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Sensory systems encounter remarkably diverse stimuli in the external environment. Natural stimuli exhibit timescales and amplitudes of
variation that span a wide range. Mechanisms of adaptation, a ubiquitous feature of sensory systems, allow for the accommodation of this
range of scales. Are there common rules of adaptation across different sensory modalities? We measured the membrane potential
responses of individual neurons in the visual, somatosensory, and auditory cortices of male and female mice to discrete, punctate stimuli
delivered at a wide range of fixed and nonfixed frequencies. We find that the adaptive profile of the response is largely preserved across
these three areas, exhibiting attenuation and responses to the cessation of stimulation, which are signatures of response to changes in
stimulus statistics. We demonstrate that these adaptive responses can emerge from a simple model based on the integration of fixed
filters operating over multiple time scales.
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Introduction
Natural stimuli encompass, across all sensory modalities, a very
wide range of amplitudes, and share structure at many spatial and
temporal scales (Simoncelli and Olshausen, 2001; Fairhall, 2014).
We suggest that, as a consequence, all sensory systems are subject

to multiple mechanisms of adaptation that modulate their re-
sponse properties over a variety of timescales ranging from mil-
liseconds to hundreds of seconds. These adaptive modulations
are driven by a number of factors, such as the history of variations
in input, statistical properties of the stimulus, and the overall
activity of the system. As a result, an encoding model developed
for a given set of stimulus dynamics often fails to predict re-
sponses when the statistics of the stimulus change (Ozuysal and
Baccus, 2012; Mease et al., 2014; Heitman et al., 2016; McIntosh
et al., 2016; Weber et al., 2019).

While the statistical details differ across sensory modalities,
natural stimuli all exhibit temporal fluctuations that are distrib-
uted across timescales. One may therefore expect the adaptive
properties of sensory systems to be tuned to address these tem-
poral fluctuations (Fairhall, 2014). Circuitry and cell types are
similar across cortical fields as well, raising the question whether
these similarities lead to common adaptive properties across dif-
ferent sensory areas. With this in mind, we explore here temporal
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Significance Statement

Our recent sensations affect our current expectations and perceptions of the environment. Neural correlates of this process exist
throughout the brain and are loosely termed adaptation. Adaptive processes have been described across sensory cortices, but
direct comparisons of these processes have not been possible because paradigms have been tailored specifically for each modality.
We developed a common stimulus set that was used to characterize adaptation in somatosensory, visual, and auditory cortex. We
describe here the similarities and differences in adaptation across these cortical areas and demonstrate that adaptive responses
may emerge from a set of static filters that operate over a broad range of timescales.
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properties of adaptation, documenting the dynamics of response
sensitivity across sensory modalities.

To examine sensory adaptation across the neocortex, we in-
vestigated three sensory modalities: somatosensory, visual, and
auditory. A major challenge in previous work has been that, while
the descriptions of adaptation for each of these systems are
extensive, they are difficult to compare due to disparate experi-
mental paradigms. Our goal here was to characterize neuronal
responses across the sensory cortex to a common stimulus set,
allowing us to move beyond modality-specific descriptions. Due
to the inherent difficulty in comparing stimulus intensities across
modalities, we focused here on responses to common temporal
statistics. To this end, we studied sequences of discrete punctate
pulses (in the form of monitor flashes, auditory clicks, and tran-
sient whisker deflections) delivered both at fixed frequencies and
in Poisson-noise sequences. For each stimulus modality, we per-
formed in vivo whole-cell recordings in the respective cortical
area (V1, S1, and A1).

We uncover a set of underlying fixed sensory filters that allows
sensory neurons to adjust their sensitivity to temporally varying
stimulus conditions. While the dynamics of neuronal responses
appears to depend on stimulus conditions, we demonstrate that a
common model, composed of filters with multiple timescales,
can account for their emergent behavior. We found that major
adaptive features of the membrane potential responses to fixed
frequency stimuli are generally conserved across different cortical
sensory modalities, although they differed in the degree to which
they are expressed. These include a shift in the complexity of
individual responses with the rate of stimulation, a reduction in
response amplitude with the rate of stimulation, and a termina-
tion response at the end of high-frequency stimulation. All of
these components of the adaptive responses obtained from sen-
sory neurons are predicted by a fixed, time-invariant model, in-
dicating that adaptive processes for different sets of stimuli can be
accounted for through the integration of multiple timescales of
static sensory filters.

Materials and Methods
Physiology. Physiological procedures for mouse recordings are based on
those previously described (Scholl et al., 2013). All of our experiments
were conducted using adult C57BL/6 or ChR2-GAD mice (n � 27) P28-
P90 to avoid the hearing loss that develops in older mice of this strain of
both sexes. Mice used in V1 experiments were P35 and older to avoid the
visual critical period. Mice were anesthetized with 1000 mg/kg urethane
and 10 mg/kg chlorprothixene via intraperitoneal injection. A further
intraperitoneal injection of 20 mg/kg dexamethasone was administered
to prevent brain edema. During the course of the experiment, body tem-
perature was monitored and maintained at 37°C. A tracheotomy was
performed, and the head was secured using custom-made head holders.
A craniotomy and durotomy were performed over the appropriate area
of sensory cortex. A1, S1, and V1 were located using standard techniques.
Mouse eyes were kept moist with artificial tears or a thin layer of silicone
oil. The cortical surface was kept moist with saline or 4% agarose in
normal saline. All animal procedures were approved by the University of
Texas at Austin Institutional Animal Care and Use Committee and by
Animal Care and Use Committees at Hebrew University and the Weiz-
mann Institute. Hebrew University is an Association for Assessment and
Accreditation of Laboratory Animal Care-approved institution.

After the identification of the relevant area of sensory cortex, we per-
formed in vivo whole-cell recordings using the blind patch method. A
silver-silver chloride wire was inserted into muscle near the base of the
skull and used as a reference electrode. For V1 and A1 recordings, pi-
pettes (5–10 M�) were pulled from 1.2 mm outer diameter, 0.7 mm inner
diameter KG-33 borosilicate glass capillaries (King Precision Glass) on a
P-2000 micropipette puller (Sutter Instruments). Pipettes were filled

with the following (in mM): 135 K-gluconate, 4 NaCl, 0.5 EGTA, 2
MgATP, 10 phosphocreatine disodium, and 10 HEPES, pH adjusted to
7.3 with KOH (Sigma-Aldrich). For S1 recordings, pipettes (1.5 mm
outer diameter, 0.86 inner diameter, BF150 – 86-10, Sutter Instruments)
were pulled on a PC-10 vertical puller (Narashige) and were filled with
the following (in mM): 136 K-gluconate, 10 KCl, 5 NaCl, 10 HEPES, 1
MgATP, 0.3 NaGTP, and 10 phosphocreatine (310 mOsm/L). Neurons
were recorded 150 –500 �m below the cortical surface. Current-clamp
recordings were performed with a MultiClamp 700B patch-clamp am-
plifier (Molecular Devices). Current flow out of the amplifier into the
patch pipette was considered positive.

Stimuli. We constructed stimuli consisting of sequences of discrete 20
ms pulses, delivered as light flashes, auditory clicks, or whisker deflec-
tions. Each trial was composed of pulses presented at fixed frequencies or
following a homogeneous Poisson process with rates ranging from 0.5 to
20 pulses/s. Fixed frequency stimulation was set at a 4 s duration per trial
while Poisson trials varied in their length. An additional stimulus for
model validation was generated as an inhomogeneous Poisson process
with a slowly varying rate (time constant of 1 ms) ranging from 0.5 to 20
pulses/s. The fixed frequency stimulus set was designed to directly mea-
sure how the dynamics of the response systematically change with stim-
ulation frequency. The Poisson stimulus sets were used to fit linear/
nonlinear models applying maximum likelihood techniques to predict
the responses to the range of fixed frequencies.

Visual: Full-field monitor flashes were presented monocularly at full
contrast on a black screen. All stimuli were generated via the Psychophys-
ics Toolbox (Brainard, 1997; Pelli, 1997) for MATLAB (The Math-
Works) on a Macintosh (Apple) computer. Stimuli were presented on a
calibrated CRT monitor (Sony, FDM-520) placed 25 cm in front of the
animal’s eyes with a refresh rate of 100 Hz and a spatial resolution of
1204 � 768 pixels. The mean luminance of the monitor was 40 cd/cm 2.

Somatosensory: For whisker deflection, the principal whisker (trimmed
to 10 –20 mm) was inserted into a 21G needle attached to a galvanometer
servo-control motor (6210H; Cambridge Technology) with a matching
servo driver and a controller (MicroMax 677xx, Cambridge Technol-
ogy). A fast-rising voltage command was used to evoke a fast whisker
deflection with a constant rise time of 1 ms followed by a 20 ms ramp
down signal to prevent an off response for each stimulus. Because of the
fixed rise time, amplitude and speed of deflection grow together follow-
ing a quasi-linear relationship.

Auditory: Click stimuli consisted of 20 ms bursts of broadband noise
(5 ms linear rise/fall ramps). They were transduced to analog signals with
a high-quality sound card (RME HDSP-9632), attenuated (TDT PA5),
and presented to the contralateral ear (TDT EC1). The noise was gener-
ated with a spectrum level of �50 dB/sqrt(Hz) and had a bandwidth of 60
kHz. For acoustic calibration, pure tones were used. Typically, a pure
tone at 0 dB attenuation produced a sound level of 100 dB SPL, with
variations of up to 10 dB across frequency.

Data analysis. Spikes were identified and removed by passing mem-
brane potential data through a 10 ms median filter or by interpolation
(Meir et al., 2018). The mean membrane potential was computed by
averaging all trials for each stimulus frequency.

Response amplitude was assessed for each individual pulse (whisker
deflection, monitor flashes, or single noise bursts) in the stimulus train.
The peak membrane potential was obtained for each stimulus period,
and the baseline membrane potential at the time of the stimulus pulse
was subtracted away to obtain the response amplitude. These responses
were then normalized so that the value of the response to the initial pulse
was one and a lack of response was considered 0. Adaptation ratios were
obtained by dividing the amplitude of the response to the last pulse by the
amplitude of the first response (Meir et al., 2018).

As described below, we found that sensory stimulation sometimes
evoked a complex biphasic or multiphasic response consisting of an ini-
tial rapid phase followed by a dip and then a second response phase. We
defined cells as containing a multiphasic response by initially identifying
the initial peak response that occurs after the stimulus. We then identi-
fied the time point following the initial peak at which the response sig-
nificantly declined from the peak and arrived at a minimal value for 10
ms. We next measured whether a second response depolarization occurs
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following this minimum by measuring whether the response signifi-
cantly increased after the minimum time point. Those cells and condi-
tions in which response was significantly larger than the trough were
marked as multiphasic. Significant differences were determined by a one-
sided t test ( p � 0.05).

Termination responses were defined as significant depolarizations fol-
lowing the cessation of the stimulus. To test for the presence of termina-
tion responses, we compared the mean membrane potential before the
stimulus train with the mean membrane potential 300 – 800 ms after the
final stimulus pulse with a Wilcoxon rank-sum test. These were distinct
from the response to the last stimulus as they occurred a few hundred
milliseconds after the last stimulus pulse. Termination response ampli-
tudes were defined at the peak of the trial-averaged response. Latencies
were defined as the time from the last stimulus pulse to the peak of the
termination response.

Modeling. We fit our model to all Poisson trials (excluding the repeated
Poisson noise stimulus). For each trial, we fit the voltage recorded from
50 ms before the stimulus window onset to 1500 ms after the stimulus
window offset. Because the adaptive response dynamics we modeled oc-
curred on timescales �10 ms, we downsampled the median-filtered volt-
age to 10 ms bins. The models were fit using between 21 and 229 Poisson
noise trials (mean 88.9 trials).

We modeled the voltage as a sum of linear–nonlinear subunits. Our
approach is similar to previous models of spiking activity in the lateral
geniculate nucleus (McFarland et al., 2013) and retina (Freeman et al.,
2015; Maheswaranathan et al., 2018). The bank of nonlinear subunits
could approximate the input received from distinct presynaptic sources
(e.g., excitatory and inhibitory neurons), which are rectified by synaptic
transmission. For time step t on trial i, the voltage is modeled as follows:

Vt,i � �
j�1

N

f�kj
Txt,i � cj,aj	 � b0 � Vpre,ib1 � Vpre,i�1b2

� ��t,i, �t,i � N�0,1	 (1)

The stimulus before time t is given by the vector xt,i. The N linear filters
are the vectors kj, and the baseline level for each subunit is cj. The non-
linearity is a variation on the logistic function as follows:

f�w,a	 � atanh�4

a
w� (2)

where a is the subunit’s scale, which was restricted to be �1. This formu-
lation gives f�0, a	 � 0 and the derivative fw�0, a	 � 1, so that the filters
can approximately be viewed in units of mV/pulse, regardless of the scale
parameter a.

The model accounts for slow drift in baseline voltage occurring over
trials by incorporating the voltage in a 400 ms window occurring 450 –50
ms before stimulus onset. The value Vpre,i is the lower fifth percentile
value of the voltage in that window as an estimate of the baseline voltage.
We also use the baseline estimate from the previous trial, Vpre,i-1, to
enhance this estimate. The Vpre estimates are weighted by b1 and b2. The
final baseline term is b0, which is constant across all trials and times. The
noise variance is � 2.

To reduce the model complexity and promote smoothness in the lin-
ear filters, we parameterized the linear filters using a raised cosine basis
(Pillow et al., 2005, 2008) of the following form:

zj�t	 � �1

2
cos�log
t�u���j

d ��
1

2
,

0,

for
log
t�u���j

d
� 
 � 	,	�

otherwise

(3)

d � 2��2 � �1	/	 (4)

The �j are spaced linearly from �1 � log �tstart � u	 to �M � log �tend � u	.
For V1 and S1 cells, we used M � 16 basis functions with tstart � 0.01s,
tend � 2s, and u � 0.3. For the A1 cells, we used M � 20 basis functions
with tstart � 0.01s, tend � 2s, and u � 0.1 to account for fast timescale

responses. For fitting, the basis was orthonormalized. The total number
of free parameters in the model was 4 � N�M � 2	, where N is the
number of filters. For the model fits with four filters, this gives 76 param-
eters for the V1 and S1 cells and 92 parameters for the A1 cells.

We placed an independent Gaussian prior on each term in the filter
parameters and the history terms as follows:

kj,l � N�0,
2	 (5)

b0 � N�0,1	 (6)

b1 � N�0,1	 (7)

We set 
2 � 52. This choice of prior regularizes the filter estimates by
shrinking the filters toward 0 and keeps the per-pulse deviations in volt-
age within a biophysically realistic range: a priori, the mean maximum
deviation per pulse for a single filter is 4.44 mV with an SD of 1.58 mV for
the V1 and S1 bases. Similar results were achieved for different choices of
the shrinkage parameter. The other prior used was for the noise term

p��2	�
1

�
. Uniform priors were placed over b0 an cj.

We obtained maximum a posteriori estimates of the model parameters
using a trust-region algorithm. Because this nonlinear model is not con-
vex, we fit the model to each cell 1000 times using random initialization
points and selected the fit with the largest log posterior value. The initial
conditions were generated according to the following distributions:

aj
�init	 � Uniform�1,10	 (8)

kj,l
�init	 � N�0,�


4�
2� (9)

cj
�init	 � N�0,�


4�
2� (10)

The linear terms b0, b1, and b2 were set to the maximum likelihood
estimate computed by normal least squares, keeping the other parame-
ters fixed. Similarly, � 2 was set to the maximum a posteriori estimate
given all other parameters.

We evaluated model performance by predicting the voltage recorded
in response to stimuli that had not been used for model fitting. For those
stimuli, we tested the model’s ability to predict the average voltage re-
corded in response to the stimulus instead of predicting single trials. We
evaluated model performance using the Pearson’s correlation coefficient
between the true and predicted voltages and the percentage variance
explained the following:

%variance explained � 100 � �1 �
�t�1

T �Vdata�t	 � Vmodel�t		2

�t�1
T �Vdata�t	 � V� data	

2 �
(11)

To analyze the model response to frequency changes, we ran model sim-
ulations (see Fig. 7) composed of stimuli in which two stimulus frequen-
cies were presented. The initial frequencies ranged from 1 to 15 Hz and
were then changed to a new value between 1 and 15 Hz after 3 s. For these
simulations, the stimulus pulse times were randomized. Each combina-
tion of stimulus frequencies was simulated 5000 times using distinct
pulse times, and these resulting model outputs were averaged. Frequency
transition responses were calculated as the mean 200 ms around the peak
of the response. The mean steady-state amplitude 200 ms before the
transition was then subtracted from this value to obtain the transition
response amplitude.

Results
To examine the adaptive properties of sensory neurons across
modalities, we constructed a stimulus set consisting of temporal
sequences of constant amplitude, discrete punctate pulses: mon-
itor flashes, auditory clicks, or transient whisker deflections.
These temporal sequences were either Poisson point processes or
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fixed-interval trains presented at multiple
frequencies. We recorded the membrane
potential responses in three regions of
mouse sensory cortex (A1: n � 9, S1: n �
14; V1: n � 11) using whole-cell
recordings.

In response to temporal sequences com-
posed of fixed intervals, the membrane po-
tential exhibited a number of dynamical
properties that appear to be generally con-
served across sensory cortex (Fig. 1). First,
increasing stimulus frequency entailed
more adaptation, leading to a systematic
reduction in response amplitude toward
the end of the train. Second, we observed
that the reduction in stimulus-evoked re-
sponse when stimulus frequency increases
is accompanied by a systematic shift in
the complexity of the response to indi-
vidual pulses: at low frequencies, indi-
vidual responses are long-lasting and
multiphasic, whereas they become briefer and monophasic at
higher frequencies. Finally, we found that a response occurs at the ces-
sation of a high-frequency stimulus, which we term a termination re-
sponse. Neurons across modalities varied in the degree to which they
expressed these properties to fixed interval stimulation, as detailed be-
low, but these motifs persisted across our sample database.

One way features could arise is if the state of the system
changes as a result of being driven by stimuli with different sta-
tistics (Garrido et al., 2009). For instance, an increase in stimulus
frequency could alter response time constants, resulting in a
more monophasic response to the individual stimuli. Such a pos-
sibility could arise from the recruitment of slow inhibitory inputs
(Dealy and Tolhurst, 1974). This would render any attempt to
predict responses across stimulus frequencies from a fixed model
fruitless, as model parameters would need to be adjusted with the
stimulus statistics. Alternatively, varying stimulus statistics may
evoke different components of a fixed but complex response. In
this case, changes in response due to altered stimulus statistics
can emerge from the combination of a single set of sensory filters.

To determine whether a single set of filters can account for the
responses seen across stimulus frequencies, for the same cells, we
additionally recorded membrane potential responses to Poisson
pulse trains that varied widely in their rates, where the amplitude
and shape of each stimulus were identical to those used for the
fixed-frequency stimulation. We then fit these data within a lin-
ear–nonlinear modeling framework. Our model was composed
of a bank of linear filters that were followed by output nonlineari-
ties (see Materials and Methods; Fig. 2B). The outputs of the
linear–nonlinear components were then summed to give the es-
timated membrane potential. This architecture provides flexibil-
ity by allowing multiple contributions to membrane voltage, or
temporal “subunits,” with independent nonlinearities. We used
maximum a posteriori methods to estimate the parameters of this
linear–nonlinear subunit model (Eq. 1) using each cell’s re-
sponses to Poisson trains with a wide range of mean stimulation
rates. Because the pulse stimuli are non-Gaussian, we used maxi-
mum likelihood fitting instead of an approach like spike-triggered
covariance, which is most appropriate for Gaussian stimuli (de
Ruyter van Steveninck and Bialek, 1988; Brenner et al., 2000;
Schwartz et al., 2006; Park et al., 2013; Aljadeff et al., 2016).

We first examined how the number of subunit filters included
affected the model’s ability to capture responses to Poisson stim-

uli for individual neurons. We assayed the model performance by
examining how well it could account for the average response to
a separate (held-out) Poisson sequence that had been repeated
many times (Fig. 2D). Across V1, S1, and A1, models composed
of 4 filters accounted for a significant amount of the explainable
response variance to the repeated Poisson sequence (R 2: V1 �
0.47 
 0.04; S1 � 0.4 
 0.06; A1 � 0.50 
 0.07; values indicate
mean 
 SE across neurons), demonstrating that this modeling
framework can largely account for sensory responses in cortex.
To estimate the fraction of explainable variance the model ac-
counts for, we used a method developed by Sahani and Linden
(2003), which takes into account the number of stimulus repeats
and the variation between trials (see Sahani and Linden, 2003;
Mohanty et al., 2012). This correction factor only modestly in-
creased the variance accounted for by our model (see Fig. 2E;
corrected R 2: V1 � 0.56 
 0.04; S1 � 0.61 
 0.07; A1 � 0.68 

0.06). Increasing the number of filters systematically improved
the model’s performance, although performance increases from
using �4 filters were minimal (Fig. 2A). Beyond overall perfor-
mance, a model composed of a single filter failed to account for
specific features of the adaptive response to fixed frequency stimuli
(see Fig. 8), as detailed in the following sections. To standardize our
analyses across neurons and modality, we fixed the number of filters
used to 4.

To characterize how the model is able to match the responses
to Poisson sequences, we examined the properties of the subunits
used to generate the model. We extracted the temporal envelope
of each subunit filter by performing an autocorrelation and
quantifying the time over which it was above a threshold value,
chosen to be 0.2 (Shelhamer, 2007). For individual neurons, these
subunit timescales could vary from 60 ms to �2 s. Most subunit
filters had short envelopes, forming an exponential distribution
of timescales (Fig. 2C). Each neuron had filters that varied in time
scale. The median difference between the fastest and slowest time
scale was �1 s. The average ratio of the time of the longest and
shortest filter for each cell was 8.48 
 1.24 (geometric mean).
Because of these subunit time scales, we set a maximum filter
length of 2.5 s for each subunit of our model.

We next sought to determine how well the model could ac-
count for a membrane potential skew. We chose skew because
this metric of the response distribution encapsulates the degree of
neuronal selectivity, particularly when a broad stimulus range is

1 Hz

4 Hz

10 Hz

Monitor luminance Whisker deflection Sound intensity

V1 S1 A1

Figure 1. Fixed-interval stimulus responses across sensory cortex. Example V1 (blue), S1 (green), and A1 (purple) membrane
potential responses to fixed-interval stimuli delivered at 1, 4, and 10 Hz. Calibration: y axis, 5 mV change in membrane potential;
x axis, 500 ms duration. Gray bars represent an individual pulse in the stimulus train.
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used. Neurons that respond to specific stimulus conditions have
higher skews, whereas those that respond more broadly have
lower skews (Ringach and Malone, 2007). The model was largely
able to predict the skew of the membrane potential response to
the left-out Poisson sequence across sensory areas (Fig. 2F; cor-
relation coefficient of skew (r): V1 � 0.70; S1 � 0.46; A1 � 0.84)

We tested whether the subunit model, fitted from noise se-
quences, was able to capture the membrane potential fluctuations
observed in response to fixed interval sequences (Fig. 1). The
subunit model provided predictions that were highly correlated with
the measured responses of the neurons (corrected R2: V1 � 0.68 

0.04, S1 � 0.73 
 0.05, A1 � 0.83 
 0.05). These high correlations
demonstrate that, in general, the model predicts the membrane po-
tential responses observed in the fixed interval data.

We next focused our analysis on specific components of the
adaptive response. We examined whether the model could reca-
pitulate the three prominent adaptive aspects of the responses
highlighted above: (1) the decay of response amplitude with in-
creasing stimulus frequency, (2) the shift in complexity of a
single-pulse response from biphasic to monophasic as stimulus
frequency increases, and (3) the presence of a termination re-
sponse following the cessation of a high-frequency stimulus train
(Fig. 1).

Response attenuation with stimulus frequency
A prominent feature of sensory adaptation is that the degree of
response attenuation is linked to the rate of sensory stimulation:
higher frequency stimulation leads to stronger amplitude atten-
uation (Chung et al., 2002; Khatri et al., 2004; Martin-Cortecero

and Nuñez, 2014; Kheradpezhouh et al., 2017). We find this com-
mon pattern in our V1, S1, and A1 responses (Fig. 3A). The
responses of neurons at 1 Hz stimulation were only weakly
attenuated, whereas the responses to 10 Hz stimuli were
strongly attenuated. To determine the degree of attenuation to
each fixed-frequency stimulus, we quantified the membrane po-
tential response to each pulse in the train (Fig. 3B; see Materials
and Methods). We first quantified the membrane potential re-
sponse to a single stimulus pulse by subtracting the baseline value
before the pulse from the peak of the response. Overall values
varied widely both within and between modality (V1 � 18.2 
 23
mV; S1 � 6.5 
 0.8 mV; A1 � 8.6 
 0.5 mV). It is not clear
whether or not these differences are due to potential differences
in stimulus intensity across the different modalities and individ-
uals (see Discussion) or to properties of the different systems and
cells recorded from.

To calculate the degree of response attenuation, we measured
the peak membrane potential response to each stimulus pulse
relative to the baseline membrane potential immediately before
the pulse to determine the change in membrane potential elicited
by each pulse in the stimulus train. In these example neurons,
response amplitude systematically declines as a function of stim-
ulus frequency and the location of the pulse in the train (Fig. 3).
These example neurons reflect the typical responses found in
each modality, in which low-frequency stimulation evokes little
response attenuation and high-frequency stimulation evokes
large attenuation.

To quantify the frequency dependence of this attenuation in
our dataset, we computed the adaptation ratio, defined as the
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ratio of the response amplitude of the last stimulus in our train
and the response to the first stimulus, for each stimulus frequency
(Meir et al., 2018). Although there was considerable variability in
adaptation across and within sensory systems, a pattern emerges
when looking at the population. For 1 Hz, the adaptation ratio
was similar across V1, S1, and A1 neurons (Fig. 4). As frequency
increased, these adaptation ratios systematically declined, such
that, at 10 Hz, the adaptation ratios were much closer to 0. Neu-
rons attenuate in a similar manner within a modality, and the
same trend of greater attenuation with higher stimulation fre-
quency is observed across modalities. Hence, under comparable
experimental conditions, response attenuation follows a similar
pattern for these 3 sensory modalities.

We tested whether our model could account for these findings
by simulating responses to the 1, 4, and 10 Hz stimuli for each cell
in our dataset (Fig. 3A, brown traces) using the filters that were
obtained from Poisson stimulation. We then performed the same
analysis on these model fits to determine whether they exhibit the
same response attenuation (Fig. 3C). Adaptation ratios of model
fits were highly correlated with their data counterparts (r � 0.80
(V1), 0.68 (S1), 0.95 (A1); Fig. 4). These data indicate that our
model is able to capture the stimulus frequency dependence of
response attenuation across three areas of sensory cortex. Not
only is the model able to capture the broad response attenuation
observed in our dataset, but it predicts differences in response
attenuation across modalities. For example, we find that S1 neu-
rons attenuate less at 10 Hz than either A1 or V1 neurons, which
matches model predictions.

Change in response complexity with stimulus frequency
The second adaptive feature we noticed was that the shape of
the membrane potential response is often altered by stimulus

frequency. Visual inspection revealed a characteristic shift in the
complexity of the response to individual stimuli as stimulus fre-
quency increased in a large proportion of visual and somatosen-
sory neurons (Fig. 5A). At lower frequencies (�4 Hz), complex
biphasic responses were common in S1 and V1, as has been pre-
viously reported in rodents and humans (Sachidhanandam et
al., 2013; Funayama et al., 2015, 2016). We found, however, that
these multiphasic responses shifted to simple, monophasic re-
sponses as stimulus frequency increased to 4 Hz. We classified
whether the responses were significantly multiphasic by deter-
mining whether responses followed a pattern of initial depolar-
ization, a decline in membrane potential followed by a second
depolarization that is significantly larger than the decline. The
multiphasic responses apparent at low stimulus frequencies fol-
low this pattern, responding with a significant depolarization
following the dip. Low-frequency stimuli evoked membrane po-
tential responses that were deemed multiphasic for the majority
of V1 (73%) and S1 (93%) neurons (Fig. 5B), but only the mi-
nority of A1 neurons (44%). A1 neurons exhibited a somewhat
different type of biphasic response, with much shorter latencies
between the two components of the response (Fig. 5A, bottom).
When the stimulus rate was increased to 4 Hz, the responses of
V1, S1, and A1 neurons became less multiphasic and none exhib-
ited multiphasic responses.

Not only did the response complexity change with stimulus
frequency, response duration also shifted with stimulus fre-
quency. We quantified response duration by measuring the en-
velope of time over which responses deviated from the baseline
membrane potential (see Materials and Methods). We examined
the response to stimulus pulses that occurred 2 s after the stimu-
lus train began to be sure that the cell had adapted to the stimulus
frequency. Responses to 4 Hz stimuli were considerably short-
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ened in V1 and S1 neurons (V1 � 126 
 39 ms, S1 � 101 
 65
ms) relative to response to 1 Hz stimuli (V1 � 505 
 138 ms,
S1 � 435 
 237). Responses for A1 neurons, however, were
similar between the two frequencies (1 Hz � 158 
 101 ms, 4
Hz � 158 
 56 ms).

We next sought to determine whether the subunit model
could account for these response dynamics (Fig. 5A, brown
traces). As with the recordings of the membrane potential, we
measured whether model responses were significantly multipha-
sic. The model successfully recapitulated the multiphasic re-
sponses in V1, S1, and A1 at low frequencies (V1 � 82%, S1 �
86%, A1 � 44%) as well as the shift to monophasic responses at
higher frequencies (V1 � 9%, S1 � 7%, A1 � 11%; Fig. 5B).
Furthermore, the results revealed that, in general, the neural re-
sponses and their model fits received the same classification (Fig.

5B). The model also captured the large shift in response duration
in V1 (1 Hz � 507 
 118 ms, 4 Hz � 146 
 27) and S1 (1 Hz �
507 
 227, 4 Hz � 151 
 58 ms) and the weak shift in A1
responses (1 Hz � 216 
 132 ms, 4 Hz � 137 
 58 ms). Across
modalities, the subunit model resulted in response durations that
were correlated to those measured in V1, S1, and A1 (r: V1 �
0.92; S1 � 0.77; A1 � 0.70).

One possibility is that responses seemed monophasic at higher
frequencies because the biphasic portion of the response was in-
terrupted by the next stimulus pulse. To control for this, we fo-
cused our analysis on the last pulse in the stimulus train (Fig. 5C).
We first measured the mean amplitude 10 ms around the first and
second peak of biphasic responses using the indices we obtained
previously. The amplitude of the two peaks was highly related in
V1 neurons (Fig. 5D, r � 0.98) where the amplitude of the two
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peaks was generally on the same scale (mean amplitude: first peak
12.3 
 3.2 mV; second peak 13.6 
 3.1; t test, p � 0.05). S1
responses tended to have weaker second peaks (first peak � 6.8 

0.9 mV, second peak � 2.8 
 0.6 mV; t test, p � 0.001), which
resulted in a weaker correlation (r � 0.36).

We then used these indices to measure the amplitude evoked
by a 4 Hz stimulus at the end of the stimulus train. As previously
shown (see previous section), the amplitudes of the first peak
were smaller in the 4 Hz condition compared with the 1 Hz
condition (V1 � 7.5 
 3.4 mV; S1 � 2.9 
 0.8 mV; t test, V1: p �
0.02; S1: p � 0.003). Using the latencies (defined as the time
between the peak values of each phase of the response) obtained
from the 1 Hz responses, we measured the amplitude of the “sec-
ond peak” of the 4 Hz responses to the last stimulus in the train.
As expected, amplitudes were near 0, indicating a lack of a bipha-
sic response (V1 � 0.6 
 0.5 mV; S1 � �0.3 
 0.6 mV). Fur-
thermore, the amplitude of the first 4 Hz peak exhibited weak and
nonsignificant correlations with that of the second (r: V1 �
�0.25, p � 0.05; S1 � 0.23, p � 0.05). These results indicate that
4 Hz responses truly shift to a monophasic shape and are not an
artifact of our protocol and analysis. A1 data are not summarized
here due to the low number (4) of biphasic neurons, but data are
shown in Figure 5C, D (bottom row).

Termination responses
Paradigms using periodic stimuli have consistently found a large
response at the end of a stimulus train or when a stimulus is
omitted or changed (Näätänen et al., 1978; Bullock et al., 1990;
Karamürsel and Bullock, 1994; Schwartz et al., 2007; Hamm and
Yuste, 2016; Li et al., 2017). These phenomena have been reported
at multiple levels of analysis, including EEG (see Näätänen et al.,
1978) and in single-unit recordings (see Schwartz et al., 2007) in
multiple sensory systems. Although the terms (mismatch negativ-
ity, omitted stimulus response, echo response, etc.) and the un-

derlying mechanisms of these responses may differ, their
descriptions and interpretations share a number of common fea-
tures (Bullock et al., 1993; Schwartz et al., 2007; Stefanics et al.,
2014).

We also found transient membrane potential depolarizations
following the termination of the high-frequency stimulus trains
across the three sensory modalities and term these deflections
“termination responses” (Fig. 6A). These termination responses
are easily distinguished from a response to the last stimulus of the
train as they start hundreds of milliseconds after the termination
of the stimulus train. To determine whether these depolarizations
were statistically significant, we compared the mean membrane
potential 300 –700 ms after the response to the last pulse in the
stimulus train to the membrane potential before sensory stimu-
lation. We found that termination responses were present in the
majority of V1 (9 of 11) and S1 (10 of 14) cells at a stimulation
frequency of 10 Hz. Termination responses were found in a
smaller proportion of A1 cells (3 of 9). While termination re-
sponses were common at high frequencies, they were less preva-
lent at lower frequencies, such as 4 Hz (V1, 3 of 11; S1, 2 of 14; A1,
0 of 9; Fig. 1). We quantified the latency and amplitude of the
termination responses for all of the intracellular records. The
latency of the termination response (defined from the last stim-
ulus to the peak) was generally long (V1 � 367 
 79 ms, S1 �
446 
 102 ms, A1 � 642 
 284 ms; see Materials and Methods),
and its amplitude was large, on generally the same scale as the
response to the first stimulus (V1 � 17.9 
 11.2 mV, S1 � 7.6 

3.5 mV, A1 � 4.4 
 3.7 mV; Fig. 6B). To determine the role of
synaptic input in generating these termination responses, we per-
formed recordings while voltage-clamping neurons near the re-
versal potential of inhibition. Voltage-clamp recordings indicate
a large current after the end of stimulation that indicates a syn-
aptic origin for these responses (Fig. 6C).
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The subunit model successfully accounted for the depolariza-
tions at the termination of high-frequency stimulus trains for
those neurons with significant termination responses. Despite
predicting the presence of a termination response to the high-
frequency data, our models consistently underestimated the
response amplitude at the end of the stimulus train (Fig. 6A; r �
0.59, slope � 0.14). The model did predict the long latency of
these termination responses, although the individual variation in
termination latency was only weakly correlated with estimates of
termination response latency from our measurements (r � 0.414,
slope � 0.41). Some of the difference in latencies between the
model and measurements reflects the difficulty assigning a single
latency value to responses that extend and slowly depolarize over
hundreds of milliseconds.

We focused our comparison of the termination response on
two frequencies that either lacked a termination response (4 Hz)
or consistently exhibited a termination response (10 Hz). To ex-
pand our analysis to include multiple frequencies that exhibited a
termination response, we performed additional V1 recordings
with a wider range of higher stimulus frequencies (Fig. 6D). We
found that the termination responses exhibit changes in ampli-
tude and latency that are related to the stimulus frequency. In
particular, the amplitude of the termination response monoton-
ically increased with stimulation frequency (Fig. 6E). Not only
was there a smooth dependence of termination amplitude on
stimulation frequency, we also uncovered a systematic change in
termination latency on stimulation frequency such that higher
frequency stimuli, to which neurons exhibited the strongest ad-

aptation, resulted in shorter latencies and larger amplitudes
(Schwartz et al., 2007). These observations indicate that adaptive
processes carry information about changes in the temporal
statistics of temporal sequences, that is, the termination of the
stimulus.

Signals for changes in temporal statistics
To explore how adaptation might shape signals related to a
change in the temporal statistics of our stimuli, we explored two
distinct paradigms in which the sequences of punctate stimuli are
varied. Because the model predicted responses to the absence of
stimuli at the end of a sequence, we reasoned that the model may
also predict responses when stimuli are removed during a stim-
ulus sequence. Indeed, we find that our models consistently pre-
dict a response to an omitted stimulus, or an enhanced response
to subsequent stimuli (Fig. 7A). This model prediction is exhib-
ited in the responses of individual neurons when presented with
the same stimulus train (Fig. 7B). Indeed, such omitted stimuli
are particularly salient perceptually (Näätänen, 2018), mirroring
the changes in activity we observe and predict from the model.

We next explored how model neurons respond to changes in
the frequency of stimulation f, anticipating that signal strength
may be related to the degree of frequency change should be pres-
ent. We simulated responses from model neurons using filters fit
from data to stimuli composed of an initial frequency (F1), which
ranged between 1 and 15 Hz. Once the neuron had adapted to the
initial frequency, the frequency switched abruptly to a new value,
which also ranged between 1 and 15 Hz (F2; see Materials and
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Methods). Frequency increases resulted in changes in membrane
potential depolarization with amplitudes that were related to the
size of the frequency increase (Fig. 7C). We noticed two distinct
response types in our dataset. When holding F1 constant and
varying F2, some cells exhibited a transient response depending
on F2 which then quickly settled to a common steady-state level
(Fig. 7C, neuron 1). Other neurons exhibited a similar depolar-
ization, but rather than repolarizing, maintained an elevated

membrane potential for the duration of the stimulation, contin-
uously conveying information about the value of F2 (Fig. 7C,
neuron 2). When holding F2 constant while varying F1, similar
patterns emerged (Fig. 7D). Surprisingly, in some neurons, al-
though they settled to a common response amplitude indepen-
dent of F1, they responded with distinct amplitudes when the
frequency transitioned to the common F2 (Fig. 7D, neuron 3),
showing that information about F1 was retained in the system’s
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state, even though it was not manifest in the membrane potential.
Furthermore, the effects of the distinct F1 rates lingered for nearly
2 s while responding to the common F2 (Fig. 7D, neuron 4).
These transition responses suggest that stimulus history can af-
fect dynamics at the membrane potential level for a long time, on
the order of seconds.

How might stimulus history and the amplitude of the transi-
tion response be related? One possible model is that the change in
overall frequency (F2-F1) determines the size of the response,
which we term the linear model. In this case, the responses scale
linearly with �F, regardless of the initial frequency. Another pos-
sibility is that the transition amplitude follows Weber’s law. In the
Weber model, the response to frequency change scales with re-
spect to the ratio of F2 and F1 (F2/F1). In this case, the response
to a frequency change depends on �log(F), regardless of the ini-
tial frequency (logarithmic model).

To determine whether the responses follow the linear or log-
arithmic model, we quantified the transition response amplitude
to each frequency change (see Materials and Methods). We fo-
cused our analysis on values of F1 that ranged from 5 to 10 Hz and
F2 values that increased F1’s value by 1–5 Hz. We then performed
a least-squares fit to each model. We obtained the slope (mln) and
y intercept (bln) of the best fit line to the transition response
amplitudes from an initial frequency of 5 Hz on a linear (F2-F1)
x axis. The linear model was defined using the following equation
(Fig. 7E):

Respln � mf 2�f 1 � �F2 � F1	 � bf 2�f 1

A similar procedure was then performed to obtain the Weber’s
law slope (mwb) and y intercept (bwb) using the same response
amplitudes as before on a Weber-like (F2/F1) x axis. The loga-
rithmic model was defined using the following equation (Fig.
7F):

log�Respwb	 � mf 2

f 1

� �log� f 2	 � log� f 1		 � bf 2

f 1

These two examples show that Neuron 2 exhibited linear re-
sponses, whereas Neuron 1 showed more logarithmic-like

responses. To classify each neuron as
following either the linear model, loga-
rithmic model or neither, we used a cor-
relation analysis, which removes shared
correlation (Fig. 7F) (Movshon et al.,
1986). We calculated partial correlations
using the actual and predicted responses
from each model to each stimulus condi-
tion using the following equations:

R
f 2�f 1

�

rf 2�f 1 � rf 2

f 1
� rboth

�1 � rf 2

f 1

2 � 1 � rboth
2

Rf 2

f 1
�

rf 2

f 1
� rf 2�f 1 � rboth

�1 � rf 2�f 1
2 � 1 � rboth

2

where rf2-f1 and rf2/f1 are the correlation
between the respective model predic-
tions and responses, and rboth is the
correlation between the two model pre-
dictions. We then calculated Fisher
z-transformed partial correlations using
the following equations:

Zf2�f1 � �0.5 � log((1 � Rf2�f1)/(1 � Rf2�f1)))/sqrt(1/df)

Zf2�f1 � �0.5 � log((1 � Rf2/f1)/(1 � Rf2/f1)))/sqrt(1/df)

This analysis reveals that a sizeable proportion of the fitted neu-
rons follow either the logarithmic or linear model (29 of 34: V1:
10 of 11; S1: 11 of 14; A1: 8 of 9). Of these, 59% (V1: 80%, S1:
36%, A1: 63%) significantly followed the logarithmic model.
However, we found neurons in each sensory modality that carry
signals related to linear changes in frequency as well as relative
changes in frequency and that these distinctions reflect differ-
ences in our population in degree rather than category.

How do the response properties we observe emerge from our
model? In our previous analysis, our model was composed of 4
filters and the filter timescales were set to a maximum of 2 s. How
might changing these parameters affect the adaptive responses
captured by our model? Figure 8 demonstrates the effect of these
parameter choices on the predicted responses to a 10 Hz stimulus
of an example fitted S1 neuron. For this neuron, as the number of
filters increases (right hand column), the termination response
emerges and approaches the amplitude observed in the data only
using 4 filters. As filter length is varied (Fig. 8, bottom row),
response attenuation is largely absent for 500 ms filters and only
marginally, if at all, increases at 1000 ms, requiring 2000 ms filters
to approach the experimental results. Although different neuron
fits show different specific characteristics, this example demon-
strates that both multiple filters and the long timescales used are
required to capture the multiple components of the experimental
responses.

How does the adaptation observed in the membrane potential
responses impact the spiking response? To investigate this, we
measured response attenuation of spiking responses in 6 V1 neu-
rons that had robust spiking responses (Fig. 9). The analysis was
performed as before (see above section); however, because some
neurons did not spike in response to the first stimulus pulse,
responses were normalized to the first spiking response. Spiking
responses exhibited similar patterns of response attenuation as

filter length = 500 ms filter length = 1000 ms filter length = 2000 ms, 4 filters

2 filters

1 filterData

Figure 8. Impact of model parameters of response properties. Model simulations (brown) generated by changing the number
of filters (right column) and the filter length (bottom row). Data are shown in black. Calibration: x axis, 250 ms; y axis, 2 mV.
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the membrane potential (Fig. 9A,B), showing a decrease in re-
sponse amplitude with higher stimulus frequencies (Fig. 9C,D).

Discussion
We examined adaptation in visual, somatosensory, and auditory
cortex using a common stimulus framework to uncover and
compare their adaptive response properties.

In sensory coding, one aims to find a model that transforms
recent sensory inputs into neural responses. While such transfor-
mations can account for some neural responses, adaptive changes
occur over longer time scales that lead to systematic changes in
the mapping of sensory inputs to neural responses. One approach
to incorporate longer timescale changes is to create a model in
which the function that transforms inputs to responses depends
on the adaptive state of the network. Such a model is composed of
two components: one that is sensitive to the recent sensory stim-
ulation and another that is sensitive to the adaptive state of the
system and whose value modulates the effects of the fast-varying
component (Weber et al., 2019). We take an alternative ap-
proach: we integrate these two components directly into a single
model in which the adaptive state of the network is not explicitly

represented. This modeling framework mirrors that of the bio-
physical properties of neurons, which do not segregate into dis-
tinct adaptive and responsive components. For example, the
short-term synaptic depression exhibited at the thalamocortical
and cortical synapses acts on both fast and slow timescales (Abbott et
al., 1997; Tsodykes and Markram, 1997). Short-term synaptic dy-
namics act both to transmit information at high frequencies and to
store a trace of the stimulation history in the probability of the
release of synaptic transmitter. As with these biophysical proper-
ties, the temporal filters we extracted from our neural data exhibit
both short- and long-time scale features. We found this framework
to be surprisingly effective in predicting the complex adaptive effects
seen in our responses. Our results extend upon previous studies that
have shown that many nonlinear properties of neural responses
can be captured by summing independent subunits (Ozuysal and
Baccus, 2012; McFarland et al., 2013; Freeman et al., 2015; Vintch
et al., 2015; Harper et al., 2016). We find that, for each neuron, a
fixed set of four filters spanning multiple timescales accounts for
response dynamics across stimulation frequency, demonstrating
that a single static model accounts for responses under distinct
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Figure 9. Adaptation of spiking responses. A, Example raster plots for a V1 neuron in response to a 1, 4, and 10 Hz stimulus. B, Average membrane potential responses of the example neuron from
B. Calibration: y axis, 5 mV change; x axis, 500 ms. C, Normalized mean peak spiking rate responses to each pulse in a stimulus train at the three frequencies shown in A, B for the example neuron.
D, Same as for C, but for the mean of 6 V1 neurons.
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sensory contexts. Therefore, these adaptive changes can be com-
pactly accounted for by modeling adaptation as an emergent
property of fixed, but complex, neural responses.

We focused on three components of the adaptive sensory re-
sponse: decreased response amplitude with increasing stimulus
frequency, a shift in response complexity as stimulus frequency
increases, and a termination response at the cessation of a high-
frequency stimulus. We used common stimulus sets and analysis
tools to study these response features across modalities, allowing
us to demonstrate which are common across modalities and
which are more specific. We find, for example, that decreases in
response amplitude with increased stimulus frequency are shared
across modalities but vary in degree. The frequency dependence
of response complexity was common to both S1 and V1. While
individual A1 neurons had distinct response dynamics, we did
not find a frequency-dependent shift in those dynamics. Finally,
all modalities demonstrated a termination response following the
end of stimulation in at least some of the neurons.

These response characteristics emerge from our model. We
demonstrate that a general model built from responses to sto-
chastic stimuli, sampled over a broad statistical range, can dissect
complex neural responses to fixed-interval stimuli into simpler
components to reveal general features of sensory adaptation. The
emergence of these adaptive features relies on a model composed
of multiple filters. When a model composed of a single filter is
used, overall model performance sharply declines. The specific
adaptive responses to fixed frequency seen in our data are absent
from single-filter model responses. The use of multiple filters
with associated nonlinear transformations accounts for the abil-
ity of our model to generate these adaptive responses. Adaptive
changes have been demonstrated to exist on multiple timescales
and in a large variety of contexts (e.g., visual contrast adaptation,
auditory stimulus-specific adaptation). While adaptation is typ-
ically studied relative to controlled changes in defined stimulus
statistics, such as contrast, here we propose relevant stimulus
statistics in an unsupervised way through its sensory filters. Our
fixed-filter model offers a parsimonious description of the mem-
brane potential responses that does not require explicitly model-
ing different adaptation or network states and estimating the
stimulus–response function in each state.

Sensory adaptation has been shown to enhance change detec-
tion in behavioral tasks (Goble and Hollins, 1993; Tannan et al.,
2007; Musall et al., 2014). Here, we uncovered frequency transi-
tion responses whose amplitude and length are related to the
neurons’ stimulus history. Neurons in our dataset showed a tran-
sition response amplitude in a pattern that varied between a lin-
ear or a Weber’s law-like response across all modalities. These
results demonstrate how adaptive processes act to preserve essen-
tial frequency information across long timescales.

There was a noticeable degree of variation both between and
within modalities. For instance, A1 neurons did not display the
same changes in response complexity and envelope with stimulus
frequency that occur in V1 and S1 neurons. Some differences
across sensory modality, such as these, should be expected, as
each system is likely calibrated to deal with the specific statistics of
its relevant sensory information. Our simple model, however,
was able to capture these differences in response dynamics.

Our recordings were all performed in primary sensory areas in
cortex. It is likely, however, that some of the effects described
either originate or are influenced by subcortical areas, potentially
as far back as the receptors themselves. Work using similar stim-
uli while recording from retinal ganglion cells has found some
similar phenomena to those we described, notably the termina-

tion response (Schwartz et al., 2007; Schwartz and Berry, 2008).
This may differ by sensory system, as a recent study using fiber
photometry failed to find a termination (or echo) response in the
auditory thalamus (Li et al., 2017). Both the biphasic response to
individual pulses (or low-frequency stimulation) and response
attenuation at high stimulus frequencies have also been reported
subcortically (Chung et al., 2002; Martin-Cortecero and Nuñez,
2014; Funayama et al., 2016). In the visual system, a recent study
found that biphasic responses exist in the LGN, but not in the
retina (Funayama et al., 2016). Adaptation cascades through sen-
sory streams, which may occur between cortical layers (Dhruv
and Carandini, 2014), which we cannot directly address. Such an
analysis might be complicated by the distinct thalamic projec-
tions that converge on layer 2/3 and layer 4 neurons (Wise and
Jones, 1978; Huang and Winer, 2000; Jones, 2009; Krahe et al.,
2011; Cruz-Martín et al., 2014; Bickford et al., 2015; Ji et al.,
2016).

Another possible factor that may explain differences across
modalities is the intensity of stimulation, which was not cali-
brated to evoke similar response magnitude across systems. In-
deed, our previous studies of the somatosensory system showed
that stimulus intensity entails different adaptation profiles, al-
ready observed in the trigeminal nerve (Ganmor et al., 2010;
Mohar et al., 2013). Cortical mechanisms, and specifically inhi-
bition, can determine the degree of recovery from adaptation
(Cohen-Kashi Malina et al., 2013). Inhibitory effects can vary
across cortical areas and thus differently shape their adaptation
behavior. It is also possible that adaptation is altered by the ure-
thane anesthesia used in our experiments. Studies examining
general sensory properties in visual cortex have found little effect
of urethane on response properties (Durand et al., 2016), al-
though effects may exist in other modalities.

A key aspect of our approach is the standardization of exper-
imental paradigms across sensory modalities. This allows inves-
tigation to go beyond modality-specific analysis of neuronal
computations to that of the underlying algorithms used across
systems. Here we focused on adaptation, but this approach may
have value in the study of other processes common in sensory
cortex. For example, forms of contrast gain control, which has
historically been studied in the visual cortex (Sclar et al., 1985),
have been reported in the auditory (Rabinowitz et al., 2011;
Cooke et al., 2018) and somatosensory cortices (Garcia-Lazaro et
al., 2007). Understanding of this phenomenon may benefit from
a cross-modal approach, such as the one used here. Recent
decision-making paradigms in rodents have used similar punc-
tate stimuli in auditory, visual, and multisensory tasks, but these
experiments have focused on higher-order cortical computations
rather than primary sensory representations (Brunton et al.,
2013; Raposo et al., 2014; Hanks et al., 2015).

The homology of cortical circuits had led many to hypothesize
that different regions of cortex share a computational framework
(Douglas and Martin, 2004). A certain degree of specialization
among cortical areas is to be expected (Yang and Zador, 2012),
but it is possible that one defining difference among cortical areas
is simply the input each region receives (Sharma et al., 2000). Our
results demonstrate that each of these primary sensory areas in-
tegrates information across multiple comparable timescales,
yielding complex response dynamics. A change in the state of the
network is therefore not required for these complex dynamics to
occur, but rather can be understood as the interplay of multiple
static sensory filters that span a range of relevant time scales.
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