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Abstract

It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to 

the kidneys’ varied shapes and image intensity distributions, although semi-automatic methods 

have achieved promising performance. In this study, we propose subsequent boundary distance 

regression and pixel classification networks to segment the kidneys automatically. Particularly, we 

first use deep neural networks pre-trained for classification of natural images to extract high-level 

image features from US images. These features are used as input to learn kidney boundary 

distance maps using a boundary distance regression network and the predicted boundary distance 

maps are classified as kidney pixels or non-kidney pixels using a pixelwise classification network 

in an end-to-end learning fashion. We also adopted a data-augmentation method based on kidney 

shape registration to generate enriched training data from a small number of US images with 

manually segmented kidney labels. Experimental results have demonstrated that our method could 

automatically segment the kidney with promising performance, significantly better than deep 

learning-based pixel classification networks.
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1. INTRODUCTION

Ultrasound (US) imaging has been widely used to aid diagnosis and prognosis of acute and 

chronic kidney diseases (Ozmen et al., 2010; Pulido et al., 2014). In particular, anatomic 

characteristics derived from US imaging, such as renal elasticity, are associated with kidney 

function (Meola et al., 2016) and lower renal parenchymal area measured on US images is 

associated with increased risk of end-stage renal disease (ESRD) in boys with posterior 

urethral valves (Pulido et al., 2014). Imaging features computed from US data using deep 

convolutional neural networks (CNNs) improved the classification of children with 

congenital abnormalities of the kidney and urinary tract (CAKUT) and controls (Zheng et 

al., 2019; Zheng et al., 2018a). The computation of these anatomic measures typically 

involves manual or semi-automatic segmentation of kidneys in US images, which increases 

inter-operator variability, reduces reliability, and limits utility in clinical medicine. 

Automatic and reliable segmentation of the kidney from US imaging data would improve 

precision and its application in many different clinical conditions including congenital renal 

disease, renal mass detection, and kidney stones.

Since manual segmentation of the kidney is time consuming, labor-intensive, and highly 

prone to intra- and inter-operator variability, semi-automatic and interactive segmentation 

methods have been developed (Torres et al., 2018). Particularly, an interactive tool has been 

developed for detecting and segmenting the kidney in 3D US images (Ardon et al., 2015). A 

semi-automatic segmentation framework based on both texture and shape priors has been 

proposed for segmenting the kidney from noisy US images (Jun et al., 2005). A graph-cuts 

method has been proposed to segment the kidney in US images by integrating image 

intensity information and texture information (Zheng et al., 2018b). A variety of methods 

have been proposed to segment the kidney based on active shape models and statistical 

shape models (Ardon et al., 2015; Cerrolaza et al., 2016; Cerrolaza et al., 2014; Martín-

Fernández and Alberola-López, 2005; Mendoza et al., 2013). Random forests have been 

adopted in a semi-automatic segmentation method to segment the kidney (Sharma et al., 

2015). An automated approach has been developed for kidney segmentation in three-

dimensional US Images by initializing and evolving a level-set function through shape-to-

volume registration and statistical shape modeling (Marsousi et al., 2017). Although a 

variety of strategies have been adopted in these kidney segmentation methods, most of them 

solve the kidney segmentation problem as a boundary detection problem.

Deep CNNs have demonstrated excellent performance in a variety of image segmentation 

problems, including semantic segmentation of natural images (Badrinarayanan et al., 2017; 

Chen et al., 2018a; Chen et al., 2018b; Long et al., 2015; Zhao et al., 2017) and medical 

image segmentation (Li et al., 2019a; Li et al., 2018; Li et al., 2019b; Men et al.; 

Ronneberger et al., 2015; Zhao et al., 2016; Zhao et al., 2018a, b). In these studies, the 

image segmentation problems are solved as pixelwise or voxelwise pattern classification 

problems. Recently, several methods have been proposed to automatically segment the 

kidney from medical imaging data to generate kidney masks using deep CNNs. In particular, 

Unet networks have been adopted to segment the kidney (Jackson et al., 2018; Ravishankar 

et al., 2017; Sharma et al., 2017). In these pattern classification-based kidney segmentation 

methods, all pixels/voxels within the kidney have the same kidney classification labels. Such 
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a strategy might be sensitive to large variability of the kidneys in both appearance and shape 

in US images. As shown in Fig. 1, kidneys may have varied shapes and heterogeneous 

appearances in US images. The shape and appearance variability of kidneys, in conjunction 

with inherent speckle noise of US images, may degrade performance of the pixelwise pattern 

classification based kidney segmentation methods (Noble and Boukerroui, 2006).

On the other hand, several recent studies have demonstrated that pixelwise pattern 

classification based image segmentation methods could achieve improved image 

segmentation performance by incorporating boundary detection as an auxiliary task in both 

natural image segmentation (Bertasius et al., 2015; Chen et al., 2016) and medical image 

segmentation (Chen et al., 2017; Tang et al., 2018). However, the performance of these 

methods is hinged on their image pixelwise classification component as the boundary 

detection serves as an auxiliary task for refining edges of the pixelwise segmentation results.

Inspired by the excellent performance of the boundary detection-based kidney segmentation 

methods, we develop a fully automatic, end-to-end deep learning method to subsequently 

learn kidney boundaries and pixelwise kidney masks from a set of manually labeled US 

images. Instead of directly distinguishing kidney pixels from non-kidney ones in a pattern 

classification setting, we learn CNNs in a regression setting to detect kidney boundaries that 

are modeled as boundary distance maps. From the learned boundary distance maps, we learn 

pixelwise kidney masks by optimizing their overlap with the manual kidney segmentation 

labels. To augment the training dataset, we adopt a kidney shape-based image registration 

method to generate more training samples. Our deep CNNs are built upon an image 

segmentation network architecture derived from DeepLab (Chen et al., 2018b) so that 

existing image classification/segmentation models could be reused as a starting point of the 

kidney image segmentation in a transfer learning framework to speed up the model training 

and improve the performance of the kidney image segmentation. We have evaluated the 

proposed method for segmenting the kidney based on 289 clinical US images. Experimental 

results have demonstrated that the proposed method could achieve promising segmentation 

performance and outperformed alternative state-of-the-art deep learning based image 

segmentation methods, including FCNN (Long et al., 2015), Deeplab (Chen et al., 2018b), 

SegNet (Badrinarayanan et al., 2017), Unet (Ronneberger et al., 2015), PSPnet (Zhao et al., 

2017), and DeeplabV3+(Chen et al., 2018a). Our image segmentation method is built on a 

kidney boundary detection network presented at ISBI 2019 (Yin et al., 2019), enhanced by a 

novel data augmentation method to improve the segmentation results. The present study also 

investigates how different parameter settings and training strategies affect the segmentation 

performance and compares our method with more alternative deep learning segmentation 

methods, including a multi-task learning network.

2. METHODS AND MATERIALS

2.1 Imaging Data

We used 289 US images to train and evaluate the proposed method. The images were 

collected from 152 subjects (male: 106; age: 83.3 ± 161.6 days). Among these subjects, 137 

had bilateral kidney images, 4 had left kidney images, and 11 had right kidney images. All 

the images were in sagittal view, collected for routine clinical care using Philips, Siemens, or 
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General Electric ultrasound scanners with an abdominal transducer. All the images had 

1024×768 pixels with pixel size ranging from 0.08×0.08mm2 to 0.12×0.12mm2. All 

identifying information was removed from the images. The work described has been carried 

out in accordance with the Declaration of Helsinki. The study has been reviewed and 

approved by the institutional review board at the Children’s Hospital of Philadelphia 

(CHOP). Representative kidney US images are shown in Fig. 1.

The images were manually segmented by two urologists who are experts in interpreting 

clinical ultrasounds. For accessing the inter-rater reliability, 20 images were randomly 

selected, including 3 with boundary cut. In terms of Dice index, the overall inter-rater 

variability was 0.95±0.02, the inter-rater variability on the images with boundary cut was 

0.92±0.03, and the inter-rater variability on the remaining images was 0.96±0.01.

All the images were resized to have the same size of 321×321, and their image intensities 

were linearly scaled to [0,255]. We randomly selected 105 images as training data and 20 

images as validation data in the present study to train deep learning-based kidney 

segmentation models. The remaining 164 US images were used to evaluate the proposed 

method.

2.2 Deep CNN Networks for Kidney Image Segmentation

The kidney image segmentation method is built upon deep CNNs to subsequently detect 

kidney boundaries and kidney masks in an end-to-end learning fashion. As illustrated in Fig. 

2, the kidney image segmentation model consists of a transfer learning network, a boundary 

distance regression network, and a kidney pixelwise classification network. The transfer 

learning network is built upon a general image classification network to reuse an image 

classification model as a starting point for learning high level image features from US 

images, the boundary distance regression network learns kidney boundaries modeled as 

distance maps of the kidney boundaries, and the kidney boundary distance maps are finally 

used as input to the kidney pixelwise classification network to generate kidney segmentation 

masks.

The kidney distance regression network and the kidney pixelwise classification network are 

trained based on augmented training data that are generated using a kidney shape-based 

image registration method. The network architecture and the data augmentation methods are 

described in following sections.

2.2.1 Transfer learning network for extracting high level image features from 
US images—Instead of directly building an image segmentation network on raw US 

images, we adopt a transfer learning strategy to extract informative image features from US 

images as a starting point for learning high level image features from US images. 

Particularly, we extract features from US images by utilizing a general image classification 

network, namely VGG16, which achieves 92.7% top-5 test-accuracy in ImageNet [34].

As illustrated in Fig. 3, the VGG16 network consists of 16 convolutional (conv) layers with 

a receptive field of 3×3. The stack of convolutional layers is followed by 3 fully-connected 

(FC) layers: each of the first two has 4096 channels and the third performs 1000-way 
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classification. The final layer is a softmax layer. In our experiments, we fine-tuned the model 

weights of Imagenet-pretrained VGG16 network to adapt them to the boundary distance 

regression network.

On the other hand, we follow the Deeplab architecture by applying the atrous convolutions 

(Chen et al., 2018b) to compute denser image feature representations. Particularly, the 

Deeplab image segmentation model replaced the last 3 convolutional layers and FC layers of 

VGG16 with into 4 atrous convolutional layers and 2 convolutional classification layers. As 

illustrated in Fig. 4, we discarded the 2 convolutional classification layers to adapt the 

architecture to the boundary distance regression network.

2.2.2 Boundary distance regression network for fully automatic kidney 
segmentation in ultrasound images—We develop a boundary distance regression 

network for fully automatic kidney segmentation in ultrasound images, instead of learning a 

pixelwise classification network directly from the US image features, because the 

heterogenous kidney appearances in US images make it difficult to directly classify pixels as 

kidney or background pixels.

The boundary distance regression network is built in a regression framework, consisting of 

two parts: a projection part that produces boundary feature maps S0 and a high-resolution 

reconstruction part that upsamples the feature maps to obtain the kidney distance maps at the 

same spatial resolution of the input images as illustrated in Fig. 5. The projection part is 

built on two convolutional layers, and the reconstruction part is built on deconvolution 

(transposed convolution) layers. The output of the ith deconvolution operation Si is defined 

as

Si = max 0, W i ⊗ Si − 1 + Bi , (1)

where Wi is deconvolution filters with size fi × fi, and Bi is a bias vector, and ⊗ is 

deconvolution operator. The upsampling deconvolution layers double the spatial dimension 

of their input feature maps, and therefore 3 upsampling deconvolution layers are adopted in 

the kidney boundary distance regression network to learn the kidney boundary in the input 

image space. In our experiments, the numbers of input feature maps of the upsampling 

deconvolution layers were empirically set to 3 times of 64, 32, 16 respectively, and the filter 

size fi was empirically set to 5.

We solve the kidney boundary detection problem in a regression framework to learn distance 

from the kidney boundary for every pixel of the input US images. The kidney boundary 

detection problem could be potentially solved in an end-to-end classification framework 

(Xie and Tu, 2015). However, the number of the kidney boundary pixels is much smaller 

than the number of non-boundary pixels in US kidney images. Such unbalanced boundary 

and non-boundary pixels make it difficult to learn an accuracy classification model. 

Therefore, we model the kidney boundary detection as a distance map learning problem.
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Given an input US image I with its kidney boundary, we compute the distance to the kidney 

boundary for every pixel Pi ∈ I of the input image and obtain a normalized kidney distance 

map of the same size of the input image using potential function as following:

d Pi = exp −λDi , (2)

with Di = minb j ∈ bdist Pi, b j  is the minimal Euclidean distance of pixel Pi to the kidney 

boundary pixels b= {bj}j∈j, and λ is a parameter. As illustrated in Fig. 6, at the kidney 

boundary pixels the normalized exponential kidney distance equals to 1. In this study, the 

kidney boundary is detected by learning the normalized kidney distance map.

To learn the normalized kidney boundary distance map, we train the boundary detection 

network by minimizing a distance loss function Ld, defined as,

Ld = ∑Pi ∈ I φ Pi − d Pi
2, (3)

where φ(Pi) is the predicted distance and d(Pi) is the ground truth distance to the kidney 

boundary at pixel Pi. Once we obtain the predicted distance for every pixel of a US image to 

be segmented, we can obtain a boundary binary map with a threshold e−λ.

To obtain a smooth closed contour of the kidney boundary, we construct a minimum 

spanning tree of all predicted kidney boundary pixels. Particularly, we first construct an 

undirected graph of all predicted kidney boundary pixels, each pair of which are connected 

with a weight of their Euclidean distance. Then, a minimum spanning tree T is obtained 

using Kruskal’s algorithm (Kruskal, 1956). Finally, the max path of the minimum spanning 

tree T is obtained as a close contour of the kidney boundary and a binary mask of the kidney 

is subsequently obtained. To reduce the complexity of finding a minimum spanning tree, we 

apply binary image skeleton morphology operator to the binary kidney boundary image in 

order to obtain a skeleton binary map, then apply the minimum spanning tree algorithm to 

the skeleton binary map, and finally use poly2mask to compute a binary mask based on a 

polygon obtained by the minimum spanning tree algorithm. We refer to the boundary 
distance regression network followed by post-processing for segmenting kidneys as a 

boundary detection network (Bnet) hereafter as shown in Fig. 2. Table 1 highlights 

differences between the boundary detection network and the end-to-end learning of 

subsequent boundary distance regression and pixelwise classification networks.

2.2.3 Subsequent boundary distance regression and pixelwise classification 
networks for fully automatic kidney segmentation in ultrasound images—The 

minimum spanning tree post-processing method could obtain promising boundary detection 

results for most US kidney images. However, it fails if the predicted boundary distance maps 

are far from perfect. To obtain robust kidney segmentation performance, we propose to learn 

pixelwise kidney masks from the predicted kidney distance maps.

As illustrated in Fig. 7, the kidney pixelwise classification network is built upon a semantic 

image segmentation network, namely Deeplab image segmentation network. The input to the 
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kidney pixel classification network is an image with 3 channels, each being the output of the 

predicted kidney boundary map. The final decision for class labels is then made by applying 

2-channel classification softmax layer to the extracted class feature maps f
c, Pi

(c = 0, 1)

(c=0,1) based on cross-entropy loss function. We also adopt the pre-trained VGG16 model 

to initialize the pixelwise classification network parameters.

To train the kidney boundary distance regression and pixelwise classification networks in an 

end-to-end fashion, loss functions of the kidney boundary distance regression network and 

the kidney pixelwise classification network are combined as a multi-loss function

Lm = 1 − τ
N Ld + τ

N γLS, (5)

where N is the number of total iterative training steps, τ is an index of the training iteration 

step, and γ is a parameter to make Ld and Ls to have the same magnitude and to be 

determined empirically. The multi-loss function puts more weight on the kidney boundary 

distance regression cost function in the early stage of the network training and then shifts to 

the kidney pixel classification cost function in the late stage of the network training. The 

kidney pixelwise classification network’s output is treated as the overall segmentation result.

2.3 Data augmentation based on kidney shape registration

To build a robust kidney segmentation model, we augment the training data using a non-

rigid image registration method (Bookstein, 1989). Particularly, in order to generate training 

US kidney images with varied kidney shapes and appearances, we register each training 

image to all other training images based on thin-plate splines transformation (TPS) 

(Bookstein, 1989) as following.

Given two US kidney images with kidney boundaries, we register one image (moving image 

M) to the other image (fixed image F), in order to generate a deformed moving image in the 

fixed image space. First, the kidney boundary is approximately modeled as an ellipse as 

shown in Fig. 8. Then, ellipse vertexes of the kidney are identified as 4 corresponding 

landmark points across kidneys, and the landmark points of the fixed and moving images are 

denoted by ZM = [xM yM]T ∈ R2×4 and ZF= [xF yF]T ∈ R2×4 respectively. Base on the 

corresponding landmark points, a TPS operation W is computed to register the moving 

image M to the fixed image F, defined as:

W = R PT

P 03 × 3

−1 ZM
T

03 × 2
, (6)

where P = I4 × 1 ZM
T T ∈ R3 × 4 is the homogeneous coordinates of ZM, and R is a symmetric 

matrix with elements ri,j = ϕ(KZM – ZMK2). Based on the estimated TPS transformation, a 

warped moving image could be generated. We use a nearest neighbor interpolation method 

to warp the moving image. In addition to the image registration-based data augmentation, 

we also flip the training images left to right. Given n training images, we can obtain 2n(n 
− 1) + n augmented training images with kidney boundaries.
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2.4 Implementation and Evaluation of the proposed method

The proposed networks were implemented based on Python 3.7.0 and TensorFlow r1.11. We 

used a mini-batch of 20 images to train the deep neural networks. The maximum number of 

iteration steps was set to 20000. The deep learning models were trained on a GeForce GTX 

980 Ti graphics processing unit (GPU). The deep networks were optimized using Adam 

stochastic optimization (Boyd and Vandenberghe, 2004) with the learning rate of 10−4. 

Besides the parameters of transfer learning network, the filters of the boundary regression 

network were initialized with random normal initializer with the mean 0 and standard 

deviation 0.001. The biases of the boundary regression network were initialized with 

constant 0. In the subsequent kidney boundary detection and pixel classification network, γ 
was empirically set to 1 to make the kidney boundary regression and pixel classification loss 

functions to have similar magnitudes. The minimum spanning tree algorithm were 

implemented based on Networkx python library (https://networkx.github.io/documentation/

networkx-1.10/overview.html).

Ablation studies were carried out to evaluate how different components of the proposed 

method affect the segmentation performance. We first trained the kidney boundary detection 

network using following 3 different strategies, including training from scratch without data 

augmentation (named “random+noaug”), transfer learning without data augmentation 

(named “finetune+noaug”), and transfer-learning with data augmentation (named “finetune

+aug”). Particularly, for the training from scratch we adopted “Xavier” initialization method 

that has been widely adopted in natural image classification and segmentation studies 

(Glorot and Bengio, 2010). Particularly, we initialized the biases to be 0 and filters to follow 

a uniform distribution. The training images’ normalized kidney boundary distance maps 

were obtained with λ = 1. Outputs of the kidney boundary detection network were post-

processed using morphological operations and minimum spanning tree algorithm in order to 

obtain kidney masks.

Second, we trained and compared kidney boundary detection networks based on augmented 

training data and transfer-learning initialization with their normalized kidney distance maps 

obtained with different values of λ, including 0.01, 0.1, 1, and 10. We also trained a kidney 

boundary detection network in a classification setting. Particularly, the classification-based 

kidney boundary detection network had the same network architecture as the regression-

based kidney boundary detection network, except that its loss function was a softmax cross-

entropy loss to directly predict the kidney boundary pixels. Outputs of the kidney boundary 

detection network were also post-processed using the morphological operations and 

minimum spanning tree algorithm in order to obtain kidney masks.

Third, we trained and compared kidney boundary detection networks with 6 state-of-the-art 

pixel classification based image segmentation deep neural networks, namely FCNN (Long et 

al., 2015), Deeplab (Chen et al., 2018b), SegNet (Badrinarayanan et al., 2017), Unet 

(Ronneberger et al., 2015), PSPnet (Zhao et al., 2017), and DeeplabV3+(Chen et al., 2018a). 

These networks also adopted encoding part of the VGG16, the same one as adopted in our 

method. The comparisons were based on both the training data without augmentation and 

the augmented training data. Segmentation performance of all the methods under 

comparison was measured using Dice index, mean distance (MD), Jaccard, Precision, 
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Sensitivity, ASSD as defined in (Hao et al., 2014; Zheng et al., 2018c). The units of MD and 

ASSD were pixels. The segmentation performance measures of testing images obtained by 

different segmentation networks were statistically compared using Wilcoxon signed-rank 

tests (Woolson, 2008).

We also used 5-fold cross-validation to compare our method with PSPnet and Deeplabv3+ 

that had the best performance as pixelwise classification networks. In each cross-validation 

experiment, all the training images were augmented using the proposed data-augmentation 

method. The number of training iteration steps was set to 30000 in the cross-validation 

experiments.

We compared the proposed subsequent boundary distance regression and pixelwise 

classification networks with the kidney boundary detection network. We trained the 

subsequent boundary distance regression and pixelwise classification network based on the 

augmented training data and transfer-learning initialization. We also compared the proposed 

framework with a multi-task learning based segmentation network to jointly estimate the 

kidney distance maps and classify the kidney pixels, as illustrated by Fig. 1. The multi-task 

learning based segmentation network consisted of a boundary regression network and a 

pixelwise classification network, and the two tasks had the same weight for their cost 

functions. The boundary regression network followed by postprocessing is essentially the 

boundary detection network, the pixelwise classification network is essentially the Deeplab 

image segmentation network, but they were trained jointly. We obtained the results in 20000 

iteration numbers. Particularly, the multi-task learning based segmentation network adopted 

the same network architecture of the kidney boundary distance regression network and 

included a branch for the kidney pixel classification.

Finally, we also evaluated how kidney orientation and boundary cut affect the segmentation 

performance of our method. To quantitatively evaluate how the kidney orientation affects the 

segmentation performance, we rotated the testing images by different numbers of degrees 

from −30 to 30 and obtained their segmentation results using our subsequent segmentation 

network. To quantitatively evaluate how the boundary cut affects the segmentation 

performance, we visually checked all the testing images and identified those with boundary 

cut. Particularly, we found 21 images with the boundary cut and computed their 

segmentation accuracy.

3. EXPERIMENTAL RESULTS

Sections 3.1, 3.2, and 3.3 summarize segmentation performance of the kidney boundary 

detection network (the boundary distance regression network followed by post-processing) 

and its comparison with pixelwise classification segmentation methods, including FCNN 

(Long et al., 2015), Deeplab (Chen et al., 2018b), SegNet (Badrinarayanan et al., 2017), 

Unet (Ronneberger et al., 2015), PSPnet (Zhao et al., 2017), and DeeplabV3+(Chen et al., 

2018a). Section 3.4 summarizes segmentation performance of the subsequent boundary 

distance regression and pixelwise classification networks and these networks integrated 

under a multi-task framework. Section 3.5 summarizes segmentation performance of our 

method on rotated testing kidney images and testing kidney images with boundary cut.
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3.1 Effectiveness of transfer-learning and data-augmentation on the segmentation 
performance

Fig. 10 shows traces of the training loss and validation accuracy of the kidney boundary 

detection network trained with 3 different training strategies. These traces demonstrate that 

the training of the kidney boundary distance regression network converged regardless of the 

training strategies used. Without the data augmentation, the transfer-learning strategy made 

the model to better fit the training data and obtained better segmentation accuracy than the 

random initialization strategy. Although the train loss was relatively larger if the network 

was trained based on the augmented data, better validation segmentation accuracy was 

obtained. Validation segmentation accuracy measures of different training strategies are 

summarized in Table 2 and example segmentation results are illustrated in Fig. 11, further 

demonstrating that the transfer learning and data augmentation strategies could make the 

boundary detection network to achieve better results. The results were obtained at 9000, 

1000, 16000 iteration numbers respectively with the different training strategies according to 

their validation accuracy traces.

3.2 Performance of the kidney boundary detection networks trained using different 
lambda settings

Fig. 12 shows example kidney boundaries and masks obtained by the boundary detection 

networks trained with different distance maps in the validation dataset. Particularly, the 

kidney masks were closer to the ground truth when the distance maps were normalized with 

λ = 1 than other values. When λ= 0.01, the detected boundaries were much wider than the 

ground truth, while when λ = 10 or λ = 0.1, the detected boundaries missed some pixels. 

Such a problem could be overcome to some extent by the post-processing steps, including 

morphological operations and minimum spanning tree. As summarized in Table 3, the 

kidney segmentation results obtained with λ = 0.1 and λ = 1 were comparable, better than 

those obtained with other parameters. It is worth noting that predicted boundary distance 

regression results shown in Fig. 12 were not binary maps when λ = 1 or 10. We set λ = 1 in 

all following experiments. We also found that the softmax cross-entropy loss function based 

pixelwise classification network classified all the pixels into background due to the 

unbalanced samples.

3.3 Segmentation performance of the kidney boundary detection and pixel classification 
networks

Table 4 and Table 5 show kidney segmentation results of the testing data obtained by FCNN, 

Deeplab, SegNet, Unet, PSPnet, deeplabV3+, and the boundary detection network (Bnet), 

trained without the data augmentation or with the data augmentation. The morphology 

operation and minimum spanning tree based post-processing method was used to obtain 

kidney masks from the boundary detection network. The results demonstrate that the 

boundary detection networks had significantly better performance than the alternative deep 

learning segmentation networks that were trained to classify pixels into kidney and non-

kidney pixels. The results also demonstrated that the data-augmentation could improve the 

performance of all the methods under comparison. Fig. 13 shows representative 

segmentation results obtained by the deep learning methods under comparison with or 
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without the data augmentation. These results demonstrate that our method had robust 

performance regardless of the variance of kidney shape and appearance. However, the 

alternative methods under comparison had relatively worse performance.

Table 6 summarizes 5-fold cross-validation results obtained by the proposed subsequent 

segmentation networks, PSPnet and Deeplab. These results indicated that our method 

obtained significantly better performance than alternative deep learning methods on the most 

evaluation metrics, except Sensitivity.

3.4 Comparison of the subsequent segmentation networks, the boundary detection 
network, and the multi-task learning based segmentation network

Table 7 shows segmentation performance of the kidney boundary detection network and the 

subsequent boundary distance regression and pixelwise classification networks, 

demonstrating that the end-to-end learning could obtain better performance, although the 

difference was not statistically significant (p>0.05). Fig. 14 indicated that the proposed 

framework could improve the boundary detection segmentation results with blurring 

boundaries. More importantly, we could obtain kidney masks from their distance maps 

without any post-processing step. As illustrated by intermediate results shown in Fig. 14(d), 

the end-to-end networks obtained distance maps as expected. A further comparison of 

computational time costs of two solutions indicated that the end-to-end learning was 20 

times faster than the morphology and minimum spanning tree based post-processing.

Table 8 summarizes segmentation accuracy measures obtained by the multi-task learning 

and the subsequent segmentation networks. Fig. 15 shows segmentation results of two 

representative kidney images, obtained by the multi-task learning and the subsequent 

segmentation networks. Particularly, the multi-task learning network’s individual tasks had 

different performance. Particularly, the pixelwise classification network (task 1) had worse 

performance than the boundary detection network (task 2), and all of them had significantly 

worse performance than the subsequent segmentation network. Interestingly, the multi-task 

network-task1 had better performance than the Deeplab segmentation network (Table 5).

3.5 Segmentation performance of our method on rotated testing kidney images and 
testing kidney images with boundary cut

Table 9 summarizes segmentation performance of the subsequent segmentation network on 

the rotated testing kidney images. The results indicated that our segmentation model was 

relatively robust to the kidney orientation when absolute value of the rotation degree was 

relatively small, although it obtained the best performance on the testing images without 

rotation (Dice index = 0.9451±0.0315).

As illustrated by Fig. 16, the boundary detection network obtained degraded boundary 

distance maps for images with boundary cut. The proposed post-processing method could 

obtain a good segmentation result for the image shown on the top row, but did not work well 

for the one shown on the bottom row. However, the subsequent segmentation network 

obtained better segmentation results for both the images. Table 10 summarizes segmentation 

performance obtained by the boundary detection network and the subsequent segmentation 

network on the 21 testing kidney images with the boundary cut, indicating that the 
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subsequent segmentation network performed significantly better on the kidney images with 

the boundary cut.

4. DISCUSSION

In this study, we propose a novel boundary distance regression network architecture to 

achieve fully-automatic kidney segmentation. The boundary distance regression network is 

integrated with a subsequent pixelwise classification network to achieve improved kidney 

segmentation performance in an end-to-end learning fashion, instead of directly learning a 

pixelwise classification neural network to distinguish kidney pixels from non-kidney ones. 

Our method has been evaluated for segmenting clinical kidney US images with large 

variability in both appearance and shape, yielding significantly better performance than the 

alternatives under comparison. Our results have demonstrated that the boundary detection 

strategy worked better than pixelwise classification techniques for segmenting clinical US 

images although the pixelwise classification techniques have demonstrated excellent image 

segmentation performance in a variety of image segmentation problems, including FCNN 

(Long et al., 2015), Deeplab (Chen et al., 2018b), SegNet (Badrinarayanan et al., 2017), 

Unet (Ronneberger et al., 2015), PSPnet (Zhao et al., 2017), and DeeplabV3+(Chen et al., 

2018a). Our results have also demonstrated that the kidney shape registration-based data-

augmentation method could improve the segmentation performance.

Compared with kidney US image segmentation methods built upon level-set techniques that 

require either manual operations or image registration to initialize the level-set functions 

(Marsousi et al., 2017; Zheng et al., 2018b), the proposed subsequent segmentation network 

method directly works on the input kidney images without any intermediate processing 

steps, an important aspect that would increase uptake in clinical medicine. Our method 

obtained segmentation results with similar accuracy as the semi-automatic kidney US image 

segmentation method (Zheng et al., 2018b), but at a much higher speed, which again 

increases its clinical utility. Our method is built upon the kidney boundary detection. 

However, the kidney boundaries in US images could be corrupted by shady or blurry 

artifacts, which could affect the image segmentation accuracy, as illustrated by Fig. 16. For 

the kidney images with boundary cut, the subsequent segmentation network obtained 

significantly better performance than the boundary detection network. The method could 

also be improved by adopting statistical shape modeling techniques that have demonstrated 

promising performance for segmenting 3D kidney US images (Marsousi et al., 2017). Our 

method has been only evaluated based on the kidney images in sagittal view. In the present 

study, the images in sagittal view images were chosen manually and a fully automatic 

method is needed to automate this process.

Though our kidney segmentation network is built on the pre-trained VGG16 network, our 

model is not limited to the VGG network. Within the same framework, we could also adopt 

other semantic segmentation networks with good performance in natural images 

segmentation tasks, such as ResNet (He et al., 2016) or networks built on VGG19 

(Simonyan and Zisserman, 2014), which may further improve the performance of the kidney 

segmentation results. Moreover, our method could be further improved by incorporating 
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multi-scale learning strategies that have demonstrated helpful in image segmentation (Chen 

et al., 2018a; Zhao et al., 2017).

5. CONCLUSIONS

We have developed a fully automatic method to segment kidneys in clinical ultrasound 

images by integrating boundary distance regression and pixel classification networks 

subsequently in an end-to-end learning framework. Experimental results have demonstrated 

that the boundary distance regression network could robustly detect boundaries of kidneys 

with varied shapes and heterogeneous appearances in clinical ultrasound images, and the 

end-to-end learning of subsequent boundary distance regression and pixel classification 

networks could effectively improve the performance of automatic kidney segmentation, 

significantly better than deep learning-based pixel classification networks.
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Fig. 1. 
Kidneys in US images may have varied shapes and the kidney pixels typically have 

heterogeneous intensities and textures.
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Fig. 2. 
Transfer learning network, and subsequent boundary distance regression and pixel 

classification networks for fully automatic kidney segmentation in US images. The boundary 

detection network (Bnet) is trained using a distance loss function and the end-to-end 

subsequent segmentation network is trained by combining the distance loss function and a 

softmax loss function.
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Fig. 3. 
The architecture of theVGG16 model.
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Fig. 4. 
The transfer learning architecture of the Deeplab model (Chen et al., 2018b). We extracted 

the pretrained feature maps from the exiting Deeplab model.
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Fig. 5. 
Network architecture of the boundary distance regression network.
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Fig. 6. 
An example kidney US image and kidney boundary (a), its boundary distance map (b), and 

its normalized potential distance map with λ = 1 (c). The colorbar of (c) is in log scale.
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Fig. 7. 
Architecture of the kidney pixel classification network.
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Fig. 8. 
Data-augmentation based on TPS transformation and flipping. (a) is a moving image, (b) is a 

fixed image, (c) is the registered image and (d) is the flipped registered image. The kidney 

shape denoted by the red curve is approximately modeled as an ellipse denoted by the 

yellow curves. The yellow stars denote the landmark points of the TPS transformation.
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Fig. 9. 
A multi-task learning based segmentation networks (top) under comparison with the 

proposed subsequent segmentation network. In both the networks, the boundary detection 

(boundary distance regression) network and the pixelwise classification network shared the 

same transfer learning network.
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Fig. 10. 
Traces of the training loss (left) and validation accuracy (right) associated with 3 different 

training strategies.
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Fig. 11. 
Example segmentation results obtained with 3 training strategies. (a) input image and 

ground truth boundary, (b) results of the training from scratch without data augmentation, (c) 

results of the transfer learning without data augmentation, and (d) results of the transfer-

learning with data augmentation.
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Fig. 12. 
Results of the kidney boundary detection networks trained using different loss functions. 

The 1st and 4rd rows show predicted boundary distance maps, the 2st and 5rd rows show 

boundary binary maps, and the 3nd and 6th rows show kidney masks obtained by the 

morphology operation and minimum spanning tree based post-processing method.

Yin et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
Representative segmentation results obtained by different deep learning networks trained 

without data augmentation (the 1st, 3nd, and 5rd rows) and with data augmentation (the 2th, 

4th, and 6th rows).
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Fig. 14. 
Results for the boundary detection network and the end-to-end learning networks. (a) input 

kidney US images, (b) binary skeleton maps of the predicted distance maps, (c) kidney 

masks obtained with the minimum spanning tree based post-processing, (d) predicted 

distance maps obtained by the end-to-end subsequent segmentation networks, (e) kidney 

masks obtained by the end-to-end subsequent segmentation network, and (f) kidney masks 

obtained by manual labels.
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Fig 15. 
Results for the multi-task learning based segmentation network and the end-to-end learning 

networks. (a) input kidney US images, (b) manual label, (c) results obtained by Deeplab, (d) 

results obtained by task 1 of the multi-task learning (MTL) network, (e) results obtained by 

task 2 of the MTL network, and (f) results obtained by the subsequent segmentation 

network.
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Fig 16. 
Example segmentation results of kidney images with boundary cut. The boundary cut is 

indicated by the yellow arrows.
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Table 1.

Differences between the boundary detection network and the end-to-end learning of subsequent boundary 

distance regression and pixelwise classification networks.

Transfer 
learning 
network

Boundary 
distance 

regression 
network

Post 
processing

Pixelwise 
classification 

network

Distance loss 
function

Softmax loss 
function

Boundary Detection 
Network ✓ ✓ ✓ ✓

End-to-end learning of 
subsequent segmentation 

networks
✓ ✓ ✓ ✓ ✓
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Table 2.

Segmentation performance of different training strategies on the validation dataset.

Methods random+noaug finetune+noaug finetune+aug

Dice 0.8458±0.1714 0.9338±0.0377 0.9421±0.0343

MD 6.1173±4.7427 3.2896±2.0465 3.0804±2.7781

Med Image Anal. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yin et al. Page 34

Table 3.

Segmentation results of the boundary detection network trained with distance functions with different settings 

on the validation dataset.

λ = 0.01 λ = 0.1 λ = 1 λ = 10

Dice 0.9003±0.0978 0.9364±0.0501 0.9421±0.0343 0.9264±0.0593

MD 4.2726±3.4268 2.8683±1.9569 3.0804±2.7781 3.3180±2.7279
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Table 6.

Five-fold cross-validation results obtained by the subsequent segmentation, PSPnet, and Deeplab.

PSPnet Deeplab Proposed

Dice coefficient
Mean±std 0.9255±0.0839 0.9155±0.0921 0.9304±0.0703

p-value 3.9e–3 7.3e–10

Mean distance
Mean±std 3.7955±4.6565 4.8282±5.1308 3.0977±2.8955

p-value 4.9e–5 7.2e–21

Jaccard
Mean±std 0.8699±0.1110 0.8543±0.1223 0.8763±0.0992

p-value 4.3e–3 6.2e–10

Sensitivity
Mean±std 0.9454±0.0416 0.9461±0.0682 0.9301±0.0739

p-value 2.8e–4 1.5e–15

Precision
Mean±std 0.9187±0.1175 0.8970±0.1213 0.9378±0.0832

p-value 1.4e–9 1.7e–36

ASSD
Mean±std 3.5030±3.6718 4.1403±3.8713 3.0338±2.4152

p-value 2.3e–3 1.0e–14
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Table 7.

Comparison results for the proposed model with only distance loss function and end-to-end subsequent 

segmentation framework on the testing dataset.

Boundary detection network End-to-end learning

Dice 0.9427±0.0453 0.9451±0.0315

MD 2.9189±1.9823 2.6822±1.4634

Time (sec) 3.75 0.18
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Table 8.

Comparison results for the subsequent segmentation network and the multi-task learning network on the 

testing dataset.

Dice MD

Mean±std p-value Mean±std p-value

Subsequent networks 0.9451±0.0315 - 2.6822±1.4634 -

Multi-task network-task1 (classification) 0.9119±0.0569 1.1e–20 4.4555±2.4292 7.8e–24

Multi-task network-task2 (regression) 0.9314±0.0345 4.6e–12 3.3148±1.6704 1.7e–12
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Table 9.

Dice index values of segmentation results of the testing images rotated by different degrees.

Rotation (degree) −5 −10 −15 −30

Dice index (mean±std) 0.9433±0.0330 0.9431±0.0320 0.9426±0.0339 0.9393±0.0401

Rotation (degree) 5 10 15 30

Dice index (mean±std) 0.9438±0.0272 0.9421±0.0290 0.9388±0.0325 0.9231±0.0505
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Table 10.

Comparison results for the Bnet and end-to-end subsequent segmentation networks on the kidney images with 

boundary cut

Dice MD

Mean±std p-value Mean±std p-value

Boundary detection network 0.8201±0.1788 2.3e–02 8.0299±5.5013 3.3e–02

Subsequent segmentation network 0.8529±0.1463 - 6.1673±5.7510 -
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