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Abstract

Missing observations from air pollution monitoring networks have posed a longstanding problem 

for health investigators of air pollution. Growing interest in mixtures of air pollutants has further 

complicated this problem, as many new challenges have arisen that require development of novel 

methods. The objective of this study is to develop a methodology for multivariate prediction of air 

pollution. We focus specifically on tackling different forms of missing data, such as: spatial 

(sparse sites), outcome (pollutants not measured at some sites), and temporal (varieties of 

interrupted time series). To address these challenges, we develop a novel multivariate fusion 

framework, which leverages the observed inter-pollutant correlation structure to reduce error in the 

simultaneous prediction of multiple air pollutants. Our joint fusion model employs predictions 

from the Environmental Protection Agency’s Community Multiscale Air Quality (CMAQ) model 

along with spatio-temporal error terms. We have implemented our models on both simulated data 

and a case study in South Carolina for 8 pollutants over a 28-day period in June 2006. We found 

that our model, which uses a multivariate correlated error in a Bayesian framework, showed 

promising predictive accuracy particularly for gaseous pollutants.
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1. Introduction

Developing accurate exposure assessment for air pollution is a major concern in the majority 

of health effects studies of outdoor air pollution. This is because much of the data available 

for exposure assessment is from sparsely distributed air monitoring sites set up by national, 

state, and local governments to enforce air quality standards. Such objectives present many 

challenges for use of such data in health studies, as the locations of monitors are neither 

uniformly nor randomly distributed (Baxter et al. 2013). It is also the case that many sites 

vary in the quality and quantity of data observed so that time series of multiple pollutants 

may be interrupted at some sites and only partially observed at others (Ozkaynak et al. 

2013).
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For single pollutant measures at sites, it is common to adopt Kriging methods to provide 

smoothed estimates of exposures (Banerjee et al. 2014; Wong et al. 2004). Unfortunately, 

with sparse monitoring it is difficult to estimate the small-scale variation needed for the 

variogram, network topology can invalidate the assumption of the covariance properties, and 

the interpolation can have large errors at locations far from monitors. Others have discussed 

the limitations that sparse air monitoring networks present for interpolation methods and 

kriging (Diem et al. 2002), suggesting the use of additional information in a regression 

setting to improve predictive accuracy.

With the growing availability of GIS systems with regression capabilities, researchers have 

turned to land use regression (LUR) (Hoek et al. 2008), which utilizes surrogate exposure 

predictors within a regression formulation to allow prediction at poorly monitored sites or 

areas. While this additional information can be predictive, it is usually better to supplement 

geostatistical models with a selection of LUR predictors (Mercer et al. 2011). One potential 

issue with most applications of LUR is its lack of explicit consideration for spatial 

correlation. Spatial correlation can be a useful proxy for unknown or unspecified 

confounding variables that link areas in close proximity. Further, LUR models are often 

trained by splitting available observed data into a training and validation set; consequently, 

the same lack of data issue is present. Universal Kriging attempts to blend the benefits of the 

two previous methods by incorporating geographic variables into a spatial interpolation 

model, which has shown improved model accuracy (Mercer et al. 2011; Sampson et al. 

2013; Pearce et al. 2009; Kim et al. 2010; Szpiro et al. 2013; Wang, Brunekreef, et al. 2016; 

Wang, Sampson, et al. 2016) as compared to ordinary kriging and LUR. While single 

variable Kriging can be extended to the multivariable case (Wackernagel 2003) via 

coregionalization (LMC), the selective nature of missingness and differential patterns of 

sparse observation across pollutants mean that estimation problems remain.

Alternative sources of air quality information have also been sought. One that has been 

commonly used is based on computer models of atmospheric dynamics with resulting 

predicted pollution levels. In the USA, the EPA has introduced the Community Multiscale 

Air Quality modeling system (CMAQ), which is based on a deterministic chemical transport 

model. This approach allows the prediction of pollutant levels across large areas and has 

resolution of 4 km or 12 km square grid cells.

The need to incorporate CMAQ with observed site measurements has led to the development 

of fusion models. These methods aim to leverage the completeness of modeled data with the 

more accurate monitoring data in order to improve exposure prediction results. Some authors 

(Berrocal et al. 2012; Lee et al. 2017; Berrocal et al. 2010) have utilized fusion models for 

univariate or bi-variate data settings within a Bayesian paradigm, while others (Friberg et al. 

2016) have also developed univariate methods specifically focused on fusion of CMAQ and 

monitor data. These methods have been able to provide accurate estimates for air pollutants 

monitored widely in a geographic area; however, they have limited application or success in 

pollutants that are only monitored in a few locations.

A multivariate approach to fusion models extends the attempts of others to utilize all 

available resources to predict air pollution levels. Many pollutants in South Carolina have > 
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80% spatial missingness (Table 1), and while additional monitoring resources may be 

advisable, our method aims to provide exposure estimates where other methods cannot. The 

current standard for these sparsely monitored pollutants is modeled data, like CMAQ. Table 

2 shows the Coefficient of Determination (R2) for raw CMAQ cell predictions where a 

monitoring location is present in June of 2006 across South Carolina, demonstrating our 

limited predictive capabilities with many of the pollutant health effects researchers aim to 

investigate (i.e. Carbon Monoxide, Sulfur Dioxide, PM2.5 Ammonium Ion, PM2.5 Sulfate 

Ion are all < 0.25).

The overarching objective of this research is to improve statistical methodologies for 

exposure assessment of air pollution. In this paper we focus specifically on addressing 

challenges posed by sparse site networks where we have spatial missingness (sparse sites), 

outcome missingness (pollutants not measured at some sites), and temporal missingness 

(varieties of interrupted time series). To address these problems, we illustrate a novel 

approach that extends current fusion model approaches to a multivariate setting in a 

Bayesian framework.

We implement jointly modeled pollutant concentration fields, predicting a suite of eight (8) 

pollutants simultaneously. Multivariate fusion models take advantage of the observed 

correlation structure between the pollutants in order to reduce error in estimation across all 

pollutants. To best illustrate our framework, we present a range of models with varied 

multivariate dependencies and evaluate their predictive accuracy.

The paper is structured as follows. First, we discuss data sources to be used in the fusion 

modeling (CMAQ and monitor sites). Sparse monitor data from South Carolina is the 

motivating example. Second, we develop the fusion models for different scenarios where 

data are sparsely observed in space and time and reflect differing subsets of pollutants across 

sites. Third, a simulation study is presented which is designed to evaluate the proposed 

models under a variety of sparseness and missingness assumptions. Finally, we apply our 

models to real world data from South Carolina in order to assess predictions at the ZIP-code 

level within a 28-day timeframe.

2. Data sources

Observed air pollutant concentrations for this study were obtained from the South Carolina 

Department of Health and Environmental Control (SC DHEC) ambient air monitoring 

network. These monitoring sites are part of the national air monitoring program 

administered by the United States EPA. Modeled air pollution concentrations for this study 

were obtained from outputs from EPA’s CMAQ model.

2.1 Monitoring Data

We focus on pollutants monitored by the EPA within South Carolina: carbon monoxide 

(CO), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter with size 

fraction 2.5 μm (PM2.5), and PM2.5 constituents elemental carbon (EC), sulfate (SO4), and 

ammonium (NH4). Table 1 details the number of monitoring stations recording 

concentrations for each pollutant across the state during June 2006. Monitoring data is based 
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on all monitoring sites across the state and is given as the appropriate daily summary 

statistic from the EPA. Figure 1 shows the locations of monitors over this time period.

Table 1 indicates monitoring of PM2.5, and O3 is relatively high, and current predictive 

models perform fairly well in estimating their concentration levels. However, carbon 

monoxide and PM2.5 constituents are monitored considerably less widely and frequently, 

leading to the reduced predictive capabilities of existing models.

2.2. Chemical Transport Model Data

The EPA’s chemical transport model (CMAQ) attempts to circumvent the lack of available 

monitoring data while providing accurate air quality estimates (Appel et al. 2011; Foley et 

al. 2010). Rather than using observed air pollutant measurements, the EPA uses 

meteorological, pollutant source, and chemical interaction data to produce estimates at given 

locations and resolutions (e.g. 12 km × 12 km) for each day. The advantage of a modeled 

data set is its completeness, with no missing data at any space or time point. These models 

have been shown to be effective in predicting spatial structure of pollutant concentrations, 

but some daily variability in pollutants, specifically PM2.5 constituents Sulfate and Nitrogen 

Dioxide are not captured well due to difficulties “related to predictions of wind speed, PBL 

height, water vapor, and the predicated cloud cover, all of which appear to contribute to 

differences in the CMAQ model predictions.” (Appel et al. 2010) Attempting to blend 

spatial interpolation methods and the completeness of modeled data like CMAQ, researchers 

have developed fusion methods that utilize both monitor and modeled data (Berrocal et al. 

2012; Chang 2016; Friberg et al. 2016). While these methods reduce bias overall (Chen et al. 

2014), sparsely monitored pollutant arrays, such as multiple constituents of PM2.5 and some 

gaseous pollutants, remain problematic.

3. Model Methodology

While others have fit multiple fusion models and provided a final prediction based on 

aggregating their estimates (Friberg et al. 2016), these models are fit for individual 

pollutants independently of one another. Shifting this approach to a Bayesian setting allows 

us to fit a primary and secondary model jointly and construct standard error estimates for our 

aggregated prediction. Utilizing the advantages of the Bayesian framework, we develop a 

fusion model that addresses multivariate measurements with differential sparseness. The 

model utilizes both data resources - EPA monitoring data and EPA CMAQ modeled data - 

with the ability to incorporate land use, meteorological, or other predictive (e.g. aerosol 

optical depth) variables to improve the accuracy of the model. Each measurement site is 

treated as though it could have a data point for each pollutant (of the 8 we are interested in) 

on each day. This temporal resolution and inclusion of all sites for all pollutants creates large 

swaths of missing data where pollutant concentrations are not available at most sites on 

many days.

Some work has been done on introducing a multivariate prediction framework; however, it 

has been focused on a limited number of pollutants and with pollutants that are monitored 

widely (Huang et al. 2018). Some have also investigated the PM2.5 constituent pollutants by 

using spline basis functions, which model the masses of: total PM2.5, individual PM2.5 
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constituents, and the remaining mass of unmonitored PM2.5 constituents (Crooks et al. 

2014; Rundel et al. 2015). Our work differs from previous studies by focusing on improving 

predictive accuracy for both: specific particulate constituents and other gaseous pollutants 

that are monitored sparsely both spatially and temporally.

3.1 Aggregated Estimate

We use the combination of a primary and a secondary model to produce an aggregated 

estimate for pollutant levels to try and address the different types of missingness present in 

our data. The primary model derives estimates by first addressing missing data with 

multivariate spatially correlated models at all monitoring locations then interpolating to an 

end spatial unit (described in Section 3.2). The secondary model uses a simpler bias 

adjustment model on CMAQ data (described in Section 3.3) to produce adjusted CMAQ 

estimates across the entire spatial domain regardless of proximity to monitoring locations. A 

final estimate, γljk, is obtained by calculating a weighted average of the interpolated monitor 

estimate from the primary model, wljk(defined in Section 3.2.2) and the adjusted CMAQ 

estimate from the secondary model, Cl jk
T  (defined in Section 3.3):

yl jk = γ1, l jkwl jk + 1 − γ1, l jk Cl jk
T

, where γ1, l jk is a weight assigned to the primary model estimate and is defined as: 

γ1, l jk Beta 1, 1 . We evaluate the model and its variants (defined in Section 3.4) using a 

variety of cross validation scenarios. Because there are limited numbers of stations 

monitoring specific pollutants, we will create folds based leaving out 10% of monitoring 

data. Using the cross-validation results, goodness of fit metrics such as R2, Mean Square 

Predictive Error (MSPE), and mean bias will be calculated by comparing predicted values to 

simulated ground truth values.

3.2 Primary Model - Multivariate Fusion Methods

Pollutant concentrations at monitoring sites are defined: Zjik for the k th pollutant (k = 1,

…,P) measured at the k th time point (j = 1,….,nt) and i th site(i = 1,….,nz). The underlying 

data level multivariate model for the observed concentration vector is assumed to be

z ji MVN z ji
t , ∑z

where, the observed concentration level vector, Zji, has a multivariate normal distribution 

centered on Z ji
t , which represents the ‘true’ pollutant concentration without measurement 

error. ∑z represents the inter-pollutant covariance matrix of the eight monitored pollutants. 

The covariance matrix is assumed to be constant across all monitoring locations. The prior 

distribution for this matrix is assumed to be

∑z InvWishart ∑z0
, κ , with κ = 8 .
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The inverse Wishart distribution is chosen due to its conjugacy (Lawson 2018) and is often 

used as a non-informative prior for covariance matrices (Huang et al. 2013). The value of κ 
was chosen as κ must be greater than or equal to the dimension of ∑z (in this case, 8) in 

order to guarantee positive definiteness. However, smaller values of κ provide greater 

variability so to provide the least informative prior possible, κ = 8.

Note that Zji values are standardized transformations of pollutant concentrations in order to 

keep all pollutants on a similar scale. While others have looked at air pollutants on a log 

scale, we felt that the standardization would adequately transform the data to a close-to-

normal scale, and the common standardization scale would improve our covariance 

estimation process.

3.2.1 Primary Model - Modeling the true exposure vector—The true exposure 

vector is considered to consist of a fused CMAQ value estimated for the time and location 

and random components

z jik
t = α0 jk + α1 jkX jik + λ jk + εik

where, α0jk, α1jk are the random intercept and slope, respectively, which allows for a 

regression dependency on the CMAQ values, and Xjik is the raw CMAQ estimates 

corresponding to the monitor site locations. As noted earlier, CMAQ is available within 

regular spatial grid meshes. A simple approach to assigning CMAQ to monitor sites is to 

assign the CMAQ values according to the grid cell in which the monitor lies. We assume this 

approach here. The terms εik, λjk represent spatial and temporal random effects respectively. 

We opt for separable spatial and temporal error terms as this format is more parsimonious, 

and in exploratory analyses we found that this assumption was adequate.

Spatial dependence: In our example application, monitoring site pollutant data has 

considerable missingness, with some of the 8 pollutants only monitored at 2 or 3 sites. 

Missing monitoring data are estimated by regressing on CMAQ values and incorporating a 

combination of: spatially correlated error, spatially uncorrelated error, and a temporal error.

The uncorrelated spatial error terms, εik, are each assigned a non-informative Normal prior 

distribution:

εik N 0, σεk
2

with pollutant specific variance, allowing for uncorrelated spatial error.

A correlated spatial error terms, eik, is used in some model variants, utilizing both Intrinsic 

Conditional Autoregressive (ICAR) and multivariate conditional autoregressive (MCAR) 

distributions. The MCAR (λ,Ω) distribution, where λ = 1, is used and is given as:
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e Nnzp 0, Ω ⊗ D − W −1

with P × P covariance prior distribution:

Ω InvWishart Ω0, κΩ

with κΩ = 8.

Here D is nz × nz diagonal matrix of number of neighbors and W is a binary adjacency 

matrix.

The MCAR distribution utilizes spatial conditioning relationships (Besag 1974) that rely on 

nearest neighbor adjacency. In this case the neighborhood structure is defined by creating a 

tessellation of all monitoring sites (Lawson 2012) using the R package ‘dismo’ that utilizes 

the Delaunay triangulation method (Greco et al. 2005). This tessellation’s adjacency matrix 

is evaluated to provide neighbors for each monitoring site.

Temporal Dependence: The temporal error term, λjk, is assumed to have a correlated form. 

A smooth temporal variation is assumed and so a random walk prior distribution was 

assumed

λ jk Normal λ j − 1, k, σλk
2 .

The random walk prior provides a non-informative prior at time j=1, and then allows for 

simple one lag dependence based on the previous time effect. This is assumed to be pollutant 

specific.

Defining other Prior Distributions for the Primary Model—The random slope and 

intercept terms, α0 jk and α1 jk have independent Normal prior distributions 

Normal 0, σα0k
2 , Normal 0, σα1k

2 . These Normal priors are potentially non-informative if 

they have large variances. Finally, note that σα0k
2 , σα1k

2 , σαλk
2 , and σεk

2  are each given their own 

hyper prior distributions, defined as: InvGamma(2,0.5). The inverse gamma priors are 

conditionally-conjugate and weakly informative (Gelman 2006).

3.2.2 Primary Model - Re-aligning to chosen spatial unit—The point data 

produced by monitoring networks is not well suited for the aggregated health outcome data 

often used in environmental epidemiology. Predicted pollutant levels must be re-aligned to a 

chosen spatial unit (e.g. ZIP codes or census tracts). We investigate several methods to 

interpolate the monitor site estimates/data to all locations across the study region, and to 

assign an estimate to a chosen spatial unit. An estimate, Wljk (where l=1,…,n.W; n.W = 
number of chosen spatial unit locations), is computed for each chosen spatial unit on each 

day for each pollutant:

Boaz et al. Page 7

Environmetrics. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



w jlk = ϕl ⊗ z jik

where, ϕ is a weighting matrix that assigns weights for each chosen spatial unit to each of 

the monitor’s estimates, and ϕl is a vector of weights for the lth spatial unit. ϕl can be defined 

in several different ways, defined below. While mis-alignment problems have been studied, 

and models are described to incorporate the increased uncertainty (Banerjee et al. 2014), our 

methods aim to incorporate this uncertainty with posterior functionals, as the re-alignment is 

incorporated into the initial model’s Bayesian framework. By incorporating this re-

alignment in the model, we are able to perform this step in conjunction with the prediction 

steps listed above. We examined the possibility of using geostatistical models based on a 

multivariate normal distribution with fully specified spatial covariance, for large domain 

interpolation, but unfortunately, this proved to be computationally very expensive to run 

within our framework.

Calculation of ϕ

Neighborhood Method: Neighborhood adjacencies are developed for the ZIP units relative 

to each monitor site available. Each ZIP region assigns a weight, ϕl, to each of the 

monitoring sites. Figure 2 demonstrates the proposed neighborhood assignment protocol.

Sites that are collocated with a ZIP region are given a weight of 1.0, sites that are located in 

a region neighboring a given region are given a weight of 0.5, sites that are located in a 

secondary neighbor of a given region are given a weight of 0.25, and all other sites are given 

a weight of 0.0. Weights are reweighted to sum to 1.

Distance Weights: Define a weight based on the distance from the monitoring site to the 

centroid of the chosen spatial unit (dlj), with a tuning parameter, ν

w jik =
∑iexp − νdil z jik

∑eexp − νdil

We varied values of the smoothing parameter, ν, to assess if different decay rates resulted in 

better model fit, ultimately choosing ν =0.3 to represent rapid decay of spatial dependence, 

ν =3 to represent a gradual decay, and ν =1 as a standard rate of decay. We implemented 

various tuning parameter values to assess the sensitivity of our model to their selection.

3.3 Secondary Model

Previous research has shown that the incorporation of data at multiple resolutions can 

improve model fit (Aregay et al. 2016b, 2016a; Fonseca et al. 2017; Aregay et al. 2018). We 

implement an alternative CMAQ adjustment model to provide estimates at each chosen 

spatial unit based on a model relating averaged monitor data and averaged CMAQ data:

Zlk, ann Normal zlk, ann
T , σzann, k

2
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Zlk, ann
T = β0k + β1kXlk, ann + kblk

, where Zlk, ann is the mean monitor value of a given pollutant at a given chosen spatial unit 

for the complete time of analysis. If multiple dense sites lie in the same chosen spatial unit 

then their overall mean will be taken. Zlk, ann
T  represents the monitored mean value. Xlk, ann is 

the mean CMAQ value of a given pollutant at a given corresponding chosen spatial unit for 

the complete time of analysis, where daily CMAQ values (Xljk) are aggregated using area 

weighting to the chosen spatial unit. β0k and β1k are random intercept and slope, 

respectively, and kb is a spatially correlated error term based on the neighborhood of the 

chosen spatial unit and distributed MCAR:

kb NnwP 0, ψ ⊗ D − W −1

with P × P covariance prior distribution:

ψ InvWishart ψ0, κψ

with κψ = 8 and nw = Number of end spatial units

The trained annual model is then used on daily CMAQ data, which have also been 

aggregated to the end spatial unit spatial scale, to provide estimates for each pollutant at 

each chosen spatial unit on each day:

Cl jk
T = β0k + β1kXl jk + kblk + χkλ jk

The primary model, the secondary mean model, and the secondary daily model are all fit 

jointly within a Bayesian Hierarchical framework, and we link the primary and secondary 

models with the temporal error term, λjk. λjk provides the secondary model, which is 

essentially a bias adjustment for raw CMAQ values re-aligned to the end spatial unit, with 

pollutant dependent temporal variation based on monitoring data in the primary model. We 

include the modification factor, χk, to scale the temporal error appropriately in the 

secondary model.

Defining Prior Distributions for Secondary Model—β0k and β1k are similarly 

distributed Normal 0, σβ0k
2 , Normal 0, σβ1k

2 . The modification factor, χk, has a Normal prior 

distribution centered on a factor of 1 (Normal 1, σ χk
2 ). ψ is a covariance matrix defined 

similarly to Ω with an inverse-Wishart prior (ψ InvWishart ψ0, 8 ) Also, note that σβ0k
2 , σβ1k

2 , 

σ χk
2 , and σeclk

2  are each given their own hyper prior distributions, defined as: 

InvGamma(2,0.5).
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3.4 Model Variants

We investigate the primary model defined above with several variants. As others have not 

implemented multivariate predictions in this setting, we were interested in the evaluating the 

merits of different model paradigms and varied prior specifications that are meant to address 

the different types of missingness present in air pollutant data. As our primary challenge 

with current data resources is spatial missingness, we implement models that vary our 

assumptions on the spatial error and relationship of the pollutants. We aim to find the best 

balance between a model complex enough to estimate the true relationships and a 

parsimonious model that is more efficient to fit while also limiting the possibility of model 

misspecification.

3.4.1 Primary Model Variants—Model 1 includes the spatially uncorrelated error 

term, εik, but does not utilize the spatially correlated error terms, εik. Model 1 allows for a 

more flexible spatial error term that removes the assumption that the residual error will be 

spatially correlated or related across pollutants.

z jik
t = α0 jk + α1 jkX jik + λ jk + εlk

Model 2 shifts the paradigm to a spatially correlated error setting, allowing each pollutant to 

have their own independent Intrinsic Conditional Autoregressive (ICAR) distribution (Besag 

et al. 1991). We allow Model 2 to retain a multivariate setting with the data being distributed 

as a multivariate normal but include independent CAR assumptions for the spatial errors. 

Here, ek has an ICAR distribution with the same neighborhood parameters for the individual 

CAR models as were used in the MCAR model defined previously.

ek N 0, σek
2 D−W −1

Each pollutant now has its own variance term, (σek
2 InvGamma 2, 0.5 ).

Model 3 employs independent normal distributions for each pollutant rather than the 

multivariate normal scenario described previously. However, we revert to the multivariate 

spatially correlated error term: e NnzP 0, Ω ⊗ D − W −1  that was described in Section 3. 

This model also employs a multivariate relationship at only one level of the hierarchy.

z jik Normal z jik
t , σzk

2

σzk
2 InvGamma 2, 0.5

3.4.2 Secondary Model Variants—Note that in Models 2 and 3 a spatially 

uncorrelated error term, eclk, is included.
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eclk Normal 0, σeck
2

Note that the model variants are described in Table 3.

3.5 Model Fitting Software and Diagnostics

We choose to use WinBUGS due to the demonstrated effectiveness of sampling posterior 

distributions in Bayesian Hierarchical Modeling (BHM) settings using Markov chain Monte 

Carlo (McMC) sampling methods. Specifically, we utilize the default sampling methods in 

WinBUGS 1.4.3 -- a mixture of Gibbs sampling and random walk Metropolis-Hastings 

sampling. Other options are available for modeling in a BHM paradigm; however, they each 

have their own limitations. Ultimately, WinBUGS allows for the flexibility and complexity 

of our proposed models, while offering turn-key functionality for the spatial distributions we 

require.

All models are fit using two separate chains and a burn-in period of 40,000 iterations. We 

then run a posterior sample of 10,000 iterations per chain, thinning to every 25th observation. 

We choose to thin to reduce autocorrelation of samples, and to limit the overall data output 

size resulting in a posterior distribution sample of 800 (from two chains), which should be 

adequately large to provide summary statistics. Burn-in period was determined by 

investigating the Gelman-Rubin convergence diagnostic to ensure its value was less than 1.2 

for each of the monitored parameters (Brooks et al. 1997). Each of the 4 Models specified 

here are fit using R version 3.4.3, the ‘r2WinBUGS’ package, and WinBUGS 1.4.3.

4. Simulation Study

In order to evaluate the effectiveness of our model variants, we implement a small 

simulation study. We simulate values of the 8 specified pollutants in South Carolina over a 

grid with a resolution of 6km × 6km and grid cell locations g (where g=1,…..ng) using an 

MCAR distribution in WinBUGS.

sim j NngP O, Ωsim ⊗ Dsim − Wsim
−1

where simj is an array containing simulated ground truth values for each of the 8 pollutants 

on a given day, j, at each grid cell point, g, and 

Ωsim = Empirical Covariance from Monitoring Data. We designed the study to evaluate the 

spatial variation and cross correlation of pollutants. This led to using an MCAR distribution 

as the number of locations required to produce a 6km grid resolution across South Carolina 

was too large to model using a Gaussian process with our resources. The MCAR paradigm 

allows for correlation across space and pollutants while drawing at a suitable resolution for 

our simulation.

After initial simulation tests of our three proposed models, we produce a 28-day simulated 

data sample by simulating 28 sample data sets from the specified MCAR distribution. The 
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simulated data does retain some autocorrelation from iteration to iteration (representing day 

to day data); however, we do not systematically add any temporal correlation. The major 

challenge in completing a simulation study for this modeling method is incorporating the 

CMAQ data to be ‘fused’ with the monitor data. A random field can provide monitor data 

simulations; however, CMAQ data is assumed to be related to the true field in an unknown 

way. Basing our simulated CMAQ values on the real CMAQ data would provide no link to 

the simulated ground truth, forcing us to develop pseudo-CMAQ values that are derived 

from the simulated random field, but with random error incorporated. We aggregate the 

simulated data from its 6 km × 6km grid to the misaligned 12 km × 12 km CMAQ grid. We 

then add in random error with mean 0 and variance equal to 10% of the mean of real CMAQ 

values provided by the EPA. We chose to add random error to provide some level of 

randomness to the spatial structure. We know that CMAQ values are not perfectly estimating 

measured pollution, and we incorporate this uncertainty into our pseudo CMAQ. While the 

random error added is not ideal for predicting the true spatial structure, the EPA’s CMAQ 

values also have varied spatial structure, lacking smooth transitions at some locations.

We also want to incorporate simulated ‘urban’ areas to reflect the differences between urban 

and rural air pollution as seen in empirical data. We therefore added in spikes of 1 standard 

deviation at three (3) grid locations and their neighboring grid cells on the original simulated 

grid.

We ultimately choose 100 random locations across our ‘simulated SC’ region. To evaluate 

our models’ fits, we produce test and validation datasets. To produce the sets, we give each 

monitoring location a 50% probability of inclusion in the test set, resulting in ~53% of the 

data being removed. This missingness is also important for the simulation as the real-world 

data will always have large amounts of missing data. We evaluate each of the model variants 

described above by comparing the modeled results based on the simulated test data set with 

the left-out validation set.

4.1 Simulation Results

Simulation fit results are based on the comparison of the model predictions of Zjik versus the 

validation set of left out data. Mean Square Predictive Error (MSPE), Mean Bias (Bias), and 

the Coefficient of Determination (R2) were calculated in order to evaluate the fit and 

predictive accuracy of each model. We show results for Models 1 and 3, as Model 2 was 

clearly inferior in initial 2-day cases of simulation results.

Fit metrics are calculated as follows:

MSPE =
∑ j ∑i z jik

pred − z jik
validation 2

nz

Bias =
∑ j ∑i z jik

pred − z jik
validation

nz
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R2 = correlation z jik
pred, z jik

validation 2

All simulation fit results can be seen in Tables 4–6.

R2 shows the predictive accuracy of each model for each pollutant, and our goal was to find 

the most predictive model for pollutant levels at the monitoring sites. Model 1’s R2 values 

are consistently > 0.6 (SO2 has lowest R2 at 0.59), suggesting a strong fit at monitoring sites, 

with CO, NO2, PM2.5 NH4, and PM2.5 SO4 all at > 0.75. These results are averages over 

the 28 day period. Bias and MSPE are very low for PM2.5 and PM2.5 SO4 and NH4, but 

SO2 has extremely biased results. Gaseous pollutants NO2 and CO also have very low 

MSPE results, suggesting a good fit.

Model 3 has improved results, compared to Model 1, with five (5) pollutants’ cross validated 

R2 metrics greater than 0.8. SO2 continues to demonstrate the worst results (R2=0.57), and 

Ozone and Elemental Carbon also have R2 < 0.7. MSPE results mirror those of R2, with SO2 

having the poorest results (MSPE=0.09), while all other pollutants have MSPE < 0.06. Bias 

is very low for all pollutants based on Model 3 results, with no pollutant having an absolute 

mean bias > 0.02. We also investigate the best fit at the final ZIP code level spatial unit 

based on these best models. Figure 3 shows the fit statistics based on a validation set of the 

simulation data based on Model 1. Each of the four interpolation methods is compared. We 

see that for most pollutants the distance weighting method using ν =1 is optimal. When 

models are implemented with ν =3 results are extremely poor. Results for the neighborhood 

interpolation method are also inferior to the distance weighting interpolation with ν =1. 

Note that simulated data is aligned to ZIP spatial unit by area weighted polygon overlap 

methods. Figure 5 compares the interpolation methods using Model 3 and shows similar 

results.

The resulting fit metrics are not nearly as accurate as they are at the actual monitoring sites, 

with considerably lower R2 values. We would expect these differences in accuracy, as 

monitoring locations have collocated pollutant levels that are informing the predictions, 

whereas predictions at spatial units without a monitoring site are relying on interpolated 

results from the primary model and the relatively simpler secondary model’s estimates.

Figure 4 shows Model 1 estimates and model fit at the chosen spatial unit for PM2.5 for a 2-

day subset of the overall 28 day run. Supplemental Figures 1–7 show estimates and fit of 

Model 1 for all remaining pollutants. Figure 6 shows Model 3 estimates and model fit for 

PM2.5 for a 2-day subset, while Supplemental Figures 8–14. These figures show that, as we 

would expect, residual errors are largest in areas with little to no monitoring locations. 

However, the overall spatial surface for the estimates generally mimic our ground truth 

values.

5. Case Study

We use South Carolina air pollution levels as a case study for our estimation model. We 

collected EPA pollutant monitoring data for the eight (8) pollutants listed above for June 
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2006 in South Carolina. We also obtained CMAQ estimates at a 12 km × 12 km grid 

resolution for South Carolina from the EPA. There are 87 monitoring stations available over 

a 28-day period (6/1/2006 – 6/28/2006). Missingness for each monitoring site varied by 

pollutant, with some pollutants monitored every day at a given site while not monitored at all 

at other sites. This results in a large swath of missing data (see Table 1), but it is 

representative of normal rates of missing pollutant data, as most monitoring sites sample 

only 1 or 2 pollutants, and many sites do not sample every day.

We conducted several analyses to evaluate the predictive power of our different model 

variants. We also implemented the univariate fusion technique described by Friberg et al. 

2016 to provide a univariate reference to compare our multivariate methods.

5.1 Case Study 28-day Results

We implement Models 1 and 3 (described in Section 3.4) for 28 days. We select 10% of 

monitor data to leave out for a given model fit. Using the available 90% of the data, 

estimates are predicted at the ZIP code level. The left-out monitors’ values are assigned as 

the estimates for the ZIP code where they are contained, and MSPE, R2, and mean bias are 

calculated.

The resulting predictive metrics are then aggregated and are shown in Tables 7–9. Note that 

blacked out squares represent where there is not sufficient pollutant data to evaluate the 

model. Unfortunately, some pollutants have extremely low rates of observation, so we were 

forced to choose a month where the Elemental Carbon PM2.5 constituent only had a total of 

9 observations at only one monitoring station. This limited data results in none of its true 

values being in the validation data set, preventing us from providing fit results.

Table 10 shows the R2 results for the Friberg et al. methodology. We performed a similar 

cross validation, resulting in relatively strong fit results for SO4, NH4, and Ozone. It is 

important to note that when using some exposure prediction methods, it is impossible to 

provide a prediction for some monitor-day combinations. Table 10 also includes the rate of 

missingness (% Missing) of estimates by dividing the total number of estimates produced by 

the total number of monitor-day combinations and subtracting from 1. We see that NH4 has 

strong fit, but only ~30% of monitor-day combinations are estimated due to the limited data 

available for fitting this model. On days where there are fewer than 3 monitors of a given 

pollutant, this particular univariate method cannot predict values. CO also has high rates of 

estimate missingness, and Elemental Carbon could not be predicted at all because there were 

no days during which more than 1 monitor location recorded EC values.

Table 10 also demonstrates the difficulty in predicting gaseous pollutants in particular, with 

poor fit in SO2 and NO2.

Our results show that Model 3 provides better predictions for NH4 and SO4, while Model 1 

achieved higher R2 values in CO and PM2.5. Model 3 outperforming Model 1 in the 

constituent pollutants, which are not widely monitored, could provide some information on 

the best models for constituent only prediction in future research. Conversely, Model 1 has 

slightly better MSPE metrics, particularly for the gaseous pollutants (CO: 1.06, NO2: 1.1) 
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compared to Model 3 (CO: 1.3, NO2: 1.23). Mean Bias is also consistently better in Model 1 

(with the exception of NO2, where bias is almost equivalent - −0.12 vs. −0.11). The PM2.5 

constituent ions Sulfate and Ammonium are monitored much less widely than Ozone and 

PM2.5, and yet their R2 values are somewhat higher than the other pollutants (0.3–0.5) in 

Model 3; however, their results are still poor compared to our univariate comparison. CO’s 

fit is better than other pollutants in our models, despite its higher rate of missingness, and 

outperforms the univariate analysis in Model 1. Both Models 1 and 3 outperform the 

univariate fit for SO2 and NO2, suggesting multivariate methods may be leveraged for 

gaseous pollutants specifically. Bias and MSPE results slightly favor Model 1 in almost all 

cases.

6. Discussion

The proposed models show impressive results for a multivariate approach to modeling air 

pollutant concentrations in our simulation studies. In our preliminary modeling, Models 1 

and 3 were clearly superior to Model 2 in terms of predictive accuracy. R2 metrics show that 

for pollutants CO, NO2, PM2.5, NH4, and SO4 both Models 1 and 3 provide accurate results 

(all values > 0.77). Model 3 shows superior results based on R2 for all pollutants except 

SO2; however, SO2’s mean bias is much better in Model 3. Our simulation study 

demonstrates that a multivariate approach can provide accurate results even with ~50% of 

the data missing, which is an important consideration for any ambient air pollutant model. 

This missingness accounted for large areas of ‘unmonitored’ space, as well as monitoring 

stations with limited number of pollutants, mimicking real-world monitoring distributions.

Figures 4 and 6 show that errors are predictably larger in areas where monitor sites were not 

present in the simulation study (MSPE ~ 0.5 vs. MSPE < 0.1). Still, residual errors remain 

within half a standard deviation of true values in most cases. Our sensitivity study of 

interpolation methods demonstrates that the distance weighting method with ν =1 was the 

optimal choice based on improved cross validated R2 metrics at non-monitoring locations.

The case study data illustrate several deficiencies of current air pollution data, with some 

pollutants only monitored at one station over the given time period. Results for Models 1 

and 3 are, predictably, not as reliable as in the simulated case of ~53% missing data. 

However, these models show acceptable levels of MSPE and R2 (<1.5 and ~0.4, 

respectively) for some pollutants.

Our univariate approach results (Table 10) demonstrate their effectiveness in widely 

monitored pollutants like PM2.5 and Ozone, and they do surprisingly well with PM2.5 

constituents SO4 and NH4. We do note the limitations of the univariate methods by including 

the percentage of estimates still missing due to lack of available data resources (60% for 

NH4). Conversely, our univariate approach did not provide accurate results for gaseous 

pollutants CO, SO2, and NO2 – yielding R2 values of 0.29, 0.07, and 0.14, respectively. We 

see that raw CMAQ’s estimates for gaseous pollutants also demonstrate poor fit.. Raw 

CMAQ R2 fit statistics for June 2006 are below 0.06 for Sulfur Dioxide and Carbon 

Monoxide and below 0.25 for Ammonium Ion and Sulfate.. While the gaseous pollutants 

and PM2.5 (and its constituents) seem to respond differently to our modeling variations, 
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there are signs of improved accuracy for NO2, CO, and SO2 based on multivariate 

relationships. Model 3 outperforms raw CMAQ and the Friberg et al. univariate approach for 

SO2, while Model 1 outperforms raw CMAQ and the univariate approach for CO. Our 

models also outperform the univariate NO2 results. All of these pollutants have spatial 

missingness rates > 60%, with CO being especially sparsely monitored.

Our approach does fall short of the univariate method in some cases, particularly in PM2.5 

constituents. While we still believe in the benefits of a multivariate approach for these data, 

it is possible that they should be modeled as a more complete set. We only use three PM2.5 

constituents, while some monitoring stations differentiate PM2.5 into a much greater 

number of species. We also suggest consideration of the needs of a specific project when 

selecting an exposure prediction method. Trade-offs in accuracy and completeness are the 

realities of working with the limited air quality monitoring data available.

7. Conclusions

Our fusion model aims to address predictive accuracy for pollutants that are monitored 

sparsely, both in space and time. Pollutants with fewer than three monitoring locations on a 

given day provide challenges for univariate prediction methods.. South Carolina’s 

monitoring network demonstrates the reality of such sparse monitoring networks (see Table 

1). Our multivariate fusion approach gives researchers an opportunity to estimate these 

sparsely monitored pollutants by leveraging all of their available resources.

Our simulation results demonstrate Model 3’s ability to provide accurate results based on 

data with over 50% missingness, and while our case study results do not yield the same 

accuracy, the missingness in this data was > 80% in half of our pollutants of interest.

Our methods provide complete spatio-temporally resolved results to a given end spatial unit. 

With the shift in air pollution research to the investigation of mixtures of pollutants, the 

ability to provide exposure data with limited missingness will be vital.

We can see how our multivariate approach can benefit the prediction of these pollutants with 

high spatial missingness, particularly in the gaseous pollutants. We also see how the 

multivariate approach can provide more complete estimates for exposure data, by providing 

estimates on days where a pollutant was not measured, at a location where it was never 

measured.

Univariate models may be able to impute values on missing days, but their prediction relies 

on temporal correlation. Our model treats gaps in time series as spatial missingness and 

relies on inter-pollutant correlation, spatial correlation, AND temporal correlation to fit 

missing values. The alternatives for researchers are currently limited to modeled data, such 

as CMAQ, which we have shown (Table 2) to have lower predictive accuracy than our 

models for many pollutants.

We see promise in improving predictive accuracy using the multivariate paradigm, 

specifically in the gaseous pollutants SO2 and NO2, as we saw increases in R2 for these 

pollutants in Models 1 and 3 when compared to CMAQ alone and our univariate approach. 
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A goal for future research is to create a complete prediction dataset to be made available to 

researchers, so others would not have to develop or implement their own exposure prediction 

models. While our nearest neighbor spatially dependent structure is more computationally 

efficient than a point level geostatistical model, other more novel neighborhood methods 

may be available to increase efficiency further still. Investigating the multivariate spatio-

temporal variation on these pollutants will be important as researchers shift toward mixtures 

analysis, providing a need for effective and accurate modeling of exposures that are not 

always uniformly monitored or measured.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of monitoring locations across South Carolina for June 2006. A point represents a 

location where at least one of the eight pollutants was monitored for at least 1 day.
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Figure 2. 
Neighborhood Weighting Diagram
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Figure 3. 
Comparison of fit metrics for Model 1 chosen spatial unit estimates using the four 

mentioned interpolation methods.
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Figure 4. 
PM 2.5 w and y Estimates and Errors for a 2-day span using Model 1. Day 1 results are on 

top 2 rows. Day 2 results are on bottom 2 rows. Errors are calculated as absolute residuals 

and are given as number of standard deviations from the true value. Locations of all 

‘monitor’ sites used in the simulation are given in the map in the lower right as well.
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Figure 5. 
Comparison of fit metrics for Model 3 chosen spatial unit estimates using the four 

mentioned interpolation methods.
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Figure 6. 
PM 2.5 w and y Estimates and Errors for a 2-day span using Model 3. Day 1 results are on 

top 2 rows. Day 2 results are on bottom 2 rows. Errors are calculated as absolute residuals 

and are given as number of standard deviations from the true value. Locations of all 

‘monitor’ sites used in the simulation are given in the map in the lower right as well.

Boaz et al. Page 25

Environmetrics. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boaz et al. Page 26

Table 1.

Percent of monitoring stations recording at least one observation from June 1, 2006 to June 28, 2006 for each 

pollutant.

Pollutant CO O3 NO2 SO2 PM2.5 EC SO4 NH4

No. Stations 6 26 14 18 23 2 9 4

Spatial Missingness Rate 88% 46% 71% 63% 53% 96% 81% 92%

Temporal Missingness Rate 0% 0% 0% 0% 0% 68% 0% 68%
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Table 2.

Raw CMAQ R2 fit for South Carolina in June of 2006.

R2 Pollutant

0.202 PM2.5 Ammonium Ion

0.056 Carbon Monoxide

0.632 PM2.5 Elemental Carbon

0.295 Nitrogen Dioxide

0.682 Ozone

0.664 PM2.5

0.251 PM2.5 Sulfate Ion

0.010 Sulfur Dioxide
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Table 3.

Summary of Primary Model Variants to be evaluated

Model Number Model Specification Model Description

Model 1 z ji MVN(z ji
t , Σz)

z jik
t = α0 jk + α1 jkX jik + λ jk + εik

εik N(0, σεk
2 )

Multivariate normal with random walk temporal error and uncorrelated spatial 
error.

Model 2
z ji MVN(z ji

t , Σz)

z jik
t = α0 jk + α1 jkX jik + λ jk + eik

ek N 0, σek
2 D − W −1

Multivariate normal with random walk temporal error and independent ICAR 
spatial errors.

Model 3 z jik Normal(z jik
t , σzk

2 )

z jik
t = α0 jk + α1 jkX jik + λ jk + eik

e NnzP 0, Ω ⊗ D−W −1

Independent normal distributions with random walk temporal error and MCAR 
spatial error.
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Table 4.

MSPE 28-day Simulation Results for each pollutant

0.03 0.02 CO

0.08 0.09 SO2

0.03 0.03 NO2

0.05 0.06 O3

0.01 0.01 PM2.5

0.01 0.01 NH4

0.04 0.04 EC1

0.02 0.02 SO4

Model 1
28 day

Model 3
28 day
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Table 5.

Bias 28-day Simulation Results for each pollutant

0.35 0.01 CO

3.22 −0.02 SO2

−0.15 −0.01 NO2

0.29 0.01 O3

0.06 0 PM2.5

−0.11 −0.01 NH4

0.66 0.01 EC1

−0 02 −0.01 SO4

Model 1
28 day

Model 3
28 day
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Table 6.

R2 28-day Simulation Results for each pollutant

0.81 0 83 CO

0.59 0.57 SO2

0.79 0.81 NO2

0.67 0.67 O3

0.77 0.82 PM2.5

0.81 0.87 NH4

0.68 0.68 EC1

0.78 0.8 SO4

Model 1
28 day

Model 3
28 day
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Table 7.

MSPE Case Study Results for each pollutant based on a 28-day Model run for June 2006 using Model 1 (left 

column) and Model 3 (right column).

1.08 1.3 CO

1.28 1.23 SO2

1.1 1.23 NO2

1 44 1.45 O3

1.28 1.76 PM2.5

2.1 2.11 NH4

EC1

1.24 1.41 SO4
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Table 8.

Mean Bias Case Study Results for each pollutant based on a 28-day Model run for June 2006 using Model 1 

(left column) and Model 3 (right column).

−0.06 −0.2 CO

−0.11 −0.11 SO2

−0.12 −0.1 NO2

−0.1 −0.24 O3

−0.23 −0.25 PM2.5

−0.86 −1.02 NH4

EC1

−0.45 −0.58 SO4
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Table 9.

R2 Case Study Results for each pollutant based on 28-day period in June 2006 Data using Model 1 (left 

column) and Model 3 (right column).

0 39 0.21 CO

0.24 0.29 SO2

0.18 0.2 NO2

0 11 0.12 03

0.2 0.15 PM2.5

0.21 0.33 NH4

EC1

0.28 0.45 SO4
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Table 10.

R2 and Percent Missingness (% Missing) for pollutant estimates obtained using Friberg et al. 2016 

methodology. % Missing is the percent of possible monitor-day combinations that were NOT predicted using 

this methodology due to insufficient data resources.

Pollutant R2 % Missing

CO 0.29 63

SO2 0.07 0

NO2 0.14 0

O3 0.71 0

PM2.5 0.52 15

NH4 0.67 69

EC N/A 100

SO4 0.61 1
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