Skip to main content
. Author manuscript; available in PMC: 2021 Feb 1.
Published in final edited form as: Med Image Anal. 2019 Dec 2;60:101625. doi: 10.1016/j.media.2019.101625

Table 9.

Comparison of the performance of different multi-modal classification algorithms

Algorithms Subjects Modalities AD vs NC MCI vs NC MCI-C vs MCI-NC Algorithm Description
MKL (Zhang et al., 2011) 51AD, 43MCI-C, 56MCI-NC, 52NC MRI + PET +CSF 93.20 76.40 -- The classical multi-kernel learning (MKL) based algorithm
MTL (Jie et al., 2015) 51AD, 43MCI-C, 56MCI-NC, 52NC MRI + PET +CSF 95.03 79.27 68.94 The multi-task learning (MTL) based algorithm
M-RBM (Suk et al., 2014) 93AD, 76MCI-C, 128 MCI-NC, 101 NC MRI + PET 95.35 85.67 75.92 The pioneering multi-modal deep RBM (M-RBM) based feature learning algorithms
SAE (Liu et al., 2015b) 85AD, 67MCI-C, 102 MCI-NC, 77 NC MRI + PET 91.35 90.42 -- The SAE-based multi-modal neuroimaging feature learning algorithm
SAE-MKL (Suk, 2013) 51AD, 43MCI-C, 56MCI-NC, 52NC MRI + PET +CSF 98.80 90.70 83.30 The combination of SAE-based feature learning and MKL classification (SAE-MKL) algorithm
DW-S2MTL (Suk et al., 2016) 51AD, 43MCI-C, 56MCI-NC, 52NC MRI + PET +CSF 95.09 78.77 73.04 The deep sparse multi-task learning based feature selection (DW-S2MTL) algorithm
Dropout-DL (Li et al., 2015) 51AD, 43MCI-C, 56MCI-NC, 52NC MRI + PET +CSF 91.40 77.40 70.10 The dropout based robust multi-task deep learning (Dropout-DL) algorithm
SDSAE (Shi et al., 2017) 94AD, 121MCI, 123NC Longitudinal MRI 91.95 83.72 -- The SDSAE-based feature learning algorithm
NGF (Tong et al., 2017) 37AD, 75MCI, 35NC MRI + PET +CSF + Genetics 98.10 82.40 77.90 The nonlinear graph fusion (NGF) based algorithm
MM-SDPN-SVM (Shi et al., 2018) 51AD, 43MCI-C, 56MCI-NC, 52NC MRI + PET 97.13 87.24 78.88 The multi-modal stacked deep polynomial networks and SVM