
Multi-modal Neuroimaging Feature Selection with Consistent 
Metric Constraint for Diagnosis of Alzheimer’s Disease

Xiaoke Haoa, Yongjin Baoa, Yingchun Guoa,*, Ming Yua, Daoqiang Zhangb,*, Shannon L. 
Risacherc, Andrew J. Saykinc, Xiaohui Yaod, Li Shend,*, Alzheimer’s Disease Neuroimaging 
Initiative
aSchool of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China

bSchool of Computer Science and Technology, Nanjing University of Aeronautics and 
Astronautics, Nanjing 211106, China

cDepartment of Radiology and Imaging Sciences, School of Medicine, Indiana University, 
Indianapolis 46202, USA

dDepartment of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, 
University of Pennsylvania, Philadelphia, 19104, USA

Abstract

The accurate diagnosis of Alzheimer’s disease (AD) and its early stage, e.g., mild cognitive 

impairment (MCI), is essential for timely treatment or possible intervention to slow down AD 

progression. Recent studies have demonstrated that multiple neuroimaging and biological 

measures contain complementary information for diagnosis and prognosis. Therefore, information 

fusion strategies with multi-modal neuroimaging data, such as voxel-based measures extracted 

from structural MRI (VBM-MRI) and fluorodeoxyglucose positron emission tomography (FDG-

PET), have shown their effectiveness for AD diagnosis. However, most existing methods are 

proposed to simply integrate the multi-modal data, but do not make full use of structure 

information across the different modalities. In this paper, we propose a novel multi-modal 

neuroimaging feature selection method with consistent metric constraint (MFCC) for AD analysis. 

First, the similarity is calculated for each modality (i.e. VBM-MRI or FDG-PET) individually by 

random forest strategy, which can extract pairwise similarity measures for multiple modalities. 

Then the group sparsity regularization term and the sample similarity constraint regularization 

term are used to constrain the objective function to conduct feature selection from multiple 

modalities. Finally, the multi-kernel support vector machine (MK-SVM) is used to fuse the 

features selected from different models for final classification. The experimental results on the 
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) show that the proposed method has better 

classification performance than the start-of-the-art multimodality-based methods. Specifically, we 

achieved higher accuracy and area under the curve (AUC) for AD versus normal controls (NC), 

MCI versus NC, and MCI converters (MCI-C) versus MCI non-converters (MCI-NC) on ADNI 

datasets. Therefore, the proposed model not only outperforms the traditional method in terms of 

AD/MCI classification, but also discovers the characteristics associated with the disease, 

demonstrating its promise for improving disease-related mechanistic understanding.

Keywords

Similarity measures; Multi-modal neuroimaging; Feature selection; Alzheimer’s disease; Mild 
cognitive impairment

Introduction

In recent years, the incidence of brain diseases worldwide has been rising. Alzheimer’s 

disease (AD) is one of the most common brain diseases, and its clinical manifestations are 

mainly memory impairment and loss of reasoning cognitive ability, accompanied by 

language and movement disorders. At present, AD has become the fifth leading cause of 

death in the elderly. In a 2018 report from the Alzheimer’s Association of the United States, 

National Center for Health Statistics has shown the statistics information on the rate of 

change in mortality from multiple risky diseases in the United States. That is, between 2000 

and 2015, the number of lethal deaths of many risk diseases has achieved negative growth, 

while the incidence of AD has increased by 123% (Association, 2018). According to another 

survey report (Association, 2017), one case of Alzheimer’s disease will be diagnosed every 

33 seconds in 2050, with nearly one million new cases each year. AD has become one of the 

major diseases that endanger the health of the elderly and affect the sustainable development 

of society. However, the efficacy of drugs for the treatment of AD has been limited to date, 

and no treatment has been reported to reverse or prevent the progression of AD.

Therefore, the measurement of sensitive markers in the early stages of the disease can help 

researchers and clinicians develop new treatments and test their effectiveness. Recently, 

various measurements such as structural atrophy, pathological amyloid deposition, and 

metabolic changes have already been shown to be sensitive to the diagnosis of AD and MCI. 

Neuroimaging techniques (Rathore et al., 2017; Sui et al., 2012; Ye et al., 2011) provide 

great help for the discovery of AD-related brain regions of interest (ROIs), which is a 

powerful instrument for the diagnosis of neurodegenerative diseases. For example, voxel-

based measures extracted from structural MRI (VBM-MRI) and fluorodeoxyglucose 

positron emission tomography (FDG-PET), have been shown to be useful for investigating 

the neurophysiological features of AD and mild cognitive impairment (MCI) (Chetelat et al., 

2003; Cohen and Klunk, 2014; Foster et al., 2007; Zhang et al., 2015).

In recent decades, machine learning and pattern recognition methods, including sparse 

learning, graph theory, and classification, have been widely used in neuroimaging analysis 

for AD and MCI diagnosis (Lei et al., 2017; Sanz-Arigita et al., 2010; Wang et al., 2018; Ye 

et al., 2011). However, some existing studies focus on extracting features from a single 
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modality. For example, the researchers extracted some features from certain ROI, such as the 

hippocampus on structural MRI (Frisoni et al., 2010) for the classification of AD (Gerardin 

et al., 2009; Wang et al., 2006). While in addition to structural MRI, PET images can also be 

used for classification of AD and MCI (Chetelat et al., 2003; Cohen and Klunk, 2014; Foster 

et al., 2007; Hinrichs et al., 2009).

As the brain has very complex structure and function, acquiring data from single modality 

does not provide sufficient feature information for diagnosis. In recent years, with the 

development of neuroimaging technology, multi-modal data can be collected during various 

examinations of subjects, providing a source of data for the diagnosis of AD. Different 

modality data can provide brain information from different perspectives. For example, 

structural MRI provides information related to brain tissue types, while PET measures 

glucose brain metabolic rate. Numerous studies have shown that (Ahmed et al., 2017; Gray 

et al., 2013; Lei et al., 2017; Liu et al., 2015b; Teipel et al., 2015; Tong et al., 2017; Zhang et 

al., 2011; Zhu et al., 2015) a variety of neuroimaging data can provide complementary 

information, and the information fusion from different modalities can enhance diagnostic 

performance. Therefore, the accuracy of using multi-modal data for AD diagnosis is better 

than that of single modality. For example, Zhang et al. (Zhang et al., 2011) and Liu et al. 

(Liu et al., 2015b) used two modal data (including MRI and PET) for AD diagnosis. Lei et 

al. (Lei et al., 2017) used MRI, PET and cerebrospinal fluid (CSF) for regression and 

classification of AD. Tong et al.(Tong et al., 2017) used MRI, PET, CSF and genes for 

AD/MCI classification.

Although the current AD diagnostic methods involved with multi-modal data have good 

effects, there are still some problems that may limit the classification performance. When we 

extract features from neuroimaging, there are a lot of redundancy or unrelated features, 

which will lead to poor classification performance. Therefore, how to remove redundant or 

unrelated features is a very important step in AD diagnosis. At this stage, there are some 

feature selection methods to detect the brain features associated with AD. For example, Liu 

et al. (Liu et al., 2016a; Liu et al., 2015a) used the hierarchical relationship between different 

template data to establish a structurally constrained integrated learning AD diagnostic 

prediction model. Peng et al. (Peng et al., 2018) used l1,p-norm to construct the sparsity-

constrained objective function and projected it into a new space for AD diagnosis 

classification. Zhu et al.(Zhu et al., 2015) combined two subspace learning methods, namely 

linear discriminant analysis and the projection is locally maintained to select features in the 

brain image. Jie et al. (Jie et al., 2015) proposed a manifold regularization multi-task feature 

learning method, which uses multi-task learning and manifold-based Laplacian 

regularization to maintain the intrinsic correlation between multiple modal data, thereby 

adding more discriminative features. Zu et al. (Zu et al., 2016) proposed a label-aligned 

multi-task feature learning method which adds a new label-aligned regularization term to the 

objective function of standard multi-task feature selection to ensure that all multi-modal 

subjects with the same class labels should be close in the new feature-reduced space.

However, one drawback of existing methods is that they do not take full advantage of the 

similarity relationships between samples. This relationship is a significant prior knowledge, 

because there are certain differences and commonalities between samples, and it is 
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important to make rational use of this information. In many practical problems, it is critical 

to represent structural information between samples consistently. As the data types of 

different modalities are different, if the complex relationship between samples is expressed 

by Euclidean distance or other simple metrics, the structure or topology information will be 

lost. In simple terms, a reasonable representation of the complex relationship between 

samples facilitates the selection of more distinguishing features and further improves 

subsequent classification performance. In many applications, researchers have used a 

similarity matrix generated by random forests (Breiman, 2001) to represent complex 

relationships between samples. For example, Tong et al. (Tong et al., 2017) constructed a 

graph using a similarity matrix and then merged the multi-modal data using a graph fusion 

method. Gray et al. (Gray et al., 2013) used the similarity between samples to construct a 

manifold learning model and then used random forests for classification. Here, we use the 

random forest approach to provide similarity measures for multi-modal data.

In this paper, we propose a novel multi-modal neuroimaging feature selection method with 

consistent metric constraint (MFCC). The unique loss function is designed to include a 

regularization term based on the similarity of multi-modal samples, which clearly shows that 

the samples have a similarity relationship in each modality. Specifically, our proposed 

method consists of three steps: 1) calculating the similarity between samples, 2) multi-modal 

feature learning based on sample consistency metrics, and 3) multi-modal fusion and 

classification. We first construct a similarity matrix for each modality through a random 

forest, reflecting the similarity relationship between the samples. Then we treat feature 

learning in each modality as a single learning task and transform multi-modal classification 

tasks into multi-task learning (MTL) problems. MTL uses the correlation between tasks to 

learn multiple tasks and integrate information for each task, thus enhancing single-task 

learning performance. Specifically, we introduce a l2,1-norm for joint selection features, 

which can ensure that different morphological features of the same brain region will be 

selected in different modalities. We then add regularization terms based on sample similarity 

to the standard multi-task objective function. Finally, we use a multi-kernel support vector 

machine (MK-SVM) to fuse the selected features for final classification. In order to verify 

the proposed method, we conduct experimental verification on ADNI-1 and ADNI-2 

datasets. The results show that our proposed method is more accurate than the start-of-the-

art methods.

Materials and workflow

Datasets

In this study, we performed experimental validation using the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) datasets. ADNI was launched in 2003 by the National 

Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the 

Food and Drug Administration, private pharmaceutical companies and non-profit 

organizations, with a $60 million five-year public-private partnership. 202 subjects with 

VBM-MRI and FDG-PET brain imaging in ADNI-1 were used herein, including 51 AD 

subjects, 52 NC and 99 MCI subjects. 99 MCI patients can be further divided into two types, 

including 43 MCI converters and 56 MCI non-converters. In particular, MCI converters 
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(MCI-C) will develop into AD patients within 18 months, while MCI non-converters (MCI-

NC) will remain in its original state. Table 1 lists the demographic characteristics of subjects 

in the ADNI-1 dataset.

At the same time, we also analyzed the updated dataset ADNI-2. The ADNI-2 assessed 

participants from the ADNI-1 phases in addition to new participant groups (including elderly 

controls, significant memory concern (SMC), early mild cognitive impairment (EMCI) 

subjects, late mild cognitive impairment (LMCI) subjects, and AD patients) in 2011 (http://

adni.loni.usc.edu/about/). Compared to the ADNI-1 dataset, the ADNI-2 dataset divides 

MCI into three subtypes, including SMC, EMCI, and LMCI.

The diagnostic criteria for ADNI-1 and ADNI-2 are consistent. Diagnosis was made using 

the standard criteria described in the ADNI-2 procedures manual (http://www.adni-info.org). 

Briefly, NC participants had no subjective or informant-based complaint of memory decline 

and normal cognitive performance. SMC participants had subjective memory concerns as 

assessed using the Cognitive Change Index (CCI; total score from first 12 items >16), no 

informant-based complaint of memory impairment or decline, and normal cognitive 

performance on the Wechsler Logical Memory Delayed Recall (LM-delayed) and the Mini-

Mental State Examination (MMSE) (Risacher et al., 2015); EMCI participants had a 

memory concern reported by the subject, informant, clinician, abnormal memory function 

approximately 1 standard deviation below normative performance adjusted for education 

level on the LM-delayed, an MMSE total score greater than 24;Besides a subjective memory 

concern as reported by subject, study partner or clinician, Clinical Dementia Rating (CDR) 

on LMCI subjects was 0.5 and Memory Box (MB) score must beat least 0.5; MMSE score 

on AD should be between 20 and 26 and CDR should be 0.5 or 1.0.

The ADNI-2 dataset includes VBM-MRI and FDG-PET scans from 913 subjects, including 

160 AD, 82 SMC, 460 MCI and 211 NC participants. 460 MCI patients have two phases: 

EMCI and LMCI. Table 2 lists the demographic characteristics of subjects in the ADNI-2 

dataset.

In our work, we perform image preprocessing on VBM-MRI and FDG-PET in the ADNI-1 

dataset. First, the anterior commissure (AC)-posterior commissure (PC) correlation is 

implemented on all images, and then the N3 algorithm (Sled et al., 1998) is used to correct 

the intensity inhomogeneity. Next, we combine brain surface extractor (BSE) (Shattuck et 

al., 2001) and brain extraction tool (BET) (Smith, 2002) to perform skull stripping on 

structural MR images. The skull stripping results are further manually performed to ensure 

the skull clean. After removal of the cerebellum, FMRIB’s Automated Segmentation Tool 

(FAST) in the FMRIB’s Segmentation Library (FSL) package (Zhang et al., 2001) is used to 

segment the structural MR images into three different tissues: gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF). Later, we use 4D (hierarchical attribute 

matching mechanism for elastic registration) HAMMER (Shen et al., 2003), a fully 

automated 4D map warping method that obtain images of subject markers based on a 

template with 93 manually labeled ROIs (Kabani et al., 1998). All images based on the 93 

labeled ROIs in the template can then be tagged. For each of the 93 ROIs in the labeled MR 

image, we calculate the volume of the GM as a feature. For FDG-PET, we first align them 
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with the corresponding MR images of the same object using a rigid transformation and then 

calculate the average intensity of each ROI region in the FDG-PET image as a feature. 

Finally, for each sample, we totally obtain 93 features from the VBM-MRI image, and 

another 93 features from the FDG-PET image.

For the ADNI-2 dataset, we align the preprocessed multi-modal image data (VBM-MRI, 

FDG-PET) with the same visit scan. Then, in the standard Montreal Institute of Neurology 

(MNI) space, as a 2 × 2 × 2mm3 voxel, we create normalized gray matter density maps from 

MRI data, and register the FDG-PET scans into the same space by the Statistical Parametric 

Mapping (SPM) software package (Tzourio-Mazoyer et al., 2002). Based on the MarsBaR 

anatomical automatic labeling (AAL) map (Ashburner and Friston, 2000), the average gray 

matter density is measured at 116 ROI levels. The FDG-PET glucose utilization rate and 

ROIs volume were further extracted. After removal of the cerebellum, imaging 

measurements of each modality (VBM-MRI, FDG-PET) with 90 ROIs are used as 

quantitative traits in our experiments.

Analysis workflow

Figure 1 illustrates the framework of AD versus NC identification, including four steps: data 

preprocessing, feature extraction, feature selection and classification. The innovation of this 

method is to make full use of the global structure information of the data and incorporate the 

similarity-metric constraint between samples.

Method

We hypothesize that there is a similarity structure among samples in an AD study, and we 

can map this relationship into the form of a graph. In the constructed graph, the vertices are 

used to represent the samples, the distance between the samples is used to represent the 

edge. Thus, the graph is undirected, and the associated matrix of the graph is symmetrical.

However, when solving multi-modal problems with more complex sample relationships, it is 

more significant to find appropriate inter-sample measurements. If we cannot find a 

reasonable way to measure multi-modal data, it will lead to inconsistent weights between 

modalities. In this paper, we want to utilize the random forest method to measure the 

relationship between samples, which has been widely used in various applications.

Graph for similarity learning

We calculate the distance between samples and convert it (i.e. dissimilarity) to a similarity 

measurement. Suppose we have n samples, each with s modalities, and d features extracted 

from each modality. When we calculate the similarity using the features from the v-th 
modality, we can construct graph Gv = (Vv, Ev) to describe the relationship between the n 
samples of the v-th modality, where the set Vv of vertices correspond to n samples of the v-

th modality, the set Ev of edges capture the pairwise similarity measures among n samples. 

At this time, we use the adjacency matrix Lv with weight and sizes of n × n to represent the 

similarity between samples, where Lv (a, b) is used to represent the similarity between 

sample a and sample b from the v-th modality. The similarity matrix Lv can be calculated in 
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different ways. A common method is to calculate the distance between a pair of samples 

using the Euclidean distance and normalize it to form the similarity matrix.

Random forests can extract pairs of similarity measures for multiple forms, and random 

forests provide a consistent way of combining different types of feature data. For example, 

the similarity derived from random forests has been successfully applied to tumor clustering 

tasks (Shi and Horvath, 2006). To calculate the similarity between sample a and sample b 
using a random forest, the measurements of the two samples are passed under each tree in 

the forest. The similarity Lv(a, b) is initialized to zero. If sample a and sample b are at the 

same end node of the tree, their similarity Lv(a, b) increases by 1. The final similarity matrix 

is normalized by dividing Lv by the total number of trees in the forest. Therefore, the 

diagonal elements of the similarity matrix Lv are equal to one, and the other elements are all 

numbers greater than zero and less than one. Here we use the random forest MATLAB 

toolbox (Breiman, 2006) to achieve sample similarity calculations.

Figure 2 shows an example of a similarity matrix for different modalities. As we can see, 

charts built with different data types show very different connection patterns, which can 

provide complementary information for AD versus NC classification.

Construct equations

The essential of the multi-task learning (Caruana, 1997) is to solve several related tasks at 

the same time and use the related information across multiple tasks to improve the 

performance of the models. In recent years, multi-task learning has been widely used in 

many fields, including image classification (Luo et al., 2013), text classification (Liu et al., 

2016b), bioinformatics (Xu and Yang, 2011), and so on.

In this study, single modal neuroimaging feature selection and classification can be 

considered as a single task. Suppose we have s learning tasks (i.e., s modal). 

Xv = x1
v, x2

v, …, xN
v T ∈ RN × d is represented as the training data matrix in the v-th task (i.e., 

the v-th modal), where xi
v represents the feature column vector of the v-th task of the 

corresponding i-th sample, d is the dimension of the feature, and N is the sample quantity. 

Let Y = [y1, y2, … ,yN]T be the corresponding label vector for N samples. The value of yi is 

1 or −1 (i.e., patient or normal control). It is worth noting that the labels of different 

morphologies from the same sample are identical. We use a linear function to fit the class 

label, so the objective function of the multi-task feature selection model is as follows 

(Argyriou et al., 2008):

min
W

1
2 ∑i = 1

N ∑v = 1
S yi − xi

vT
wv

2
+ λ W

2, 1
(1)

We can write the variables in Eq (1) as vectors, and the formula is as follows:

min
W

1
2 ∑v = 1

S ‖Y − Xvwv‖2
2 + λ‖W‖2, 1 (2)
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where wv ∈ Rd is the vector of the regression coefficients associated with the v-th modality. 

All s modal vectors form a weight matrix W=[w1,w2, … ,ws] ∈ Rd×s. In Eq (2), ‖W‖2,1 is the 

is the l2,1-norm of the matrix W, which is defined as follows: ‖W‖2, 1 = ∑i = 1
d ‖wi‖2, where 

the superscript i of wi corresponds to the i-th row of the matrix W, and its function is to 

combine multiple modalities. The constraint of l2,1-norm encourages most of the feature 

weight coefficients to be zero, and only a small number of feature weight coefficients are 

non-zero. These non-zero features are the shared features of all tasks. In particular, the 

optimal solution will assign a relatively large weight to the feature providing the 

classification information, and assign zero or small weight to the feature that does not 

provide the classification information or provides less information. For feature selection, 

only those features with non-zero weights are retained. In other words, the specification 

combines multiple tasks and ensures that a small number of common features can be 

selected together across different tasks, taking into account the correlation between different 

tasks. The parameter λ before the l2,1-norm is the coefficient of the regularization term, 

which is used to control the relative weight of the two items. It is worth noting that when 

only one task (i.e., feature selection on single modal brain image data) is learned, the loss 

term ‖Y − Xw‖2
2 is represented as the single task and the l2,1-norm is degenerated into l1-

norm. Thus, Eq (2) will also degenerate to the least absolute shrinkage and selection 

operator (LASSO) model (Tibshirani, 2011).

Based on the sample similarity matrix, we define the sample similarity regularization as 

follows:

Δ = wTXTLXw (3)

Intuitively, we want to preserve the global structural information of the data in the original 

feature space and represent it using a similarity matrix generated by random forest. We 

construct a similarity matrix in each modality to represent the structure of the near and far 

relation of the data. So we can define the multi-modal feature selection objective function 

based on sample similarity as follows:

min
W

1
2 ∑v = 1

s ‖Y − Xvwv‖2
2 + λ‖W‖2, 1 + ∑v = 1

s σv Xvwv TLv Xvwv
(4)

where W=[w1,w2],s = 2. Lv is the sample similarity matrix of the v-th modality. The first 

term in Eq (4) is the empirical error on the training set calculated by the least squares 

method, and the second term is the l2,1-norm, the regularization parameter λ controls the 

group sparsity in the solution. The last term is the similarity regularization constraint, and σv 

is the regularization parameter to balance the penalties from different modalities.

In our model, using the multi-tasking or multimodal correlation, we can not only jointly 

select the shared features from different modalities, but also preserve the similarity 

information between samples in each modality by adding sample similarity regularization 

terms. The existing multi-modal feature selection algorithm only considers the pairwise 

relationship between samples or only considers the information between several points in the 
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vicinity of the sample, only uses local information and ignores the global similarity 

relationship between the sample sets as a whole.

Optimization

As the objective function is not-differentiable and not smooth, there is no way to calculate 

the gradient of some points of the objective function, so the equation cannot be solved by the 

gradient descent method. At this stage, there are many ways to solve the objective function 

formula (4), such as Alternating Direction Method of Multipliers (ADMM) and Accelerated 

Proximal Gradient (APG) (Chen et al., 2009). In this paper, we use the APG algorithm to 

solve our problem.

First, we divide the Eq (4) into smooth terms f1(W) and non-smooth terms f2(W):

f 1(W) = 1
2 ∑v = 1

s ‖Y − Xvwv‖2
2 + ∑v = 1

s σv Xvwv TLv Xvwv
(5)

f 2(W) = λ‖W‖2, 1 (6)

Then we use formula (7) to approximate f1(W)+ f2(W) :

Q
αt W, W(t) = f 1 W(t) + W − W(t), ∇ f 1 W(t) + l

2 W − W(t)
F

2
+ f 2(W) (7)

where 〈X1, X2〉 represents the trace of the matrix X1
TX2, ‖ · ‖F is the Frobenius norm, 

∇ f 1 W(t)  is the gradient of f1(W) at point W(t) of the t-th iteration, and αt is the step factor 

of the t-th iteration, the value of which is obtained by linear search. The update step for the 

APG algorithm is as follows:

W(t + 1) = arg min
W

1
2 W− W(t) − 1

αt ∇ f 1 W(t)

F

2
+ 1

αt f 2(W) (8)

And formula (6) can be solved by formula (8):

P(t) = W(t) +
1 − γt − 1

γt − 1
γt W(t) − W(t − 1)

(9)

where γt = 2
2 + t , and the convergence speed of this algorithm is O 1

T2 , T is the maximum 

number of iterations of the calculation.

Classification

We use the MK-SVM (Zhang et al., 2011) to classify the data after feature selection. The 

prior studies have shown that MK-SVM has a good classification performance for multi-

modal data. Given a training set, the kernel function of the v-th modal is 
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kv xi
v, x j

v = ϕv xi
v T

ϕv x j
v . We use linear kernels to fuse multi-modal data with a kernel 

function of kv xi, x j = ∑v = 1
s βvkv xi

v, x j
v , where βv is the weight coefficient of the v-th 

modality. The dual form of the MK-SVM is as follows:

max
a

∑
i = 1

N
αi − 1

2 ∑
i, j

αiα jyiy j ∑
v = 1

s
βvkv xi

v, x j
v

 s.t. ∑i = 1
N αiyi = 0,

ai ≥ 0, i = 1, 2, …, N

(10)

where α is a Lagrange multiplier. In this paper, the SVM classifier can be solved by using 

LIBSVM toolbox (Chang and Lin, 2011). We find the optimal value of βv by cross-

validation on the training set by grid search in the range of [0,1].

Performance evaluation

Cross-validation is a commonly used method in machine learning to build models and 

validate model parameters. As the number of subjects is limited, cross-validation is to reuse 

data to evaluate the quality of model prediction. In this study, we used 10-fold cross-

validation that could reduce the bias by averaging the results of different group testing. 

Specifically, we divided the dataset into 10 parts. In each cross-validation experiments, we 

took nine of them as a training set and one as a test set, so that we performed 10 experiments 

independently, eliminating errors caused by random division. We used MRI and PET brain 

image data from ADNI-1 to verify the model in three sets of comparison experiments, 

including AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC. Three sets of comparative 

experiments, including AD vs. NC, LMCI vs. NC, and EMCI vs. LMCI were also 

performed on the same model using ADNI-2 dataset. We used accuracy (ACC), sensitivity 

(SEN), specificity (SPE), the area under the curve (AUC), p-value and ROC curve as 

evaluation indicators.

Our proposed multi-modal neuroimaging feature selection with consistent metric constraint 

(denoted as MFCC) method is compared with several existing popular methods, including 

directly concatenating the features of MRI and PET into a vector and using the SVM 

classification, involving 1) methods without feature selection (denote as Baseline-SVM), 2) 

LASSO method (Tibshirani, 2011) (denote as LASSO-SVM), and 3) t-test method, the p-

value significance threshold of the t-test is chosen to be 0.05. We also comprise the 

following multi-kernel methods (Zhang et al., 2011) (denote as t-test-SVM), 1) the multi-

kernel method without feature selection (denoted as Baseline-MK-SVM), 2) LASSO-based 

(Tibshirani, 2011) multi-kernel method (denoted as LASSO-MK-SVM), and 3) multi-kernel 

method based on t-test (denoted as t-test-MK-SVM). It is classified using an SVM with a 

linear kernel. We also compare the feature selection method with the l2,1-norm (denoted as 

Group Lasso-MK-SVM), the similarity matrix by the Euclidean distance calculation 

(denoted as Euclid-MK-SVM) and the hypergraph strategy (denoted as Hypergraph-MK-
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SVM). For model selection, the regularization parameters of all methods are selected from 

the range of {10−9, 10−8, … ,10,102}.

Results

The detailed classification results on ADNI-1 dataset are summarized in Table 3. Figure 3 

plots the ROC curves of all the methods. Specifically, the accuracy values of our proposed 

methods for AD versus NC, MCI versus NC, and MCI-C versus MCI-NC are 97.60%, 

84.47% and 77.76%, respectively on the ADNI-1 dataset. Correspondingly, the AUC values 

of our proposed method are 0.98, 0.86 and 0.71 respectively.

We have treated the ADNI-2 as a larger independent dataset and validated our proposed 

method on it. The classification results on the ADNI-2 dataset are summarized in Table 4. 

Figure 4 plots the ROC curves of all the methods. Specifically, the accuracy values of our 

proposed methods for AD versus NC, MCI versus NC, and MCI-C versus MCI-NC are 

93.72%, 78.47% and 73.87%, respectively on the ADNI-2 dataset. Correspondingly, the 

AUC values of our proposed method are 0.95, 0.78 and 0.7, respectively. In addition, we 

have made a competing test that our proposed approach can also achieve better 

performances no matter what processing framework and template parcellation have been 

applied to dataset.

Besides MFCC-MK-SVM, we also adopt other different classifiers: random forest (RF) and 

K nearest neighbor (KNN) algorithm. The experimental results for the different classifiers in 

the ADNI-1 data set are presented in Table 5. The experimental results for the different 

classifiers in the ADNI-2 dataset are presented in Table 6. We use random forest as the 

classifier, and the number of trees in the random forest is set to 1000, and the number of 

features selected in the RF is d. In the KNN algorithm, we set the parameter K to 5. The 

experimental results show that the classifier MK-SVM can achieve better performances.

In summary, the accuracy of our proposed method is always superior to that of other 

methods in the above cases, indicating that our method has better diagnostic performances. 

In addition, in most cases, the proposed method achieves higher sensitivity than other 

methods. It is worth noting that in our experiment, there is a significant difference between 

sensitivity and specificity. For example, each method has relatively high sensitivity but low 

specificity. In medical diagnosis, it is different to misjudge a patient as normal or to 

misjudge a normal sample as a patient. Obviously, the former is costly and may delay the 

treatment. Therefore, high sensitivity is very important for disease diagnosis and beneficial 

for medical diagnosis.

Discussion

The aim of this paper is to develop a novel method for addressing two issues, including 1) 

selecting brain ROIs related to AD and 2) classification and diagnosis of AD. All 

experiments have been carried out on the ADNI-1 and ADNI-2 datasets to demonstrate the 

effectiveness of the proposed method MFCC. The results show that this method can not only 

classify AD using complementary information from multimodal imaging data, but also help 

discover disease-related biomarkers and understand the pathological mechanism of AD. In 
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the following sections, we will first discuss issues related to construction of random forest, 

similarity and consistency measurement, multi-modal neuroimaging analysis, parameter 

settings, and clinical implications. After that, we will discuss strengths of the proposed 

method in comparison with competing methods as well as possible limitations warranting 

further investigation.

Construction of random forest

In this paper, the similarity matrix of each modality is constructed by random forest method. 

Specifically, this experiment sets the parameters of the random forest as the default values 

(the number of trees is 1000, and the number of features is d). Now we discuss the 

influence of the number of features in random forests in the experimental results. The results 

are shown in Figure 5, where the number of features varies in the range of 

1, d
2 , d

1.5 , d, d * 2, d * 3, d * 4, d . As can be seen from Figure 5, when the number of 

features is set to be d, the experimental results are optimal. However, when the number of 

features is set to be d * 2, the accuracy will rapidly decline. The fundamental reason may be 

that when there are too many features, redundant features will affect the steady of the 

similarity, that is, the similarity matrix calculated by random forest may not be able to 

describe the global relationship between samples.

Similarity metrics learning

Other methods are compared to sample similarity measured by random forests. Specifically, 

the simple graph describes the relationship between pairs of samples, and the hypergraph 

describes the high-order and multi-relationships between samples. The above two methods 

can only capture the local relationship between samples, but cannot fully utilize the 

information provided by the structural data, resulting in the loss of global information.

Sample similarity metrics learning via random forest has been used in a variety of 

applications, such as disease classification and image segmentation (Mitra et al., 2014). In 

addition, some recent studies have incorporated the computational similarity methods into 

medical imaging analysis (Zimmer et al., 2017). For example, Veronika et al. [47] proposed 

a method for calculating the similarity via random forests and combining images to 

determine the classification of neonatal brain disease. Tong et al. (Tong et al., 2017) 

proposed a multi-modal nonlinear graph fusion method. They used four modal data points to 

create four maps using the similarity of random forests, and then used a nonlinear approach 

to fuse and reclassify the four maps. However, they did not consider the inherent information 

of different data modalities.

In contrast, our proposed multi-modal neuroimaging feature selection model with the 

consistent metric constraint not only utilizes the global relationship between samples, but 

also makes full use of the supplementary information provided by different modalities. The 

experimental results have achieved higher classification accuracy and AUC, which have 

demonstrated the effectiveness of our proposed method.
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Multi-modal neuroimaging analysis

Recent studies on the diagnosis of AD have shown that different image modalities can 

provide complementary information to help identify AD (Sui et al., 2012; Tong et al., 2017). 

It has been reported that the fusion of multiple modalities can improve diagnostic 

performance. A number of different approaches have been proposed to fuse biomarkers of 

different modalities to produce more powerful classifiers (Gray et al., 2013; Zhang et al., 

2011). The easiest way to combine multi-modal data is to concatenate the features obtained 

from the different modalities into the row vectors for each sample. For example, Walhovd et 

al. (Walhovd et al., 2010) took the feature vectors as simple connection processing. Gray et 

al. (Gray et al., 2013) used multiple random forest classifiers to fuse multi-modal data for 

classification of AD. In addition, the multi-modal classification method of voting with 

multiple classifiers is a common ensemble learning strategy, but may introduce bias due to 

the use of multimodality. An effective way to fuse different modalities is based on kernel 

methods such as multi-kernel learning (Zhang et al., 2011). A single kernel matrix is 

calculated for each modality, and a final kernel matrix is obtained by their linear 

combination. Several results show that the latter can achieve better performance than the 

former.

In order to evaluate the validity of multi-modal data classification, we performed 

experiments and compared them with multi-modal and single modal data. We use the 

proposed classification framework to compare the results of single modal and multi-modal 

experiments on the ADNI-1 and ADNI-2 datasets. The corresponding results are shown in 

Table 7 and Table 8. As we have seen, the proposed method with two modalities has better 

performance than the single modality. The results further indicate that multi-modal data 

contain supplemental information and can achieve better classification performance than a 

single modality.

The pathological changes from the same ROIs might be examined through structural and 

functional radiologic imaging, simultaneously. Thus performing ROI feature selections 

across multimodalities is very helpful to suppress noises in the individual modality 

features(Hao et al., 2016; Li et al., 2019; Sarter et al., 1996).

The structural and functional features with great heterogeneity can provide essential 

complementary information for brain disease analysis and diagnosis from the aspect of 

feature fusion in ensemble learning community. Here, the different measurements from the 

same ROIs just express the structural and functional changes, which has the characteristics 

of heterogeneity. The experiment results have showed the joint feature selection from the 

same ROIs can achieve higher performances, which has further demonstrated the 

effectiveness of ‘consistency’.

Parameter settings

In the objective function of our proposed model, there are three regularization parameters 

(i.e., λ,σ1, σ2) that need to be set. They balance the relative contribution of the group 

sparsity regularization term and the two-sample consistency metric regularization terms. In 

this section, we study the effect of regularization parameters on classification performance. 
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Specifically, we first fix the value of λ to 0.01 and change σ1 and σ2 in the range of 

{10−9,10−8, … ,102}. Then we fix σ1 to 0.01 and change λ and σ2 in the range of 

{10−9,10−8, … ,102}. Finally, we fixed the value of σ2 to 0.01 and changed λ and σ2 in the 

range of {10−9,10−8, … ,102}. The corresponding test results on ADNI-1 and ADNI-2 

datasets are shown in Figure 6 and Figure 7, respectively. We can see that the proposed 

method slightly fluctuates when changing the parameter λ, σ1, σ2, indicating that our 

proposed method is not particularly sensitive to parameter values.

Clinical implications

It is important to detect the risk ROIs associated with brain disease. We count the top 10 

most frequently selected regions in the AD and NC classifications as the most discriminative 

markers. The top 10 regions in the ADNI-1 dataset are Middle Temporal Gyrus Right, 
Lateral Occipitotemporal Gyrus Left, Hippocampal Formation Left, Supramarginal Gyrus 
Right, Precentral Gyrus Left, Amygdala Right, Angular Gyrus Left, Angular Gyrus Right, 
Precuneus Left, Inferior Temporal Gyrus Right. The top 10 regions in the ADNI-2 dataset 

are Frontal Sup Medial Left, Precuneus Left, Amygdala Right, Cuneus Left, 
ParaHippocampal Left, Frontal Mid Orb Left, Cingulum Mid Left, Rectus Left, Cingulum 
Post Left, Hippocampus Left. As can be seen from Figures 8 and Figure 9, most selected 

ROIs, such as Hippocampus and Amygdala detected simultaneously from different template 

are consistent with previous studies. According to the reports, the fact that Medial Temporal 
Lobe structures, including the Hippocampus, are critical for declarative memory is firmly 

established (Tulving and Markowitsch, 1998). Emotionally significant experiences tend to 

be well remembered, and the Amygdala has a pivotal role in this process (Roozendaal et al., 

2009). Thus, these evidences suggest that the Limbic System (including Hippocampus and 

Amygdala)(Hopper and Vogel, 1976) should be concerned in AD research.

Comparison with previous studies

The MFCC algorithm proposed in this paper is compared with the ten state-of-the-art 

competing AD classification algorithms using multi-modal data, including the traditional 

machine learning methods and the deep learning methods, as shown in Table 9. In order to 

show the effectiveness of our proposed method and the confidence of the results, we set the 

same experiment dataset and processing framework following the previous works (Jie et al., 

2015; Li et al., 2015; Shi et al., 2018; Suk et al., 2016; Suk and Shen, 2013; Zhang et al., 

2011) Accordingly, the ADNI-1 dataset and processing framework (including template 

parcellation) used in this paper are the same as those used in the literature.

It is worth noting that the proposed method has performed better than at least one of the 

deep learning methods in this comparison. In particular, the accuracy is higher than that of 

the deep learning methods in AD versus NC classification when using only two imaging 

modality (i.e., MRI and PET). One essential reason may be that our proposed method is able 

to fully utilize the global structure information from the data. As the objective function is 

induced the similarity constraint between different samples, the selected features are more 

informative and discriminative in this optimization problem. While several existing deep 

learning models in literature haven’t incorporated the sufficient prior information yet. 

Furthermore, when the number of train samples is highly limited, the capacity of deep 
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feature representations may be weaker than that of original hand-draft features from 

candidate pathogenic brain regions. Accordingly, in this study, it is more effective to design 

a simple but well-defined feature selection model with to address the issue of AD 

classification.

Limitations

Despite its promising performance, the proposed method still has a few. First, our proposed 

method utilizes two types of neuroimaging biomarkers (i.e., MRI and PET) from the ADNI 

dataset. Actually, in the ADNI dataset, many subjects also have other type of biomarkers, 

such as CSF, plasma, genetics data, and so on. In the future, we will examine whether 

adding more modal can further improve performance.

Secondly, we only studied the two-category problem and did not test the performance on the 

multi-class problem. It is valuable to accurately diagnose patients at a certain stage of the 

disease. In addition, we did not take advantage of quantitative outcomes in the ADNI 

dataset, such as MMSE and other cognitive scores. It could be interesting to integrate more 

complicated relationship learning in a multi-task learning framework rather than a single 

model for feature selection.

Actually, it is quite different to determine which template should be selected as the best one 

from multiple diverse templates. Due to potential bias associated with the use of a single 

template, the feature representations generated from a single template may not be sufficient 

enough to reveal the underlying complex differences between groups of patients and normal 

controls. Recently, some researchers have proposed several methods that can take advantage 

of multiple diverse templates to compare group differences more efficiently (Huang et al., 

2019; Koikkalainen et al., 2011; Liu et al., 2016a; Liu et al., 2015a). The future research 

direction is to further investigate how to make use of the multiple diverse templates and 

detect features from highly consistent regions for exploring some biologically meaningful 

results.

Finally, since we currently only focus on the ROI features, it is helpful to integrate the non-

handcrafted features using deep learning techniques as well. Another interesting future 

direction is to investigate both visual and represented features to facilitate the diagnosis and 

prognosis for the clinical applications.

Conclusion

In summary, this paper presents a novel feature selection method with consistent metric 

constraint for the diagnosis of AD. This method is used to combine complementary 

information provided by multi-modal neuroimaging data for feature selection and further 

classification. Specifically, we devise regularization terms that consider structure 

information such as feature association and sample similarity inherent in this analysis 

framework. In our extensive experiments on ADNI datasets, we demonstrate the 

effectiveness of the proposed method by comparing it with the state-of-the-art methods. We 

believe this work will further motivate the exploration of multi-modal models that would 

improve the predictions in AD.
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Figure 1. The workflow of AD/MCI versus NC identification.
The framework comprises four steps: data preprocessing, feature extraction, feature 

selection and classification. First, VBM-MRI and FDG-PET scans are acquired and 

preprocessed under the pipeline, and the features are extracted from brain ROIs using 

template. Then the features are selected by the proposed method in this paper, and finally we 

make predictions using MK-SVM classifier.
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Figure 2. Sample similarity matrix display
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Figure 3. 
The ROC curves of all comparison methods on ADNI-1: (a) the classification of AD vs. NC, 

(b) the classification of NC vs. MCI, (c) the classification of MCI-C vs. MCI-NC. The 

horizontal axis represents the false positive rate; the vertical axis represents the true positive 

rate. The area under the curve (AUC) indicates the diagnosis power.
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Figure 4. 
The ROC curves of all comparison methods on ADNI-2: (a) the classification of AD vs. NC, 

(b) the classification of LMCI vs. NC, (c) the classification of EMCI vs. LMCI. The 

horizontal axis represents the false positive rate; the vertical axis represents the true positive 

rate. The area under the curve (AUC) indicates the diagnosis power.

Hao et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The classification results on the different number of features in the random forest. The 

horizontal axis represents the number of features; the vertical axis represents the 

classification accuracy for AD diagnosis.
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Figure 6. 
Accuracy of AD vs. NC classification with respect to different parameter values in ADNI-1 

dataset. We fix one parameter to 0.01 respectively and vary the other two in the range of 

{10−9,10−8, … ,102}. The X-axis and Y-axis represent the diverse value of parameters and 

the Z-axis represents the classification accuracy for AD diagnosis.
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Figure 7. 
Accuracy of AD vs. NC classification with respect to different parameter values in ADNI-2 

dataset. We fix one parameter to 0.01 respectively and vary the other two in the range of 

{10−9, 10−8, …,102}. The X-axis and Y-axis represent the diverse value of parameters and 

the Z-axis represents the classification accuracy for AD diagnosis.
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Figure 8. 
Brain regions associated with AD using a 3D atlas Jacob (Kabani et al., 1998) (ADNI-1)
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Figure 9. 
Brain regions associated with AD using AAL template (Ashburner and Friston, 2000) 

(ADNI-2)
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Table 1.

Demographic characteristics of the subjects in ADNI-1 dataset

Subjects AD NC MCI-C MCI-NC

Number 51 52 43 56

Gender(M/F) 33/18 34/18 28/15 39/17

Age 75.2±7.4 75.3±5.2 75.8±6.8 74.7±7.7

Education 14.7±3.6 15.8±3.2 16.1±2.6 16.1±3.0

MMSE 23.8±2.0 29.0±1.2 26.6±1.7 27.5±1.5

CDR 0.7±0.3 0.0±0.0 0.5±0.0 0.5±0.0

The values are denoted as mean ± standard deviation. MMSE=Mini-Mental State Examination, CDR=clinical dementia score, AD=Alzheimer’s 
disease, NC=Normal Control, MCI-C=Mild Cognitive Impairment conversion, MCI-NC=Mild Cognitive Impairment non-transformation.
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Table 2.

Demographic characteristics of the subjects in ADNI-2 dataset

Subjects NC SMC EMCI LMCI AD

Number 211 82 273 187 160

Gender(M/F) 190/101 33/49 153/119 108/79 95/65

Age 76.1±6.5 72.5±5.7 71.5±7.1 73.9±8.4 75.18±7.9

Education 16.4±2.6 16.8±2.7 16.1±2.6 16.4±2.8 15.86±2.8

MMSE 29.0±1.2 29.0±1.2 28.4±1.5 27.7±1.7 24.0±2.6

CDR 0.0±0.1 0.0±0.0 0.5±0.1 0.5±0.1 0.7±0.3

The values are denoted as mean ± standard deviation. NC= Normal Control, SMC=Significant Memory Concern, EMCI=Early Mild Cognitive 
Impairment, LMCI=Late Mild Cognitive Impairment, AD=Alzheimer’s disease.
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Table 3.

Classification performance of different methods on ADNI-1

(a) AD versus NC

Method ACC SEN SPE AUC P-value

Baseline-SVM 89.35±8.83 90.39 88.27 0.94 <0.001

LASSO-SVM 87.57±9.12 89.02 86.15 0.95 <0.001

t-test-SVM 86.75±10.33 83.92 89.42 0.93 <0.001

Baseline-MK-SVM 94.53±6.55 94.90 94.04 0.96 <0.001

LASSO-MK-SVM 93.74±7.81 95.00 91.60 0.97 <0.001

t-test-MK-SVM 93.45±7.35 94.90 91.92 0.96 <0.001

Group Lasso-MK-SVM 94.53±6.80 94.90 94.04 0.96 <0.001

Euclid-MK-SVM 95.08±6.77 97.25 92.88 0.97 0.004

Hypergraph-MK-SVM 94.77±6.39 97.25 92.31 0.97 <0.001

MFCC-MK-SVM 97.60±5.03 98.43 96.73 0.98 --

(b) MCI versus NC

Method ACC SEN SPE AUC P-value

Baseline-SVM 70.75±10.04 79.80 53.46 0.76 <0.001

LASSO-SVM 72.46±11.05 83.03 52.31 0.78 <0.001

t-test-SVM 72.79±9.53 85.96 47.69 0.77 <0.001

Baseline-MK-SVM 80.09±8.24 87.47 65.96 0.79 <0.001

LASSO-MK-SVM 81.89±8.89 90.24 62.27 0.79 0.022

t-test-MK-SVM 81.71±9.43 91.82 62.31 0.79 0.019

Group Lasso-MK-SVM 79.76±6.91 95.76 49.23 0.77 <0.001

Euclid-MK-SVM 81.48±8.48 89.49 66.15 0.80 0.007

Hypergraph-MK-SVM 81.20±6.55 94.14 56.54 0.75 <0.001

MFCC-MK-SVM 84.47±6.83 94.04 66.15 0.81 --

(c) MCI-C versus MCI-NC

Method ACC SEN SPE AUC P-value

Baseline-SVM 53.95±15.12 44.65 61.07 0.59 <0.001

LASSO-SVM 54.57±14.87 45.12 61.79 0.60 <0.001

t-test-SVM 50.76±13.74 34.42 63.39 0.57 <0.001

Baseline-MK-SVM 69.17±12.77 57.44 78.04 0.66 <0.001

LASSO-MK-SVM 71.88±13.36 61.97 76.00 0.66 <0.001

t-test-MK-SVM 63.05±12.60 50.70 72.32 0.59 <0.001

Group Lasso-MK-SVM 70.86±11.37 62.33 77.14 0.65 <0.001

Euclid-MK-SVM 72.00±12.97 69.77 73.57 0.70 <0.001

Hypergraph-MK-SVM 73.64±11.19 66.28 79.11 0.74 0.008

MFCC-MK-SVM 77.76±10.59 67.44 85.54 0.76 --
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Table 4.

Classification performance of different methods on ADNI-2

(a) AD versus NC

Method ACC SEN SPE AUC P-value

Baseline-SVM 91.13±5.04 92.37 89.50 0.95 <0.001

LASSO-SVM 85.90±5.51 89.34 81.38 0.92 <0.001

t-test-SVM 79.60±6.93 84.31 73.38 0.86 <0.001

Baseline-MK-SVM 91.72±4.15 93.36 89.56 0.94 0.006

LASSO-MK-SVM 86.82±4.57 89.57 82.66 0.90 <0.001

t-test-MK-SVM 90.06±4.35 92.75 86.50 0.93 <0.001

Group Lasso-MK-SVM 89.92±4.42 93.65 85.00 0.93 <0.001

Euclid-MK-SVM 91.72±4.15 93.36 89.56 0.94 0.006

Hypergraph-MK-SVM 91.19±4.12 94.17 87.25 0.94 <0.001

MFCC-MK-SVM 93.72±3.38 95.17 91.81 0.95 --

(b) LMCI versus NC

Method ACC SEN SPE AUC P-value

Baseline-SVM 69.23±7.25 74.46 63.37 0.74 <0.001

LASSO-SVM 66.61±6.60 71.66 60.96 0.71 <0.001

t-test-SVM 62.81±6.12 70.38 54.28 0.65 <0.001

Baseline-MK-SVM 74.35±5.99 81.42 66.42 0.77 <0.001

LASSO-MK-SVM 71.46±6.00 76.86 62.72 0.71 <0.001

t-test-MK-SVM 73.00±5.76 81.52 63.42 0.75 <0.001

Group Lasso-MK-SVM 74.35±6.15 81.42 66.42 0.77 <0.001

Euclid-MK-SVM 74.35±5.99 81.42 66.42 0.77 <0.001

Hypergraph-MK-SVM 75.32±5.79 85.07 64.39 0.75 <0.001

MFCC-MK-SVM 78.47±5.61 85.88 70.16 0.78 --

(c) EMCI versus LMCI

Method ACC SEN SPE AUC P-value

Baseline-SVM 64.08±6.79 76.48 45.99 0.66 <0.001

LASSO-SVM 63.55±7.13 78.32 42.03 0.66 <0.001

t-test-SVM 63.32±5.35 87.33 28.29 0.64 <0.001

Baseline-MK-SVM 70.01±5.52 85.20 47.86 0.68 <0.001

LASSO-MK-SVM 68.43±4.83 88.92 37.31 0.66 <0.001

t-test-MK-SVM 69.10±5.25 85.05 45.83 0.66 <0.001

Group Lasso-MK-SVM 70.22±4.40 90.62 40.43 0.68 <0.001

Euclid-MK-SVM 70.01±5.52 85.20 47.86 0.68 <0.001

Hypergraph-MK-SVM 71.45±4.43 90.95 42.99 0.68 0.001

MFCC-MK-SVM 73.87±4.77 90.55 49.52 0.70 --
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Table 5.

Comparison of different classifiers experimental results on ADNI-1

Method AD versus NC MCI versus NC MCI-C versus MCI-NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

RF 93.82 86.47 72.12 0.90 79.16 90.91 26.15 0.71 70.72 56.05 54.29 0.59

KNN 95.54 82.35 73.85 0.81 82.40 85.96 29.62 0.53 75.04 54.42 49.11 0.60

MK-SVM 97.60 98.43 96.73 0.98 84.47 94.04 66.15 0.81 77.76 67.44 85.54 0.76
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Table 6.

Comparison of different classifiers experimental results on ADNI-2

Method AD versus NC LMCI versus NC EMCI versus LMCI

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

RF 87.03 84.60 67.06 0.82 71.44 72.94 45.72 0.60 69.11 81.87 29.36 0.58

KNN 84.37 82.23 65.31 0.77 69.81 64.69 47.65 0.55 69.14 69.49 39.48 0.55

MK-SVM 93.72 95.17 91.81 0.95 78.47 85.88 70.16 0.78 73.87 90.55 49.52 0.70
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Table 7.

Comparison of single model and multi-modal experimental results on ADNI-1

Method AD versus NC MCI versus NC MCI-C versus MCI-NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

VBM-MRI 92.38 81.18 90.58 0.92 81.35 80.30 56.54 0.77 72.94 40.93 68.04 0.51

FDG-PET 92.66 87.65 84.04 0.93 79.70 82.22 46.92 0.69 72.34 33.72 68.75 0.54

multi-modal 97.60 98.43 96.73 0.98 84.47 94.04 66.15 0.81 77.76 67.44 85.54 0.76
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Table 8.

Comparison of single model and multi-modal experimental results on ADNI-2

Method AD versus NC LMCI versus NC EMCI versus LMCI

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

VBM-MRI 86.63 90.28 81.81 0.93 71.20 78.01 63.32 0.76 63.18 83.70 32.62 0.64

FDG-PET 80.06 86.02 71.94 0.85 66.77 75.45 55.94 0.68 64.69 78.17 44.44 0.63

multi-modal 93.72 95.17 91.81 0.95 78.47 85.88 70.16 0.78 73.87 90.55 49.52 0.70
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Table 9.

Comparison of the performance of different multi-modal classification algorithms

Algorithms Subjects Modalities AD vs 
NC

MCI vs 
NC

MCI-C 
vs MCI-

NC
Algorithm Description

MKL (Zhang et al., 
2011)

51AD, 43MCI-C, 
56MCI-NC, 52NC MRI + PET +CSF 93.20 76.40 -- The classical multi-kernel 

learning (MKL) based algorithm

MTL (Jie et al., 2015) 51AD, 43MCI-C, 
56MCI-NC, 52NC MRI + PET +CSF 95.03 79.27 68.94 The multi-task learning (MTL) 

based algorithm

M-RBM (Suk et al., 
2014)

93AD, 76MCI-C, 
128 MCI-NC, 101 

NC
MRI + PET 95.35 85.67 75.92

The pioneering multi-modal deep 
RBM (M-RBM) based feature 

learning algorithms

SAE (Liu et al., 
2015b)

85AD, 67MCI-C, 
102 MCI-NC, 77 

NC
MRI + PET 91.35 90.42 --

The SAE-based multi-modal 
neuroimaging feature learning 

algorithm

SAE-MKL (Suk, 
2013)

51AD, 43MCI-C, 
56MCI-NC, 52NC MRI + PET +CSF 98.80 90.70 83.30

The combination of SAE-based 
feature learning and MKL 
classification (SAE-MKL) 

algorithm

DW-S2MTL (Suk et 
al., 2016)

51AD, 43MCI-C, 
56MCI-NC, 52NC MRI + PET +CSF 95.09 78.77 73.04

The deep sparse multi-task 
learning based feature selection 

(DW-S2MTL) algorithm

Dropout-DL (Li et al., 
2015)

51AD, 43MCI-C, 
56MCI-NC, 52NC MRI + PET +CSF 91.40 77.40 70.10

The dropout based robust multi-
task deep learning (Dropout-DL) 

algorithm

SDSAE (Shi et al., 
2017)

94AD, 121MCI, 
123NC Longitudinal MRI 91.95 83.72 -- The SDSAE-based feature 

learning algorithm

NGF (Tong et al., 
2017)

37AD, 75MCI, 
35NC

MRI + PET +CSF + 
Genetics 98.10 82.40 77.90 The nonlinear graph fusion 

(NGF) based algorithm

MM-SDPN-SVM (Shi 
et al., 2018)

51AD, 43MCI-C, 
56MCI-NC, 52NC MRI + PET 97.13 87.24 78.88 The multi-modal stacked deep 

polynomial networks and SVM
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