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Abstract
Intimate interactions between photosynthetic and non-photosynthetic
organisms require the orchestrated transfer of ions and metabolites
between species. We review recent progress in identifying and
characterizing the transport proteins involved in five mutualistic symbiotic
interactions: lichens,  –cyanobacteria, ectomycorrhiza,Azolla
endomycorrhiza, and rhizobia–legumes. This review focuses on
transporters for nitrogen and carbon and other solutes exchanged in the
interactions. Their predicted functions are evaluated on the basis of their
transport mechanism and prevailing transmembrane gradients of H  and
transported substrates. The symbiotic interactions are presented in the
assumed order from oldest to most recently evolved.
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Introduction
The vast majority of plant species participate in symbiotic 
relationships with fungi and bacteria. We know that the  
formation of symbiotic relationships between species occurred 
before the first eukaryotic cells which themselves are the  
product of endosymbiosis that resulted in the formation of  
mitochondria and chloroplasts. Understanding transmembrane  
transport processes between species is the key to understand-
ing nutritional symbiotic interactions. This is because direct 
transfer from cell to cell between species is rare, although 
there are examples such as secretion between Agrobacterium 
and plant cells. In nutritional symbioses, cells of both  
species are bounded by a cell membrane and transfer of ions 
and metabolites occurs through membrane-bound transport  
proteins. Identifying the transporters involved and character-
izing their activity can reveal which ions and metabolites are  
transported between species.

There has always been great interest in understanding symbi-
otic systems such as mycorrhiza and lichens, but research at 
the molecular level has often been too difficult. However, this 
is an appropriate time to revisit such complex systems and 
identify transport proteins that function in symbiotic interac-
tions. Technical advances, especially the availability of genome 
sequences, have had an exceptionally large impact on the  
ability to study symbiotic interactions. Now, transcriptomic and  
proteomic experiments involving multiple interacting species  
can be performed and transporters can be assigned to each inter-
acting partner. Once transporters are identified, heterologous 
expression experiments can be used to study transport activ-
ity, fluorescent protein fusions can be used to localize membrane  
proteins, and mutational analysis can be used to test whether  
transporter function is important for the interaction.

In the symbiotic associations discussed in this review, the trans-
port of fixed nitrogen (N) and fixed carbon (C) compounds takes 
center stage. The reason is that all organisms need large amounts 
of N and C; photosynthetic plants can fix C, but only bacte-
ria (and Archaea) can fix N. Cyanobacteria can fix both N and C 
but no eukaryotic organism can do the same. In the symbioses  
discussed here, large amounts of fixed N and C are trans-
ported between species. We will discuss transporters for N and 
C that have been identified and their activity and point out pos-
sibilities for transporters that have not yet been identified. 
We will also discuss selected transporters for other nutrients, 
ions, metals, and metabolites that are essential to symbiotic  
interactions.

To identify novel transporters functioning in a symbiosis, it is 
important to understand that the prevailing negative membrane 
potential, the transmembrane pH gradient that is more acidic 
outside, and the gradient of substrate may narrow the types of  
transporters likely to serve a particular function. For example, 
owing to the negative membrane potential, anion exporters are 
likely to be uniporters, such as anion channels. Exporters for  
cations are likely to be H+-coupled antiporters or pumps. Anion 
uptake transporters are likely to be H+-coupled symporters,  
and cation uptake transporters are likely to be H+-coupled  

symporters or channels. For uncharged molecules, efflux trans-
porters could be uniporters, H+-coupled antiporters, or pumps, 
whereas uptake transporters are likely to be H+-coupled  
symporters. It is also important to understand the orientation 
of membranes at the symbiotic interface. For all of the inter-
actions discussed here, in order for ions and metabolites to  
be transferred from one organism to another, a transmembrane 
export step followed by an uptake step is required.

Lichens
Lichens are a morphologically and taxonomically diverse 
assemblage of obligate symbioses involving fungi and pho-
tosynthesizers. A typical lichen consists of a tough upper and 
lower fungal cortex protecting a symbiotic interaction zone 
consisting of a layer of algal or cyanobacterial cells supported 
by a network of fungal hyphae (Figure 1). The entirety of 
this structure is called a thallus. Some lichens harbor two  
photosynthesizers, often a green alga as the main photobiont 
and a secondary cyanobacterial photobiont sequestered in 
wart-like growths called cephalodia. Close to 20% of currently  
described fungal species form lichens1,2.

Seminal radiolabeling experiments in the 1960s and 1970s 
established the nature of the carbohydrate transfer from the 
photosynthesizer to the fungus (3 and references therein). 
These experiments demonstrated that (1) a single C source 
is exported from the photobiont, (2) green algae transfer the 
polyol ribitol (in some cases, erythritol or sorbitol) whereas  
cyanobacteria transfer glucose, and (3) the transfer appears 
to be dependent on contact with, or signals from, the fungus, 
as the photobiont in pure culture does not excrete fixed C even 
as soon as 24 to 48 hours after isolation. Upon entry into the 
fungal cells, C is rapidly metabolized into mannitol, possibly 
through an intermediate such as arabitol. Cyanobacterial pho-
tobionts can also fix N into ammonia in specialized cells  
common to all multicellular cyanobacteria, called heterocysts or  
heterocytes, and transfer it to the fungus4.

Genomes and transcriptomes are enabling a new under-
standing of the transfer of C and N in lichens. Genomes of  
several lichenizing fungi have been sequenced5–11. Although 
it is not yet possible to consistently reconstitute any mature 
lichen symbiosis in culture, the transcriptomes of the separated  
symbionts12,13, of the early stages of symbiotic interaction when 
cultures of the isolated symbionts are mixed14, or of mature 
lichen symbioses in various metabolic states such as desic-
cation or rehydration15 allow the identification of potentially  
important transporters of C and N. These excellent first forays  
set the stage for molecular dissection of the lichen symbiosis.

A current priority is testing of hypotheses flowing from genome 
and transcriptome experiments, such as functional characteri-
zation of the putative ribitol transporters identified by Yoshino  
et al.16 in a lichenizing fungus. Interestingly, no exporter/importer 
pair for any of the symbiotically exchanged nutrients has  
yet been defined in any lichen system. Also missing from the  
discussion are sugar exporters in algae and cyanobacteria 
that could be sugars will eventually be exported transporters 

Page 3 of 13

F1000Research 2020, 9(F1000 Faculty Rev):39 Last updated: 23 JAN 2020



(SWEETs) or semiSWEETs. Likewise, analysis of ammonium 
transporters (AMTs) and amino acid transporters as the conduits  
of symbiotically exchanged N is also necessary.

Azolla
The small aquatic fern Azolla filiculoides (and related spe-
cies) has a mutualistic relationship with the cyanobacterium 
Nostoc azollae (Anabaena azollae) and traditionally has been 
employed as a biofertilizer in rice paddies. More recently, there 
has been interest in using Azolla for bioremediation as a way to 
remove ammonium from wastewater or as a protein source17.  
Azolla has also been implicated in the Arctic Azolla Event. 
Around 50 million years ago, exponential growth of the plant 
led to a rapid reduction of carbon dioxide (CO

2
) levels in the 

atmosphere, which is thought to have resulted in a cooling of the  
Earth18. The genomes of both A. filiculoides and N. azollae 
have been sequenced19,20. The leaves of the fern contain cavities 
that are formed during development by invagination of the  
epidermis. Cyanobacteria are contained within these gas-filled 
cavities in close association with trichomes and embedded in a 
mucilaginous matrix. The structure of the trichomes is similar  
to that of transfer cells21.

In contrast to the legume–rhizobia symbiosis, in Azolla the  
bacterial symbiont is transmitted from one generation to the 

next. Whereas the fern can grow without its symbiont, N. azollae 
is unable to exist outside of the plant. This is reflected in the  
genome of N. azollae, which has adapted to the symbiont  
lifestyle and, compared with related free-living cyanobacte-
ria, appears reduced, and some core genes (for instance, that of  
phospho-fructokinase) have been lost19.

Although N. azollae is able to perform photosynthesis, it does so 
only at a low rate and depends largely upon sugar derived from 
the plant22. Much of the energy that N. azollae derives from 
the sugar it receives from Azolla is invested into N fixation.  
At the stage when N fixation is at its highest level, the bacteria 
are no longer dividing. The major product of photosynthesis in 
Azolla is sucrose22, but it is not clear in what form C is exported  
from the plant and taken up into the cyanosymbiont.

In the bacteria, N fixation occurs in specialized cells, called 
heterocysts or heterocytes, which are more frequent in the  
symbiont than in related free-living Nostoc sp.23. Fixed N is 
supplied to Azolla, and about 40% of the N is exported from 
the bacteria and released in the form of ammonium into the  
leaf cavity23 (Figure 2).

Even though it has been shown that Nostoc receives carbohy-
drates (at least some of it in the form of sucrose) from its plant 

Figure 1. Transporters in the lichen symbiosis. Left: cross-section of a lichen thallus with both cyanobacterial and algal photobionts. 
Left: The cephalodium is a structure that houses the cyanobacterial cells. The cyanobacterial vegetative cells are shown in green, and the 
heterocysts are shown in white. “Tomentum” refers to the fungal area composed of closely matted mycelia. Right: Detail of symbiotic interface 
showing interaction of fungal cells with photosynthetic cells. Transporter activities that do not have an identified transporter are indicated with 
a question mark. Red transporter, C transporter (glucose or polyols such as ribitol); blue transporter, N transporter (ammonium).
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partner22, the necessary transporters of either symbiont have 
not been identified. The genome of N. azollae contains a gene  
for a phosphoenolpyruvate-dependent sugar phosphotransferase 
system (PTS). This type of transporter is common in bacteria 
and catalyzes the uptake and phosphorylation of a range of  
carbohydrates (for instance, glucose, fructose, or cellobiose)24.

On the plant side, 15 SWEET genes are present in the A. 
filiculoides genome, but there is no evidence that any of 
them is differentially expressed in the presence of the  
cyanosymbiont25. If SWEET proteins are involved in C effux 
in the Azolla symbiosis, the presence of the symbiont may  
trigger other post-transcriptional regulation.

N. azollae supplies its plant partner with ammonium, but no spe-
cific transporter responsible for this step has been identified. 

The genome of N. azollae contains an AmtB gene, encoding 
a putative ammonium transporter that could export ammonia 
into the leaf cavity of Azolla. Interestingly, N. azollae is  
lacking other N transporters (for instance, for nitrate or urea)19. 
This may be an adaptation to the symbiont lifestyle, prevent-
ing N. azollae from obtaining N from the plant and making it  
dependent upon N fixation.

The genome of A. filiculoides contains genes for both electro-
genic (AMT1) and electroneutral (AMT2) ammonium trans-
porters17. Expression of one of the AMT2 genes, AfAMT2-4 
(Azfi_s0034.g025227.AMT2), is upregulated in the fern when 
no N is supplied in the growth medium but only in the presence 
of the cyanobiont25. AMT2-4 is considered to function in the  
uptake of ammonium from the leaf cavity into the plant  
(Figure 2).

Figure 2. The Azolla–cyanobacteria symbiosis. In Azolla, expression of MOT1, AMT2-4, and an iron transporter related to AtVIT1 is induced 
by N-limiting conditions. MOT1 may be an uptake transporter, AMT2-4 may transport fixed N from the cyanobacteria into the plant, and the iron 
transporter may serve as an iron efflux transporter. In the cyanobacteria, a phosphotransferase system (PTS) sugar transporter could function 
in sugar uptake and AmtB could function in ammonium efflux. Iron and molybdate transporters in the cyanobacteria are hypothetical.
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The cyanobiont appears to be dependent on Azolla for  
additional nutrients. A molybdate transporter homolog, AfMOT1 
(Azfi_s0167.g054529), and an iron transporter homolog 
(Azfi_s0018.g014823) are induced in the fern under the same  
N-limiting conditions as AMT2-425. Both iron and molybdate 
are required co-factors for nitrogenase, the key enzyme for  
N fixation in the cyanobacteria. This suggests that, under  
N-limiting conditions, the plant upregulates Mo and Fe 
uptake transporters to supply more of these elements to the 
cyanobiont. AfMOT1 may function as a molybdate uptake  
transporter into the plant cells rather than as an exporter to the  
cyanobiont. The iron transporter Azfi_s0018.g014823 is related 
to vacuolar Fe/H+ antiporter VIT1, so it could function in Fe  
export from plant cells if it is localized to the plasma membrane.

To fully understand the Azolla/Nostoc symbiotic interaction, 
the key transporters responsible for C efflux from the plant 
and N uptake into the plant need to be identified. With new 
technologies such as gene editing, it may be possible to test 

whether specific transporters such as AMT2-4 from Azolla are  
required for the interaction.

Ectomycorrhiza
The ectomycorrhizal symbiosis consists of a plant partner, usu-
ally a tree species and a fungal partner, either an ascomycete 
or a basidiomycete. The fungus initially forms a dense layer 
of hyphae around the root tips of fine roots, called the mantle. 
Then hyphae penetrate between the cells of the epidermis and 
outer cortex of the tree root but without entering the cells. This  
structure is called the Hartig net. The fungal hyphae and the 
root cells share an apoplastic space, the symbiotic interface, a  
structure that is important for symbiosis (Figure 3). The hyphae 
reach an extended area around the root of the tree, thereby 
allowing the tree to access nutrients and water beyond the  
reach of its roots26.

The fungus receives fixed C from its plant partner in the form 
of hexoses. The tree exports sucrose into the wall space, where 

Figure 3. Model for ectomycorrhizal transporters. Transporters drawn with two arrows are H+-coupled uptake symporters. Acid invertase, 
shown in the symbiont interface, is encoded by the plant. Transporters that are known are named, and transporters that have not been 
identified are indicated with a question mark. The fungal phosphate uptake transporter (PT) is shown away from the symbiont interface to 
emphasize that it is functioning in phosphate uptake from the environment rather than in phosphate export to the plant.
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the sucrose is hydrolyzed by plant-derived acid invertase into 
glucose and fructose. Glucose is taken up preferentially27.  
In the fungus, glucose is rapidly converted into trehalose 
and sugar alcohols such as mannitol or arabitol, allowing the 
fungus to continue to act as a sink for the long-distance  
transport of sugars27.

In the ectomycorrhizal interaction, the plant benefits from 
metabolic capabilities of the fungus as well as the increased 
surface area for absorption from the soil. Interaction with 
the fungal partner enhances the supply of nutrients, in  
particular N and P28. The form of N transported to the plant 
is not clear. Larsen et al.29 concluded that amino acids are the  
main metabolites that the fungus synthesizes and shares with 
the plant. In their study, they found that expression of amino 
acid transporters is enriched in both plant and fungus, provid-
ing candidate genes to study in the interaction. Ammonium 
transporters have been identified in both plant and fungus.  
In poplar, a nitrate transporter in the NRT2 family is induced 
by the presence of the fungal partner30. TbNrt2, a nitrate 
uptake transporter from the fungus Tuber borchii, is strongly 
expressed in the Hartig net and mantle and only weakly in  
free hyphae31. There is no evidence for an enrichment of ammo-
nium or inorganic phosphate (Pi) transporters in the ectomy-
corrhizal association29. Three fungal H+-coupled phosphate 
uptake transporters have been isolated from Hebeloma: 
HcPT1.1, HcPT1.2, and HcPT232–34. All are likely to function 
in Pi acquisition by the fungus. HcPT2 is localized at sites of 
both Pi uptake and Pi release, and RNA interference (RNAi) 
lines of Hebeloma with decreased expression of HcPT2  
form fewer ectomycorrhizae than the control strain33. How-
ever, owing to its predicted transport mechanism and the  
existing proton gradient with higher proton concentration in 
the apoplast, it is unlikely that HcPT2 activity is responsi-
ble for Pi export to the plant. An additional transporter required  
for P efflux to the plant has not been identified yet.

It is generally accepted that the form of C taken up by the fun-
gus is hexoses. Several hexose transporters, HXTs or MSTs 
in the major facilitator superfamily, have been isolated from a 
range of ectomycorrhizal fungi35. They function as H+-coupled 
uptake transporters36,37. None of them has been shown to be  
essential for symbiosis, but several are specifically expressed in 
the root tips or in Hartig net/mantle versus free-living hyphae. 
In an ectomycorrhizal transcriptome study, sugar transport-
ers were found to be specifically enriched in the transcripts 
of the fungal partner. No such enrichment occurred in the  
plant transcriptome29. This may indicate that the fungal part-
ner drives the movement of sugars, at least as far as the trans-
port step is concerned. The plant partner may control the 
supply of photosynthates through controlling the activity  
of acid invertase in the apoplast, thereby limiting the amount of 
hexoses available for the fungal partner to take up.

Although no specific transporters have been shown to be 
required for ectomycorrhizal symbioses, a lot of progress has 
been made in genome sequencing and transcriptomic experi-
ments to identify a range of transporters that may be important. 

Export of sucrose is likely via SWEET proteins and uptake of  
hexoses by MSTs in the fungus. It would be very use-
ful to know the forms of N and P that are taken up by the 
plant, and identifying transporters that are necessary for the  
interaction will help narrow the list of possibilities.

Endomycorrhiza
Endomycorrhizal or arbuscular mycorrhizal (AM) symbioses 
are ancient and widespread interactions between obligate bio-
trophic fungi belonging to the Glomeromycotina and the roots 
of land plants38. This intimate association enables nutrient 
exchange, and plants provide up to 20% of the photosyntheti-
cally fixed C to the fungi and derive mineral nutrients from the 
fungal partner35,39,40. Fungal hyphae grow between cells in the  
root cortex and through the cell wall surrounding plant cells. 
The fungi do not break through the plasma membrane; they 
form highly branched structures known as arbuscules in the 
apoplastic space (Figure 4). The formation of arbuscules is 
a signal-based process involving significant transcriptional 
reprogramming and cellular remodeling41. The arbuscule is  
surrounded by a plant-derived periarbuscular membrane (PAM), 
thus being physically separated from the host cytoplasm. Recent 
studies suggest that the PAM encloses a periarbuscular space 
(PAS) which contains many hyphal branches, challenging an 
earlier notion that the PAM trails along each hyphal branch42. 
The arbuscule provides an increased surface area for exchange 
of nutrients between the two organisms. Membrane transport  
in AM symbiosis has been studied mainly on the plant side 
because of the difficulty of working with AM fungi and the 
complexity of fungal genomes. The AM fungi establish a new 
C sink in the roots of plants, thus driving the transport of pho-
toassimilates or C reserves from the host plant, preferentially in 
the form of hexoses, primarily glucose. Studies reveal significant 
transcriptional upregulation of the members of MST, sucrose 
transporter (SUT) and SWEET families of transporters in the  
arbuscule-containing cells of many plant species, although 
most of the results await genetic and functional validation35,40. 
Recently, SWEET1b from Medicago truncatula was localized 
to the PAM and demonstrated to transport glucose43. However, 
loss-of-function mtsweet1b mutants show no defect in the 
plant–fungal symbiotic interaction, indicating the presence of 
redundant transporters. Interestingly, sut2 mutants in tomato 
reveal higher AM fungi colonization rates, suggesting a role 
for SUT2 in reverse transport of sucrose from the PAS space 
back to the plant44 (Figure 4). Sugar transporters in AM fungi 
are less well studied. GpMST1 from Geosiphon pyriformis and  
RiMST2 from Rhizophagus irregularis transport hexoses and 
have the highest affinity for glucose45,46. RiMST2 is expressed 
in arbuscules and intercellular hyphae where it may func-
tion in sugar uptake from the plant46. Interestingly, active  
uptake of 14C-labelled sugars by the extraradical mycelium indi-
cates that sugar transport by the fungus also occurs outside  
of arbuscules47.

Lipids may serve as another source of C transferred from 
plants to AM fungi. AM fungi depend on the plant host for 
lipids since they lack genes encoding the cytosolic fatty  
acid synthase subunits for fatty acid biosynthesis48,49. This  
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dependency was revealed by legume mutants defective in lipid  
biosynthetic genes that have stunted arbuscules and reduced  
colonization. Other studies using transgenic Medicago 
expressing fatty acid synthesis genes and radioisotopes also  
demonstrate the transfer of fatty acids from plants to fungi. 
The ABC-type transporters STR1 and STR2 are required for  
arbuscule formation in rice and Medicago50,51 and are predicted 
to transport beta-monoacylglycerol from plants to fungi52,53.  
The mechanism of transport or trafficking of lipids at the  
AM–plant interface is not clear and will require additional 
research such as using imaging with lipophilic dyes or transport  
assays using reconstitution of transporter proteins in liposomes.

Owing to the low mobility of phosphate ions in soil, plants use 
the extensive network of AM fungi to acquire most of their P. 
Availability of Pi is also a signal for arbuscule maintenance 
since plant Pi transporter mutants display premature degenera-
tion of arbuscules54 and exogenous Pi treatment in rice inhibits 
fungal colonization and mycorrhizal uptake of Pi55. Krajinski  
et al.56 revealed that Pi uptake by AM fungi is driven by the trans-
membrane H+ gradient. Fungal Pi/H+ symporters are responsible 
for Pi uptake from the soil by the extraradical mycelium, although 
they are also expressed in the intraradical mycelium, suggest-
ing their role in reabsorption from the PAS. Pi is then trafficked 
as polyphosphate chains to the intraradical mycelium, where 
breakdown produces Pi which then gets transported into the  
PAS via a still-unknown mechanism. AM fungi coloniza-
tion induces the expression of Pi transporters in rice (OsPT11), 
tomato (LePT1), potato (StPT3), maize (ZmPT9) and Medicago 

truncatula (MtPT4)35,40. Both low- and high-affinity H+/Pi  
symporters of the plant PHT1 family have been implicated in 
AM fungi symbioses and these cluster in a separate clade from 
PHT1 transporters in non-AM symbiotic plants. Plant and  
fungal Pi transporters might also function as transceptors  
sensing Pi, and further investigation is warranted57,58. Interest-
ingly, high Pi represses STR1/2 expression, suggesting that 
plants withhold C under high Pi conditions59. For a detailed  
review of Pi transport in mycorrhiza, see60.

N acquisition by AM fungi can provide plant partners with almost 
one third of their N needs61. Fungi encode ammonium transport-
ers in the MEP family that could serve as ammonium export-
ers62, and high- and low-affinity MEPs have been reported in  
R. irregularis. AM-inducible AMTs are found in all host plants 
(both dicots and monocots) and have been localized to the  
PAM63. Since the PAS is acidic, NH

4
+ concentration predomi-

nates over NH
3
. Plant AMTs are thought to bind NH

4
+, depro-

tonate it, and co-transport NH
3
 and H+ (Figure 4). Nitrate might 

also be transferred since plant nitrate transporters are induced 
by AM colonization35,40. Nitrate transporters are also induced by  
high phosphate or low nitrate concentrations, suggesting a  
complex regulation.

Legume–rhizobia symbiosis
In the rhizobia–legume interaction, the plant responds to  
signals produced by the bacterium and initiates a developmen-
tal program leading to the formation of a plant root structure 
called the nodule. Within the nodule, the modified rhizobia, 

Figure 4. Transporters in endomycorrhizal or arbuscular mycorrhizal (AM) interactions. A plant cell containing an arbuscule is shown. 
Transporters that are known are named in the illustration. Transporters drawn with two arrows are H+-coupled uptake symporters. Transporter 
activities that do not have an identified transporter are indicated with a question mark. PAS, periarbuscular space.
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called bacteroids, are housed in intracellular, membrane-bound  
compartments called symbiosomes. The plant symbiosome  
membrane (SM), also called the peribacteroid membrane (PBM),  
surrounds the bacteroids (Figure 5). The plant supplies fixed 
C and a myriad of other ions, metabolites, and proteins to cre-
ate a suitable environment for the bacteroids to fix N which  
is absorbed by the plant. Recent advances in proteomic 
and transcriptomic analysis have led to the identification of  
transporters in the PBM.

Transporters involved in the interaction of legumes and rhizo-
bia have been recently reviewed in detail64,65. Despite their 
central importance for the symbiosis, most of the N and  
C transporters predicted to be required for the interaction have  
not been identified.

The PBM contains plasma membrane-type H+ATPases that 
acidify the peribacteroid space and generate a negative mem-
brane potential64. To understand transport processes at the  
PBM, the peribacteroid space should be considered equivalent 
to the apoplast or cell wall space of a plant cell. Accordingly,  
solutes are transported from the plant to bacteroids via plant 
exporter proteins.

It is clear that the form of fixed C taken up by bacteroids is  
C

4
-dicarboxylates66. Bacterial mutants defective in dicarboxylate 

transporter DctA are unable to fix N. Malate, succinate, 
and fumarate are transported by DctA66,67. Malate appears to 
be the most important and only required C

4
-dicarboxylate  

supplied to the bacteroids by the plant68. It is not surpris-
ing that the uptake of dicarboxylates by DctA is coupled to 
the uptake of at least three H+ so that the transport reaction is 
driven by the negative bacterial membrane potential and by the  
transmembrane pH gradient67. The exporter responsible for 
malate export from the plant across the SM has not yet been 
identified. There are excellent candidates for dicarboxylate 
export into the peribacteroid space. Malate is transported by  
S-type anion channels69 in the SLAC family and by alumi-
num-activated malate transporters (ALMTs)70. ALMTs were 
first identified in wheat and were shown to export malate 
in response to exposure to aluminum. In Lotus japonicus, 
LjALMT4 transports malate and is expressed in nodules but is  
localized to the vasculature in nodules71. Perhaps another mem-
ber of the ALMT family localizes to the PBM in infected  
cells as indicated in Figure 5.

The form of N transported from the bacteroid to the plant 
is thought to be ammonium (either NH

4
+ or NH

3
). Although 

both plants and bacteria encode ammonium transporters in the 
AMT/MEP/Rh family62, the current view is that transporters  
in the AMT/MEP/Rh family are not involved in either NH

3
 

release from bacteroids or uptake into infected plant cells. The  
bacterial AMT AmtB is not expressed in bacteroids and there-
fore N is thought to be exported from bacteroids by diffu-
sion of NH

3
 through the bacteroid membrane64. The aquaporin 

homolog NOD26 has been suggested to serve as the ammonium 
uptake transporter from the peribacteroid space into rhizobia- 
infected cells. NOD26 is highly expressed, localized to the 

Figure 5. Legume–rhizobia transport processes. Plant transporters for malate efflux, iron efflux, and ammonium uptake are shown on the 
symbiosome membrane. At the plasma membrane of infected plant cells, SST1, MOT1, Nramp1, and PT7 are thought to function in uptake 
into the plant cells. In the bacteroid membrane, DctA, the bacterial C4-dicarboxylate transporter, is shown on the bacteroid membrane. NH3 
diffusion through the bacteroid membrane is indicted by a dashed line.
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PBM, and known to transport NH
3
72. Transporters in the AMT1  

family were not identified in proteomic studies of nodules73,74. 
GmSAT1 from soybean was originally considered a candi-
date for the plant PBM ammonium uptake transporter; however, 
GmSAT1 was subsequently found to be a transcription fac-
tor that affects expression of the yeast MEP3 ammonium  
transporter when expressed in yeast75.

Since the bacteroid is completely enclosed by the plant SM, 
it is necessary for the plant to provide all nutrients required 
by the bacteroid. Recent results demonstrate that uptake into  
nodule cells is an essential step in providing nutrients to the 
bacteroid. Molybdenum is required for the nitrogenase enzyme, 
and in Medicago MtMOT1.376 and MtMOT1.277 localize to the 
plasma membrane in nodule cells and function in molybdate  
uptake. The molybdate exporter, required to deliver molybdate  
into the peribacteroid space, has not been identified. Synthesis  
of nitrogenase in the bacteroid requires a significant amount 
of sulfur (S) for both S-containing amino acids and Fe-S  
complexes. Bacteroids have been shown to take up 20-fold 
times more S than the nodule host cells78. The plant SO

4
2− trans-

porter SST1 is required for symbiotic N fixation79, and sst1 
mutant nodules show less S accumulated in host cells, in the 
symbiosome space, and in bacteroids78. SST1 protein was iden-
tified by mass spectroscopy in PBM fractions73,74; however, its  
localization has not been confirmed by a second method. 
SST1 belongs to the SULTR family of plant electrogenic  
H+-coupled SO

4
2− uptake transporters, so the function of SST1 

is most likely S uptake into plant cells in the nodule rather  
than SO

4
2− export to the bacteroids. If SST1 functions in SO

4
2− 

uptake, then its localization is more likely to be on the plasma 
membrane rather than the PBM. Other plant nutrient uptake 
transporters localized to the plasma membrane, such as the  
phosphate transporter GmPT7 from soybean80, have been 
shown to be necessary for optimal N fixation and they also  
function in uptake into nodule cells rather than nutrient export  
to the bacteroid (Figure 5).

The biochemical reactions of N fixation that occur in the 
bacteroid require transition metals. For example, nitrogenase 

is the most abundant protein in bacteroids and contains 32 
iron atoms and one molybdenum. Cobalt, copper, manganese, 
nickel, and zinc are also required and must be supplied to the  
bacteroid. In Medicago truncatula, iron transport into rhizo-
bia-infected cells is thought to occur via MtNramp1, which 
is localized to the plasma membrane in nodule cells81. The 
nramp1-1 mutant has lower nitrogenase activity, indicating  
that less iron is delivered to the bacteroids in the mutant. 
MtSEN1 may serve as the iron exporter on the PBM neces-
sary for iron transport into the peribacteroid space82. MtSEN1 
is in the VIT1/CCC1 family of vacuolar iron exporters that  
function as H+-coupled antiporters83. Subcellular localization 
of MtSEN1 will be necessary to support this hypothesis. 
There is a recent review of transporters involved in export 
of transition metals from the plant and uptake into the  
bacteroid84.

Conclusions
In this review, we discussed five nutritional symbioses and some 
common features were found; for example, all of the interac-
tions involve the transfer of fixed C and fixed N. When the 
form of C exported from a photosynthetic partner is sucrose 
or its hydrolysis products, glucose and fructose, the type of  
transporter is likely to be a SWEET. The legume–rhizobia inter-
action is an exception in that C is transferred in the form of the 
C

4
-dicarboxylate malate. Although the transporter responsible 

for malate efflux has not been identified, plant anion  
channels are known to transport malate. The most common 
form of transported N in these interactions is ammonium. Plants  
encode both electrogenic (AMT1) and electroneutral (AMT2) 
ammonium transporters. One common hypothesis is that 
AMT1s serve as uptake transporters and AMT2s serve as  
exporters62, but the situation seems to be more complicated 
and interesting; for example, AMT2-4 from Azolla has been  
suggested to be involved in ammonium uptake into the fern. 
This is an exciting time to study symbiotic interactions because 
of advances in genome sequencing, transcriptomics, and gene  
editing. Identification and analysis of the transporters involved 
will allow us to better understand how symbiotic organisms  
share nutrients.
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