(a) 

and (b) show estimates and predictions of the number of new A/H1N1pdm influenza 

infections, when only data on syndromic consultations with a doctor are used. Analyses are 

carried out approximately three quarters of the way through and towards the end of the 

epidemic, respectively, without any serological information. Figures 3(c) and (d) display the 

same results from analyses that additionally use the serological data. In the bottom row of 

Figure 3, epidemic projections appear to be nested as data accrue, with credible intervals 

narrowing. In the top row, a coherent picture of the epidemic is only obtained once the 

epidemic is almost over. In the absence of direct serological information on the number of 

infections, fitting a transmission model to doctor consultation data alone is of limited utility. 

A major epidemiological challenge, however, is to develop systems that can ensure the 

timely provision of these data during an ongoing pandemic.

Surveillance and demographic, administrative or environmental data—An 

example of joint modelling of surveillance and demographic data is in [27], where the model 

in Figure 2(b) is extended to include a component of disease transmission utilising 

information zt on aging, migration and mortality. This is a rare example where such data are 

directly modelled, that is, both (Yt, Zt) have distributions, whereas more commonly, 

demographic data are treated as fixed covariates, rather than a joint outcome. In the latter 

case, the system equation in (3.1) is replaced by

Xt = f ϕ Xt − 1, Zt .

These explanatory data can come in many forms: [5] uses vaccination data to inform 

transition rates out of a susceptible state; [9] use commuting data to describe inter-region 

transmission; [42] relate transmission of A/H1N1pdm influenza in Israel to an index of 

‘mean absolute humidity’.

3.2 Stochastic Epidemic Dynamics

The full state-space specification of equations (1.1) and (1.2) is required in two contexts. 

The first context arises when the numbers of infected individuals are small enough for 

stochastic fluctuations in transmission to significantly impact on the future epidemic 

trajectory (‘demographic stochasticity’). Statistical inference based on a model with 

deterministic dynamics can lead to poor forecasts for the timing of an epidemic peak and can 

preclude the possibility of epidemic extinction when R >1, no matter how small the 

population of infected individuals. Second, deterministic dynamics are inadequate in the 

presence of environmental or other external factors not captured by the transmission model. 

Stochasticity in the temporal evolution of parameter values (‘environmental stochasticity’) 
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can eliminate the possibility of over-optimistic, possibly biased forecasts that may otherwise 

result. Models that account for demographic stochasticity, such as, for example, the chain 

multinomial [40], model the evolution of the epidemic in discrete time. The evolution of the 

SIR-type disease states Xt forms a Markov process as in equation (1.1). However, the second 

context of environmental stochasticity is more prevalent in the literature. Here, mechanistic 

transmission models are driven by a time-varying transmission potential βt, commonly 

modelled as a stochastic process. In [17] and [41], βt is cast as Wiener and Gaussian 

processes, respectively, whereas [34] impose a random effects model on the probability pg of 

a susceptible individual in population subgroup g being infected within a chain-binomial 

model. The probability of a member of group g not being infected by any other infectious 

individual is expressed as

1 −
pg
Ng

wt∑g′Cg′, gIg′, t − 1
,

where wt ∑g′ Cg′,gIg′,t−1 is the total number of infectious contacts experienced by a member 

of g, with C being a contact matrix and Ig′,t−1 giving the time t − 1 number of infectious 

individuals in strata g′. The correlated random effects, wt, absorb any temporal fluctuations 

in infectivity and rates of contact. Here, due to the stratified population, the transmission 

potential has to be expressed for each type of contact, βt
g, g′ = wt pgCg′, g/Ng . A global value 

is derived as the dominant eigenvalue of a matrix βt, commonly known as the next-

generation matrix, that has βt
g, g′ as its (g, g′)th entry.

The motivation for the use of multiple sources of data in stochastic epidemic modelling is no 

different to the deterministic case. However, there are fewer examples of their use.

Surveillance data—Of these few examples, [34] constitutes a rare instance of using 

multiple epidemiological time series: the observations y1:T comprise both laboratory-

confirmed data on ‘mild’ cases and data on (nested) admissions to hospitals and to ICUs. 

Both of the types of stochasticity described above are incorporated. However, the complexity 

inherent in this model means that its run-time on a high-performance computing cluster is 

measured in months. Whilst this is not an impediment to retrospective epidemic analysis, it 

is deeply prohibitive for real-time analysis. Computational, potentially sequential, methods 

that enable a more swift use of such a model would be of great utility.

Surveillance and phylogenetic data—The synthesis of genetic and epidemiological 

data is more common in the literature and is used to improve understanding of the 

transmission dynamics of a particular pathogen. Genetic sequence data (comprising the 

sequences themselves, together with associated sampling times) can allow reconstruction of 

transmission trees either by modelling the evolution of the pathogen explicitly using 

coalescent models to estimate the branching points of the trees (e.g., [15] and references 

therein) or by using the genetic distance between the observed sequences [39]. The precise 

method depends on the assumptions that are appropriate for the pathogen and epidemic 

under investigation. These assumptions cover the possible presence of: within-host pathogen 
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genetic variation; transmission bottlenecks (where a subset of the within-host variants are 

transmitted); unobserved cases; and introductions into the population. Attendant 

epidemiological data can add precision to the reconstruction of transmission trees, for 

example, by providing information on infectious periods or generation intervals, or on the 

dates at which particular individuals were at risk of infection [15].

There is an increasing body of work linking phylogenies into mechanistic transmission 

models. A general framework for identifying SIR and SEIR transmission models on the 

basis of phylogenetic data alone is developed in [24], additionally presenting an application 

incorporating time series data on removals from the population. Similarly, it is noted in [29] 

that phylogenetic information is of particular utility in the case where the surveillance data 

that are typically used to inform transmission modelling are highly noisy or only weakly 

informative. Their work demonstrates the improved estimation of epidemiological 

parameters possible when the analysis of epidemiological surveillance data using a 

continuous-time, continuous-space stochastic epidemic model is augmented by a sample of 

infection lineages.

As identified by [23], the challenge remains to relax many of the assumptions listed above 

for phylogenetic modelling, whilst incorporating additional aspects of outbreak dynamics. 

Consideration of an everincreasing array of epidemiological data should make this a more 

achievable goal.

4 Discussion

The recent increase in the number of evidence syntheses, mostly Bayesian, to estimate latent 

characteristics of epidemics is testimony of the crucial role of data from multiple sources. 

This role has been comprehensively explored in other reviews [1, 14], but briefly, include 

two key aims: identifiability of a wider range of (unobservable) quantities that can inform 

public health efforts to control epidemics than would be achievable from a single data 

source; and increased precision in estimates of these quantities, due to the use of all 

available relevant data, both direct and indirect. Advantages of Bayesian evidence synthesis 

include the ability to: introduce and formally quantify expert judgement in the form of prior 

distributions; readily account for and estimate known biases in observational data through 

the introduction of bias parameters with carefully chosen priors; and minimise selection 

bias. However, the adoption of evidence synthesis methods, to achieve identifiability and 

precision, necessitates models of increasing realism and complexity, which are in turn 

accompanied by some general challenges that remain open questions [13], as we have 

highlighted through various examples in this review.

Complex models imply a need for various model building strategies, including hierarchical 

modelling for identifiability and modular approaches. How best to achieve identifiability 

from the currently available data is an active area of research. An algebraic determination, 

ahead of any inference, of parameter identifiability in a complex dynamic system has been 

explored recently in systems biology (e.g., [20]): such methods have the potential to be 

adapted to transmission modelling. A promising alternative is the extension of value-of-

information methods to the evaluation of gains in precision in parameter estimates resulting 
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from collecting or incorporating further evidence, proposed in application to the HIV 

prevalence context in [22].

Reasons for a modular approach, dividing a complex model into smaller submodels, include: 

understanding the influence of each evidence source on joint inference; assessing and 

resolving conflict during the model building process; and computational tractability. 

However, incorporating the results of each submodel into a second-stage joint model in a 

manner that retains the feedback from different data sources to common parameters is not 

straightforward. Recent work that allows for principled inference from a fully joint model 

given posterior samples from submodels has been proposed [19]. The application of this 

‘Markov melding’ approach to evidence syntheses has the potential to facilitate the 

increasingly realistic and complex models required in the stochastic epidemic field.

The potential for conflicting evidence is a challenge, but evidence synthesis provides a 

framework in which, once any conflict has been detected, measured and resolved, models 

are internally validated: an adequate final model is consistent with every data source 

included. However, systematic cross-validatory conflict assessment [13] as with any modular 

approach, is computationally intensive: adaptation is needed to enable timely inference. 

Conflict resolution through, for example, bias modelling and evidence weighting methods, is 

a next step [13]. However, while in a frequentist framework there are well-established 

methods to account for selection biases in the types of observational data usually included in 

epidemic evidence syntheses, Bayesian equivalents are still in their infancy [36].

A recurring theme through each of the above challenges is that of computationally efficient 

statistical inference. In the context of epidemic modelling, timely estimation is crucial to 

address public health policy needs in the midst of an emerging epidemic [13]. Much 

progress has been made in developing and applying efficient algorithms for epidemic 

evidence syntheses, such as: sequential Bayesian methods [33, 7], including likelihood-free 

particle MCMC [29] and approximate Bayesian computation [30]. Alternatively, to achieve 

computational efficiency, one might approximate the complex epidemic model with a readily 

implementable proxy. Shaman and colleagues have extensively used an extended Kalman 

filter (e.g., [32]), to provide a stochastic time series approximation to the dynamics of SIR 

models. Another approach is Bayesian emulation [18], which seeks to characterise an 

epidemic model with an emulator, built from a dynamic Gaussian process prior. A similar 

emulation approach is adopted by [4], who use history matching to calibrate a complex, 

multi-output epidemic simulation model. This latter work is an attempt to tackle the next 

challenge, to broaden the scope of all such algorithms to handle multiple datasets, possibly 

diverse in nature.

4.1 Conclusions

A recent review of infectious disease modelling [26] suggests that the full potential of 

mechanistic models that ‘simultaneously link data from diverse, heterogeneous data sources’ 

has yet to be reached. This is certainly true for fully stochastic transmission models, though 

rare examples of such models embedded within an evidence synthesis do exist [30, 34]. 

Such rarity and the challenges discussed above motivate the need for further development in 

this area.
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However, the many examples reviewed in Section 3.1, particularly for deterministic models, 

suggest that evidence synthesis for mechanistic models is both a well established and rapidly 

expanding field.
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Fig. 1. 
Directed acyclic graph (DAG) of a model with basic parameters, functional parameters and 

data.
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Fig. 2. 
(a) DAG of a HIV prevalence model with basic parameters θ = {(ρg, πg, δg) : g ∈ 1,…, G}. 

(b) Linking a series of snap-shot HIV prevalence models at multiple time points t, to 

estimate HIV incidence in a ODE-driven compartmental model. Time t data 

yt = yt
1, yt

2, …, yt
n  are augmented by demographic and other data Zt = yt

n + 1, …, yt
N ,

informing some of the transition rates λt, such as migration and new HIV diagnoses. The 

parameters from (a), both basic and functional, are now encapsulated within θt.
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Fig. 3. 
Forecasts of the number of new A/H1N1pdm influenza infections after t = 178 and 245 days 

of 2009 pandemic data, in the absence [(a) and (b)] and presence [(c) and (d)] of serological 

data: posterior median (red central line); 95% credible interval (light grey region) for a 

forecast at a previous time (grey dashed vertical lines); 95% credible interval (dark grey 

region) for a ‘current’ forecast at t (red dashed vertical lines).
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