
Deep Learning Benchmarks on L1000 Gene Expression Data

Matthew B.A. McDermott, Jennifer Wang, Wen-Ning Zhao, Steven D. Sheridan, Peter 
Szolovits, Isaac Kohane, Stephen J. Haggarty, Roy H. Perlis
CSAIL, MIT; CQH, MGH; CNL, MGH; CQH, MGH; CSAIL, MIT; DBMI, HMS; CNL, MGH; CQH, 
MGH

Abstract

Gene expression data can offer deep, physiological insights beyond the static coding of the 

genome alone. We believe that realizing this potential requires specialized, high-capacity machine 

learning methods capable of using underlying biological structure, but the development of such 

models is hampered by the lack of published benchmark tasks and well characterized baselines.

In this work, we establish such benchmarks and baselines by profiling many classifiers against 

biologically motivated tasks on two curated views of a large, public gene expression dataset (the 

LINCS corpus) and one privately produced dataset. We provide these two curated views of the 

public LINCS dataset and our benchmark tasks to enable direct comparisons to future 

methodological work and help spur deep learning method development on this modality.

In addition to profiling a battery of traditional classifiers, including linear models, random forests, 

decision trees, K nearest neighbor (KNN) classifiers, and feed-forward artificial neural networks 

(FF-ANNs), we also test a method novel to this data modality: graph convolutional neural 

networks (GCNNs), which allow us to incorporate prior biological domain knowledge.

We find that GCNNs can be highly performant, with large datasets, whereas FF-ANNs 

consistently perform well. Non-neural classifiers are dominated by linear models and KNN 

classifiers.
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I. Introduction

GENE expression data offers a view beyond the static genome into the dynamic workings of 

the cell. The potential utility of this data modality is staggering, and biologists have accrued 

a mass of domain knowledge regarding how gene expression is regulated, providing 

extensive, if complicated and uncertain, structure around these data. Further, the availability 

of large-scale, heterogeneous gene expression datasets is rapidly on the rise, fueled both by 

falling costs and development of new gene expression profiling technologies [1].
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Simultaneous with the increasing availability of gene expression data, deep learning 

techniques have grown vastly more powerful and popular—showing advances in image 

processing [2]–[4], natural language processing [5]–[7], and speech recognition/generation 

[8], [9], among other fields. In some limited areas, these advances have also translated into 

the biomedical domain—for example, in analyzing mass spectrometry spectra [10], DNA 

sequences [11], amino acid sequences [12]–[14], or biomedical images [2], [3].

However, among non-sequential, non-imaging modalities, such as gene expression data, 

“deep” learning methods generally remain limited to simple, unstructured, shallow modeling 

techniques. In particular, while large-scale benchmarks such as the ImageNet challenge1 and 

the existence of an underlying mathematical structure have fueled the development of 

convolutional neural networks (CNNs) for image processing or recurrent neural network 

(RNNs) for sequential analysis, bioinformaticians are limited to unstructured feed-forward 

artificial neural networks (FF-ANNs), which are known to be relatively inefficient learners 

[17].

In this work, we aim to lay a foundation that will help deep learning succeed for gene 

expression data as it has in these other domains by providing a fixed definition of success via 

benchmarks and offering a potential avenue for using structure to create more intelligent 

modeling approaches. In particular, we define three biologically motivated benchmarking 

tasks over two curated views2 of the public L1000 LINCS dataset and one privately 

produced gene expression dataset. On each task, we profile K nearest neighbor (KNN) 

classifiers, decision trees, random forests (RFs), linear classifiers, and two neural classifiers: 

feed-forward artificial neural networks (FF-ANNs) and graph convolutional neural networks 

(GCNNs). GCNNs generalize the notion of convolutional neural networks (CNNs) onto data 

structured over arbitrary graphs and allow us to use prior biological knowledge, namely 

regulatory relationships between pairs of genes, to more intelligently model these data. To 

the best of our knowledge, this is the first work that uses these techniques to classify gene 

expression profiles.

We find that GCNNs can be performant, but require large amounts of data, excelling at all 

tasks on our largest dataset, but under-performing FF-ANNs on our smaller datasets. Of 

other methods, FF-ANNs perform best, followed consistently by linear classifiers, then 

random forests, then decision trees. KNN classifiers perform very well on our larger 

datasets, nearly matching FF-ANNs, but they underwhelm on our smaller datasets.

Gene expression datasets often contain many samples spanning a much smaller set of 

subjects, as a single subject’s gene expression profile may be taken many times under 

varying conditions (e.g., drugs, etc.). As such, an important, distinct measure from 

traditional performance metrics (e.g., per-sample accuracy, which is appropriate for model 

development but not pre-deployment assessments) is per-subject accuracy(i.e., 

generalization to unseen subjects). In addition to our per-sample benchmarks on the LINCS 

1ImageNet is a dataset containing millions of labeled images; its associated challenge tasks computer vision researchers to design 
algorithms to identify the objects in these images among a fixed set of categories. Many see ImageNet as a critical seed to the current 
deep learning boom [15], [16]
2See https://github.com/mmcdermott/LINCS_Deep_Learning_Benchmarks
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corpus, we assess per-subject accuracy on a private, smaller L1000 corpus and find that all 

methods struggle to generalize to unseen subjects, showing performance drops ranging from 

10 to 18 percent of their per-sample accuracies.

In sum, in this work we make the following contributions:

1. We establish biologically meaningful classification benchmarks at deep learning 

scale on the largest publicly available gene expression dataset. This is important 

because absent a shared, consistent view of the data and definition of success, 

deep learning method development is severely hampered.

2. We profile a number of classifiers on these tasks, including non-neural methods 

and two variants of neural networks, one of which incorporates prior biological 

knowledge and, to the best of our knowledge, has never been profiled on this 

data modality.

3. We profile these same classifiers on a similar task on a smaller, privately 

produced gene expression corpus to assess which techniques work well in data-

starved environments.

4. We assess how well these techniques transfer to unseen subjects to assess 

population-level generalizability.

II. Background & Related Work

A. Gene Expression Data

1) The Biology: The cellular system is governed by the genome: the sequence of DNA 

base pairs that encode all information necessary for the cell’s development and functioning. 

In order to process DNA into useful cellular work, the cell first transcribes genes into 

messenger RNA (mRNA), which is then shuttled towards cellular organelles that translate 
mRNA sequences into proteins: amino-acid built macromolecules that carry out all of the 

necessary functions of the cell. A cell’s gene expression profile quantifies how actively these 

genes are being expressed (i.e., transcribed and translated into proteins) and thus provides a 

view into the dynamic state of the cell beyond the fixed picture offered by the genome alone.

A single cell’s gene expression patterns will vary over time and in response to environmental 

conditions, such as exposure to drugs, along with intracellular factors, such as the other 

proteins in the cellular environment. Understanding the genetic regulatory network (i.e., 

which factors govern transcription of what and how) is a topic of intense study [18].

2) Measuring Gene Expression/Transcriptomics: Gene expression can be 

quantified in many ways. Two broad categories of gene expression data are proteomics, 

which directly measures the quantities of produced proteins within the cell, and 

transcriptomics, which measures the quantities of produced mRNA transcripts within the 

cell (Figure 1). Transcriptomic gene expression is far more easily measured and will be our 

focus in this work [19], [20].
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Note that there is not a direct correspondence between these two measurement techniques. 

Protein production is heavily regulated post-transcription, and in using transcriptomic data, 

we ignore these additional layers of biological processing in favor of the increased 

availability of data.

3) Measurement Techniques: Transcriptomics data itself can be measured by many 

techniques, including RNA-Seq, single-cell RNA-Seq, and the L1000 platform, which we 

focus on here. The L1000 platform [1] is notably cheaper per-sample than other 

transcriptomics techniques, but both measures fewer genes3 than other technologies, 

focusing on only 978 “landmark genes,” and is noisier than some alternatives as it requires 

additional layers of processing which instills greater technical variability. Despite these 

problems, the low price point of L1000 has enabled the creation of large scale public 

datasets, such as the approximately 1.3M sample LINCS dataset, which is available on GEO 

at accession number GSE92742.4

L1000 data is often used at one of two levels of pre-processing:

a) Level 4 (a.k.a. Roast):  Level 4 data is fully normalized, plate-controlled, and z-scored, 

and presented at the level of one profile per sample.

b) Level 5 (a.k.a. Brew):  Level 5 data takes the Level 4 data and aggregates samples 

under identical technical conditions into a single averaged view of that profile (see [1] for 

full details). This process reduces variance, but also severely reduces dataset size. This 

variance reduction is useful for traditional bioinformatics, but it is not clear how helpful it 

should be for deep learning methods which generally prefer to automatically learn how to 

extract features from the most raw view of data possible. We would like our classifiers to be 

able to fully account for the technical variability inherent between repeated measurements, 

but using Level 5 data would deprive us of that opportunity while costing a significant 

number of input samples. On the other hand, Level 5 data may be of higher quality.

4) Experimental Pipelines: Often (though not universally) experimental pipelines 

producing large corpora of gene expression data work by acquiring some base cellular 

sample, either subject derived or via a stock cell line, cloning that cell line extensively, then 

perturbing a number of samples and profiling them (Figure 2). In this way, these datasets 

often have many more samples than cellular sources. This can lead to population-specific 

over-fitting, where a model specializes only to the population within the corpus and, despite 

generalizing to unseen samples within the corpus, the model will fail to generalize to unseen 

cellular sources.

Experimental pipelines also often show highly skewed distributions of perturbagen 

frequency, as common perturbagens may be profiled across many cell sources but more 

niche perturbagens will be profiled in isolation only on some smaller subset of cell lines. 

This problem is even more extreme considering “control” substances, such as DMSO, which 

3The L1000 platform can also infer the full transcriptome from its measured subsets, but we only use the directly measured genes in 
this work
4https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
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are often profiled many more times than other compounds to provide a rigid baseline. As a 

result, attempting to evaluate machine learning models across perturbagens can be difficult 

as one must account for these biases in the dataset.

B. Deep Learning on Gene Expression Data

Deep learning techniques have been applied widely in the biomedical domain, using both 

structured, truly deep modeling frameworks on imaging or sequential modalities as well as 

unstructured models on other domains [23]. In this section, we will explore in greater depth 

those applications of neural network techniques on gene expression data.

1) Traditional Analyses: Traditional analyses on these data focus on statistical or 

geometric tests for differential gene expression [24], gene set enrichment analyses (GSEA) 

[25], and (for the L1000 platform specifically) signature based analyses [1], [26]. Some have 

also used tensor decomposition/completion to disentangle cell-type from perturbagen effects 

[27], [28], and explored traditional classifiers for adverse drug event prediction [29].

2) Neural Representation Learning: Other authors have used neural network models 

to build embeddings of gene expression data. In [30], the authors use a twin network 

architecture to represent gene expression profiles as 100 diensional bar-codes. They actually 

use the inherently high technical variability of this modality as a learning signal, by training 

their network to learn an embedding that minimizes distances between replicated samples. In 

[31], the authors use a sparse autoencoder to analyze binarized yeast differential gene 

expression microarray data. Post-training analyses found overlaps between transcription-

factor mediated regulatory relationships and the connections trained by their network 

between the first two layers. In [32], the authors explore neural network mediated 

dimensionality reduction for single cell RNA-Seq data, augmenting traditional networks by 

adding nodes to the first hidden layer according to known transcription factor or protein-

protein interactions, and only connecting input gene nodes to those regulatory or interaction 

nodes as dictated by prior biological knowledge.

3) Neural Classification & Regression: In [33], authors use a FF-ANN to classify 

profiles into categories based on the therapeutic effect of the generating perturbagen. 

Researchers have also explored neural techniques for extrapolating the L1000 set of 

landmark genes to the full transcriptome. In [34] and [35], authors use a 3 hidden layer feed 

forward network to perform gene expression extrapolation from the L1000 landmark set.

Some authors have also attempted to use other modeling techniques on gene expression 

Data. In [36], the authors first reindex the gene expression vector according to chromosome 

position, reasoning that genes near one-another on the chromosome are more likely to 

interact, then reshape this one-dimensional vector into a two-dimensional square image and 

process it with a two dimensional convolutional neural network (CNN). This approach is 

very misguided as it asserts a set of spatial invariances (locality, translation, etc.) which 

CNNs require and are satisfied in image processing but do not apply to arbitrarily reshaped 

gene expression data. Nevertheless, as this approach allows the authors to model non-linear 

affects, it does offer strong performance on their task.
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C. Structured Models via Graph Convolutional Networks

1) Regulatory Graphs: As stated in Section II-A1, gene expression is regulated by 

complex processes and is a topic of intense study. What we do know of gene expression 

regulation is often envisioned as a graph (such as in Figure 3) with genes forming the 

vertices of this graph and edges between genes representing regulatory relationships 

between those two genes.

Many of these relationships are only suspected, and as biologists have yet to study all 

possible interactions between sets of genes, these graphs are biased towards representing 

commonly studied proteins. Additionally, regulatory relationships themselves depend on cell 

type and, even within a single cell, they change in response to perturbations and 

environmental conditions, among other factors. Nonetheless, these “regulatory graphs” 

present at least a partial encoding of the biological understanding of relationships between 

different genes, and we use them here to augment neural classifiers with domain knowledge 

via GCNNs. Regulatory graphs are usually directed, but in this work we consider them as 

undirected graphs for simplicity.

2) Graph Convolutional Networks in Theory: GCNNs are extensions of CNNs onto 

data defined over arbitrary graphs. Qualitatively, we can think of these networks as 

attempting to analyze data whose features are nodes in a graph by repeatedly summarizing 

the features within local neighborhoods of the graph, before aggregating those features into 

higher level signals spanning larger regions of the graph. This is directly analogous to how 

convolutional neural networks for image processing learn featurizations of local patches of 

the image, then pool those signals over larger windows.

There are two main strategies to generalize a CNN to other domains: the spectral approach, 

which generalizes the notion of a Fourier transform onto a graph via the graph Laplacian, 

and the locality approach, which uses the idea of processing data defined in local patches via 

neighborhoods in the graph more directly. GCNNs must also generalize the notion of 

“pooling” onto graphs, which they generally do via graph clustering algorithms, using the 

resulting node clusters to determine pooling neighborhoods.

GCNNs promise to bring the normalization obtained via weight sharing over consecutive 

convolution and pooling operations to features defined over any arbitrary graph, but they 

present their own challenges. Both local and spectral methods present computational 

challenges, and efficient graph pooling algorithms must use approximate solutions for NP-

hard graph clustering problems. In practice, many operations are approximated, which 

affects the power of these models.

3) Graph Convolutional Networks in Practice: Graph convolutional networks are 

often used in forming predictions at the node level, or in classifying whole graphs. For 

example, [38] explored node classification on knowledge and citation graphs. In this vein, 

GCNNs have also been used in several biological tasks. For example, [39] classifies proteins 

viewed as nodes in varying tissue-specific protein protein interaction graphs, [40] learns 

representations of molecular compounds interpreted as unique graphs with vertices 

determined by atoms and edges by bonds, [41] classifies polypharmacological interactions 

McDermott et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as edges of a drug and protein interaction graph, and [42] learns representations of graphs 

defined by protein three dimensional structure for protein interface prediction.

These node classification tasks differ from our context, where we wish to make predictions 

over a set of gene expression profiles, each of whose individual feature dimensions (the 

expression level of a particular gene) can be seen as a node on a static graph (a regulatory 

network such as Figure 3). Spectral methods are enticing for use in this context. In fact, this 

picture is so appealing that many papers describing novel GCNN algorithms use this 

example to frame the impact of their ideas [43]–[46]. However, to the best of our knowledge, 

no work yet has profiled how these ideas actually serve on gene expression data in practice. 

We fill that lack here, and profile the work of [43], with minor technical modifications5 to 

support multi-component graphs, on gene expression data backed by both tissue-

independent and tissue-specific genetic regulatory networks culled from the literature.

III. Methods

A. Datasets

1) Curated Views of the Public LINCS Corpus: The full Level 4 LINCS dataset 

contains approximately 1.3 M gene expression profiles over 76 cell lines, ranging in 

frequency from VCAP, profiled over 200,000 times to NCIH716 with only 43 samples. Each 

cell line is profiled in diverse conditions—for example, within prostate tissue (the most 

frequently sampled tissue type) over 40,000 unique perturbagens were tested (including both 

drugs and genetic knockout or over-expression perturbagens), many sampled only a single 

time. To be clear, each sample in this dataset is a complete gene expression profile over the 

landmark genes—i.e., it is a 978 dimensional vector where each number quantifies the 

expression level of a particular gene in the genome.

On this dataset, we formed three supervised learning tasks:

a) Primary Site:  Predicting primary site (e.g., “breast tissue” or “large-intestine”) forces 

the classifier to examine deviations within a gene expression profile indicative of the tissue 

type, and would have applications to quality control within cell differentiation pipelines. 

Primary site is cell-line specific.

b) Subtype:  Subtype (e.g. “malignant melanoma” or “myoblast”) is also cell-line specific 

and speaks to disease state and provides another way of aggregating the many disparate cell 

lines within LINCS into useful predictive categories.

c) MOA:  Predicting drug mechanism of action (MOA, e.g. “ATPase inhibitor” or 

“Sodium channel blocker”) speaks to drug re-purposing and discovery applications and 

aggregates many disparate perturbagens into meaningful predictive categories. However, 

note that though we treat this as a standard multi-class classification problem, in reality 

many drugs have multiple known MOAs, a distinction we ignore here for simplicity. To 

5Our version of this code-base is available at https://github.com/mmcdermott/cnn_graph
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ensure this simplifying assumption adds minimal noise to our classification task, we only 

exclusively include compounds with only a single known MOA.

B. Dataset Curation Procedure

We chose to reduce the LINCS dataset to a single curated view simultaneously suitable for 

all three of these tasks rather than forming a separate view per task. This causes us to lose 

some samples which only meet inclusion criteria for a subset of our tasks, but it is much 

more convenient to work with and disseminate. In that pursuit, we reduced the dataset to 

only those samples perturbed by compounds (not genetic knock-out or over-expression 

perturbations), and further only those samples perturbed by compounds with a single known 

MOA. We further restricted the dataset to only those samples corresponding to MOAs, 

primary sites, and subtypes that occurred more than 1000 times within the overall dataset, to 

ensure sufficient training examples for all classes for our classifiers. We performed these 

filtering steps independently—i.e., we removed all gene expression profiles belonging to a 

class in any of our three tasks that lacked 1000 full examples at the start. This resulted in 

some few classes in some of our tasks having fewer than 1000 examples (because, at the 

beginning of the process, they had over 1000 measurements, but after removing some 

samples due to their class membership for another task, the class then had fewer than 1000 

measurements).

This formed one curated view of our data, and three classification tasks. One qualm some 

might have with this dataset is that it is very heterogeneous in terms of cell type—perhaps it 

is better to classify samples only derived from a single tissue type. To that end, we also 

formed a dataset containing only samples from prostate tissue (chosen as it was the most 

frequently sampled tissue type). As in our full dataset, here we restrict the samples to only 

those perturbed by compounds with a single known MOA that occurred at least 1000 times. 

This formed our “Prostate Only” dataset, on which we predict MOA only.

Full final dataset sizes, heterogeneity (among cell type) statistics, task statistics (e.g., class 

imbalance, number of classes) are shown in Table I. Note that there is significant class 

imbalance in this dataset–an unavoidable reflection of the corpus’s original makeup–but by 

filtering to a baseline number of examples per class we assert that there are at least a 

significant number of samples for every label ensuring learning power. We have made both 

of these datasets (though derived from fully public data), along with the cross-validation 

folds used in all of our experiments, publicly available,2 so that others can most easily 

compare novel methodologies against our benchmarks.

We do not claim that these benchmark tasks or views of the data are the best benchmarks 

available. But these are biologically meaningful benchmarks on an important data modality 

that currently has none. We hope that as future methods evolve to better suit this 

methodology, we can also derive better benchmark tasks. Note here that we do not mean to 

claim that no machine learning tasks have been used on this modality previously, but rather 

that no set of systematized, very large sample size tasks for methodology development 

currently exist.
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Given the very large ratio of samples to cellular sources (e.g. 156k to 36) and the very large 

skew in perturbagen frequency (e.g. DMSO accounting for approximately 1/6th of all data), 

as well as the lack of independence between perturbagen and cell type, we measure all 

accuracies on these datasets as per-sample accuracy, not per-subject, per-drug, or even per-
experimental condition (as different experimental conditions are repeated to varying 

degrees). This means that our results on these data should not be interpreted to speak to true 

generalization outside the LINCS covariate space, but rather should be viewed only in their 

capacity to enable rigorous methodological comparisons.

1) MGH NeuroBank Corpus: Our private corpus of L1000 data was measured on a 

collection of subject-derived neural progenitor cells, which were perturbed with one of 60 

different small-molecule bioactives at varying doses. Some of these compounds are known 

to have consistent gene-expression signatures (e.g., HDAC inhibitors), whereas others have 

known clinical utility but a less well understood transcriptomic profile (e.g., clozapine), and 

still others were unknown on all counts.

These cells come from a population of five individuals, two healthy control subjects, one 

with Bipolar Disorder, and two with Schizophrenia (all diagnostic labels are DSM-IV 

diagnoses confirmed by structured clinical interview). All individuals’ cells were treated 

with the same compounds. On this data, we predict perturbagen identity. Note that each 

perturbagen was profiled at one of several doses, which we ignore here. We also use this 

dataset to profile how well classifiers do on Level 4 vs. Level 5 data and make a first attempt 

at assessing per-subject generalizability, by training a model on only four of the five 

subjects, then testing on the data for the fifth subject.

Full details for this corpus are also found in Table I.

C. Models

We compare a variety of standard classifiers, all save GCNNs implemented via scikit-learn 

[47] for maximal reproducibility and ease of use. GCNNs, as previously stated, were 

implemented via the method of [43].

In the interest of space, we will not provide a primer on each of the standard methods 

mentioned below in this work, but instead make clear why they were chosen to benchmark 

for this task and indicate which scikit-learn class was used to implement them. For a 

description of GCNNs see Section II-C.

1) Classifiers Tested:

a) Feed-forward artificial neural network (FF-ANN) classifiers:  FF-ANNs are a 

common, powerful, non-linear modelling technique, and were used in many of the prior 

works on gene expression data. However, partly as they do not assume any particular 

structure of their input and are thus least constrained, they are relatively inefficient learners. 

Some postulate that this inefficiency is due to simply their larger parameter overhead; 

however, the full reason is not yet known. Implemented via the MLPClassifier class.
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b) Linear classifiers:  Linear classifiers, subsuming both logistic regression (LR) and 

support vector classifiers (SVCs), are extremely common across all domains, including 

traditional bioinformatics analyses, and are interpretable. Implemented via the 

SGDClassifier class.

c) Random forests:  Random forests are not as commonly used in traditional 

bioinformatics use cases, but are thought to often provide a compelling non-neural but still 

non-linear baseline. They are composed of many bagged random decision trees. 

Implemented via the RandomforestClassifier class.

d) K nearest neighbors classifiers:  KNN methods are commonly used in this domain for 

clustering analyses, and we hope that investigating their performance here can help inform 

further choices for those and other analyses in these domains. They also shed some light on 

appropriate distance metrics. Implemented via the KNeighborsClassifier class. Index 

construction, often a computationally intensive task on large datasets, was done via either 

brute force search, the construction of a KDTree, or the construction of a Ball Tree, as 

determined by scikit-learn’s ‘algorithm=auto’ setting.

e) Decision trees:  Decision trees are low powered, but extremely mechanistically 

interpretable. Implemented via the DecisionTreeClassifier class.

f) GCNNs:  Lastly, we tested GCNNs—in particular, the spectral approach defined by 

[43]. We encourage interested readers to refer to the primary source for full details regarding 

this algorithm, but we provide a brief explanation of the method here. In particular, this 

method of graph convolutional processing approximates localized filters in the graph fourier 

space via polynomials of the graph Laplacian. As follows from the graph theoretical nature 

of the Laplacian, restricting the order of these polynomials yields a localized radius of effect 

when impacting on the featurization of each graph node. These polynomials are realized in 

an efficient manner by relying on the stable recurrence relation of the Chebyshev 

polynomials, which form an orthogonal basis of a relevant Hilbert space and have been used 

historically in graph signal analysis for approximate wavelet analysis. Ultimately, this yields 

a means of producing fast, localized, graph convolutional filters. Graph pooling is 

implemented via the coarsening phase of the Gracus multilevel clustering algorithm [48].

We use the code of [43] with minor modifications to support multi-component graphs. We 

considered a number of potential regulatory graphs, both tissue specific and tissue 

independent. Our tissue-independent regulatory network is a network of transcription-factor 

and micro-RNA mediated regulatory relationships summarized from 25 literature defined 

external datasets [37].6 Our tissue-dependent regulatory network is built from a probabilistic 

model of tissue-specific gene-gene correlations [49].7 Interested readers should refer to the 

primary sources to determine the details of the graph constructions—for our purposes it 

suffices to note that they are constructed to capture known or suspected genetic regulatory 

relationships as in Figure 3. We treated all graphs as undirected, allowing them to capture 

6Networks available for download here: http://www.regnetworkweb.org/download.jsp
7Networks available for download here: http://hb.flatironinstitute.org/download

McDermott et al. Page 10

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.regnetworkweb.org/download.jsp
http://hb.flatironinstitute.org/download


merely a notion of regulatory interaction rather than any directed up- or down-regulation. 

This is certainly a simplification, and one we plan to extend in the future, but it yield 

significant technical simplifications for this work enabling these graphs to work natively 

within our chosen graph convolutional framework.

The tissue independent graph has edges determined from the literature and is unweighted. 

For our tissue specific graphs, we considered a neuron graph for the MGH NeuroBank 

tissue, and a prostate gland graph for the prostate only LINCS dataset. All graphs were 

undirected. Tissue independent graphs were unweighted, while tissue-specific graphs come 

with edge weights determined via an estimated confidence in the true existence of that edge, 

determined via a probabilistic model. When working with these weighted graphs, we culled 

all edges with confidence below a cutoff weight, which was tuned with all other 

hyperparameters.

g) Other Classifiers Considered:  We also tested Näıve Bayes classifiers, Gaussian 

Processes Classifiers, Quadratic Discriminant Analysis, Boosted methods via Adaboost, and 

Kernel Support Vector Classifiers, but these classifiers were removed from our experimental 

lineup for reasons varying from poor performance, non-insightful new results, computational 

intensivity, or combinations therein.

D. Hyperparameter Search & Technical Setup

Hyperparameters for all classifiers were determined by a random search [50] over all 

possible parameters and tasks, including over the number and sizes of hidden layers for FF-

ANNs and number of graph convolution layers/filter sizes/pooling sizes, loss types, etc. In 

addition to random search, we also rotated the discovered optimal hyperparameters across 

tasks during various stages of the search procedure and made certain manual tweaks in 

pursuit of obtaining strong performance metrics for all models, particularly baseline 

methods. One notable disparity in the hyperparameter space searched is that the Scikit Learn 

FF-ANNs do not support dropout (only L2 regularization, which was included in our 

search), whereas the GCNNs do. To compensate for this potential bias, we took the optimal 

FF-ANN models found via the hyperparameter search and re-implemented them in Keras, as 

identically as possible, then performed a miniature grid-search over dropout within these 

models. This procedure induced a mild performance gain, but not enough to upset the 

observed model ordering on any tasks where GCNNs performed the best. We also did not 

hyperparameter optimize over batch size for FF-ANNs, but we did optimize over learning 

rate, a heavily related parameter, and we also tested several smaller batch sizes with our final 

models to ensure that we were not biasing the results against this baseline.

For GCNNs, we notably did not hyperparameter search over the number of epochs, but 

rotated progressively through a very limited fixed set of number of epochs for computational 

reasons. Additionally, GCNNs only supported a single optimizer, whereas FF-ANNs offered 

several options. The search process was, however, run over various considered graphs, as 

well as over the graph edge weight cutoff, which we used to cull irrelevant edges from our 

graphs.
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For our benchmarking tasks, a full list of all hyperparameters tested, the distributions used to 

back our random search, and the final, chosen hyperparameters are available with our 

provided code.2 Additionally, the optimal hyperparameters for all methods across all 

datasets and tasks can be found in the Appendix.

This random search was performed over 10 fold cross validation on the full LINCS dataset, 

and 15 fold cross validation on the private L1000 dataset (as that dataset is smaller, it 

warrants additional folds to improve accuracy). In each case, one fold was held out for 

testing, one for hyperparameter optimization, and the remaining used for training. The 

hyperparameter search optimized for mean accuracy over all folds, though we also report 

macro-F18 in our test set results below, as some tasks present significant class imbalance. 

We chose these two metrics to offer first, a comparatively understandable metric (accuracy) 

which allows for a clear baseline measure (majority class performance) but is often overly 

forgiving for tasks with large class imbalance, and second, a less overt, but still commonly 

used, metric which compensates for class imbalance. We chose not to use AUC as it is less 

immediately understandable than accuracy while also not accounting for class imbalance as 

directly as macro-F1, and to avoid having too many evaluation metrics and thereby diluting 

our comparisons. For all results, statistical significance was assessed using paired t-test 

across all folds, followed by Benjamini-Hochberg multiple tests FDR adjustment within 

experimental conditions.

As different classifiers required different amounts of computational time to run, we did not 

run all classifiers for the same number of samples—this induces a mild bias towards the 

fastest running classifiers, as they will have had the opportunity to test additional 

hyperparameter settings. We did, however, ensure that we measured at least 60 samples for 

the standard FF-ANN classifier and linear models to ensure that we did not conclude any 

model better than those traditionally strong baselines simply due to lack of appropriate 

sampling. Graph convolutional networks, being highly computationally intensive, in 

particular on the larger datasets, were under-sampled compared to the other methods—it is 

possible that with more compute time their performance would improve. Note the direction 

of this bias: were more samples to improve the performance of the GCNN methods further, 
it would only strengthen the performance gap observed on the largest datasets, and 
potentially render them more performant than the simpler models on our smaller datasets. 

Because this bias is in favor of our baselines, rather than the more exotic, structured GCNN 

models, we feel comfortable still reporting these results even though they may improve later.

For our data-flush regimes (the tasks over the full and prostate only LINCS datasets), we 

used only the Level 4 data. This data is less processed, but presents 3 times as much data as 

the analogous Level 5 data. Note that had we used Level 5 data, our filtering procedure 

eliminating classes with less than 1000 examples would have eliminated many classes and 

made the overall task much easier. For our data-sparse tests (the task on our private L1000 

corpus), we tested methods on both datasets, wondering whether in this data-sparse regime, 

8The F1 score on a binary classifier is the harmonic mean of the classifier’s precision and recall. The macro-F1 score is an unweighted 
average of the F1 score of each class separately. Generally, macro-F1 will offer a more conservative measure of performance for tasks 
with strong class imbalance.
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the more processed data might prove more valuable than the relatively small increase in 

dataset size. Additionally, as in neither dataset on the MGH corpus did we filter out 

infrequent classes (given the dataset size, all classes are infrequent by our standards for the 

full LINCS data), this change from Level 5 to Level 4 can be done more transparently than 

on the full LINCS datasets.

Along with our code, the results of these hyperparameter searches are all publicly available.2

IV. Results & Discussion

A. LINCS Corpus

1) Full Corpus: Final results are shown in Table II. Accuracies and macro F1s are 

reported averaged across unseen test folds, using hyperparameters found via a separate 

validation fold. Included in the results are those obtained using a majority class classifier, 

which simply predicts the most frequent class with probability equal to that found in the 

training set. This was tested across the same folds and is reported here to ground all other 

reported results and variances. Observed differences between mean performance of any pair 

of classifiers were statistically significant (p ≤ 0.05).

We note that on all of the tested tasks, GCNNs perform best, by notable margins in accuracy 

and macro F1 on both primary site and subtype prediction. The margin of accuracy in MOA 

prediction is smaller, but still statistically significant. KNNs performed surprisingly well on 

all three tasks, offering competitive performance even with the FF-ANNs. Investigations of 

why they performed so well revealed two findings:

1. KNN classifiers strongly prefer traditional distance metrics (e.g., Euclidean) over 

correlative based “distance metrics.” This is notable because correlation is often 

used as a signal of biological similarity on these data, which may be 

contraindicated by these results.

2. Our hyperparameter search method also changed the distance metric underlying 

the KNN method. Across all tasks and datasets, the optimal distance metric was 

the “Canberra” distance, defined via

d x, y = ∑
i

xi − yi
xi + yi

.

Using this distance metric induced performance gains over correlative and 

traditional, euclidean distance measures. The Canberra distance is traditionally 

used for integer valued vectors and we are unsure why it would be preferred 

here. We have not performed analyses to determine if this apparent distance 

metric preference is statistically significant.

Linear classifiers robustly performed well. On the MOA task, hyperparameter search 

selected a logistic regression model (via the log loss in scikit-learn), whereas on the Subtype 

and Primary Site tasks, the optimal setting used a modified_huber loss, which is a smooth 

loss that is tolerant to outliers.
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Random forests and decision trees both yielded under-whelming results, particularly with 

respect to Macro F1. One hypothesis as to why this may be is that Random forests were less 

sampled in the hyperparameter search than linear models. Alternatively, these results may 

suggest that absolute feature values are less meaningful in our data than are relationships 

between feature values—an idea that meshes well with the fact that this dataset is very 

heterogenous with respect to cell (e.g., tissue) type, and the same expression level of any 

individual gene may mean very different things in different tissue types. Some might 

postulate that this is perhaps due to a poor search space of some critical hyperparameters; we 

intentionally ensured our hyperparameter search space was very broad especially over these 

critical parameters. For number of trees, we searched over an equal mixture of Poisson 

distributions centered at 50, 200, and 400, respectively, and the optimal hyperparameters 

(shown in the appendix) showed a mix over this entire range. All regularization parameters 

were also included in our search space.

2) Prostate Only Corpus: Final results for prediction of prostate MOA are shown in 

Table III. All classifier comparisons were statistically significant (p = 0.05). Here, FF-ANNs 

perform best, though GCNNs are quite competitive. Note that GCNNs still preferred tissue 

non-specific regulatory graphs, rather than prostate specific graphs. Again, KNNs perform 

well. Here, RFs and decision trees still under-perform the other methods, but perform better 

with respect to macro F1 than they do on the more heterogeneous full LINCS corpus, 

suggesting again that perhaps they may be more appropriate on more homogeneous data 

sources.

As indicated in Section III-C1, we tested both tissue-specific and tissue-independent 

regulatory graphs. Surprisingly, on the prostate corpus, the GCNN performed better using 

the tissue independent regulatory network than it did using the prostate specific regulatory 

graph. This may indicate that our tissue-specific graphs suffer from some unknown problem, 

or that tissue-independent graphs are simply more performant overall.

Similar to the full system MOA task, the optimal linear model here was a logistic regression 

model.

B. MGH NeuroBank Corpus

1) Raw Performance Results: Final results for perturbagen identification on the MGH 

NeuroBank corpus are shown in Table IV. Results were not statistically significantly 

different at p = 0.05 between the Level 5 data and Level 4 data for any classifier save the 

GCNN. All within-level classifier comparisons were statistically significant (p = 0.05) save 

between Level 5 GCNNs and RF, GCNNs and KNNs, and KNNs and RFs.

Here, FF-ANNs lead in performance by a wide margin compared to other methods. We 

interpret their strong success here relative to GCNNs to be indicative of a strong need for 

very large datasets for the GCNN models. Recall that this dataset is significantly smaller 

than our other datasets (see Table I). This intuition is supported by two observations: 1) the 

apparent slope in GCNN performance relative to dataset size is quite steep, exceeding at all 

tasks on the largest dataset, nearly matching on the prostate only dataset, and failing by a 

large margin here, and 2) GCNNs show a statistically significant preference for the larger 
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Level 4 data, whereas no other classifier cares between the two modalities in a statistically 

significant manner.

It is also possible that GCNNs are less appropriate on this corpus than on the larger corpora 

due to this dataset’s strong neural focus. Or, it may be that GCNNs are most appropriate in 

heterogeneous datasets spanning many cell types.

Among the other classifiers, linear classifiers perform well, followed by KNNs and RFs, 

then, much worse, by decision trees. No classifier save GCNNs shows a statistically 

significant preference for Level 5 data over Level 4 data, but all save GCNNs do show a 

(again, statistically insignificant) preference for Level 5 data in terms of absolute measure.

2) Generalization Experiments: We also used the MGH NeuroBank Corpus to assess 

population level generalizability, by training on four of our subjects and testing on the fifth 

subject. As the MGH NeuroBank Corpus contains only one subject with Bipolar Disorder, 

we do not ever test on this subject’s data—absent more examples of any subject data in this 

diagnostic category, we would not expect a classifier to generalize well to this subject. 

Including their results causes a mild but consistent drop in mean generalization accuracy 

across almost all classifiers tested. We report all results here using Level 4 data as no 

classifier statistically significantly preferred Level 5, but the relative drops in performance 

observed were similar for that modality.

Results for this experiment are shown in Table V. All methods showed a notable drop in 

accuracy on unseen subjects, ranging from a 10.2% drop for linear classifiers to an 18.5% 

drop for decision trees (percentages taken of per-sample accuracies, not raw percentage 

points). This indicates a definite unmet need for either a) more diverse datasets or b) novel 

methods able to better generalize to unseen subjects. Note, though, that the MGH 

NeuroBank corpus only contains 5 total subjects to begin with, so it may be the case that 

these numbers would improve significantly were we to have even a only marginally larger 

subject pool. Note that on a dataset like LINCS, which is much larger and thus more 

amenable to higher-capacity learning yet has relatively fewer cellular sources (and with 

those cellular sources often differing by tissue type or primary diagnosis no less), it is 

reasonable to imagine that this observed population specific overfitting could forseeably be 

even worse than what we observe on the MGH dataset—this point is critical given that this 

dataset has been used historically for many machine learning investigations with clinically 

generalizable aspirations, unlike our work where the tasks are designed to aid primarily in 

method development.

V. Conclusion

In this work we aimed to make the following contributions:

a) Establish biologically meaningful benchmark tasks for gene expression data:

With the curation of the full and prostate-specific views of the LINCS dataset and 

specification of the Primary Site, Subtype, and MOA tasks, we meet this goal.
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b) Provide robust benchmarks:

We provide benchmarks on the tasks defined above for 6 different types of classifiers. We 

establish that graph convolutional neural networks, which incorporate prior biological 

knowledge via genetic regulatory graphs, perform very well when dataset size is very large, 

and feed-forward artificial neural networks offer good performance across all dataset sizes. 

Additionally, we profile non-neural classifiers, including K nearest neighbor methods, 

random forests, linear classifiers and decision trees. K nearest neighbor methods provide 

surprisingly strong performance in data rich environments using the Canberra distance.

c) Assess how these classifiers function in data-scarce regimes:

We profile these same classifiers on a similar task on the smaller, privately produced MGH 

NeuroBank corpus. Here, we find that graph convolutional neural networks no longer offer 

competitive performance, but feed-forward artificial neural networks continue to perform 

well, as do linear models.

d) Assess population level generalizability:

We demonstrate that subject level generalizability remains an important challenge in this 

domain. Linear classifiers generalize best, losing only 10.2% of their per-sample accuracy, 

while decision trees generalize worst, losing 18.5%. It is important to note that we were only 

able to assess this on our smallest dataset, the MGH NeuroBank Corpus, as differing cell 

lines represented too divergent demographic conditions in the full LINCS dataset, so this 

may simply be a reflection of the small dataset size, or indicative of a more chronic problem 

due to the fact that gene expression corpora contain many samples per subject.

VI. Future Work

There are several notable directions for future work. First, a notable absent classifier is a 

self-normalizing neural network (SNNN) [17]. Introduced in late 2017, SNNNs have 

demon-strated improvements in a battery of different tasks and warrant inclusion here. Other 

types of classifiers capable of using graph structures would also warrant inclusion. 

Additionally, there are other graph convolutional networks one could use, [39], [44], as well 

as other sources for our regulatory graphs. One notable contender in that domain is HuRI: 
The Human Reference Protein Interactome Mapping Project9 which has several large 

databases of protein-protein interactions found experimentally through yeast two-hybrid 

screening methods [42], [51]. Additionally, incorporating directional information in our 

regulatory graphs would also enable significantly more nuanced processing. Finally, we 

would also like to establish other types of machine learning benchmark tasks, most notably 

clustering tasks, or other tasks that can better assess generalizability across subjects, drugs, 

or even measurement technologies. More investigation into what drove the success of 

GCNNs here, perhaps by running dataset size ablation experiments, would also help clarify 

their strengths. Similarly, more investigations into the failings of random forest models or 

the relative strengths of differing distance metrics would also be informative.

9http://interactome.baderlab.org/about/
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Appendix

TABLE VI

Optimal Hyperparameters for LINCS Full MOA

GCNN

regularization 1.09e–2

num_epochs 350

Fs [[9]]

M [137, 49]

Ks [[7]]

batch_size 92

pool apool1

learning_rate 1.23e–3

decay_steps 405

decay_rate 9.91e–1

dropout 6.98e–1

momentum 8.79e–1

ps [[2]]

FF-ANN

activation relu

alpha 1.69

power_t 3.30e–1

learning_rate_init 1.09e–1

hidden_layer_sizes [955]

learning_rate adaptive

momentum 8.64e–1

early_stopping True

nesterovs_momentum True

KNNs

weights distance

metric canberra

n_neighbors 12

Linear Classifier

penalty l1

l1_ratio 4.06e–1

alpha 1.23e–3

loss log

n_jobs −1

tol 1.00e–5

learning_rate invscaling
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eta0 3.17e–4

power_t 1.84e–1

Random Forest

max_depth 100

max_leaf_nodes None

criterion gini

n_estimators 211

min_samples_split 2

min_weight_fraction_leaf 1.27e–6

min_impurity_decrease 1.70e–5

min_samples_leaf 1

Decision Tree

max_features None

criterion entropy

max_depth 10

splitter best

min_samples_leaf 2

min_impurity_decrease 1.23e–3

min_samples_split 2

max_leaf_nodes None

min_weight_fraction_leaf 2.08e–3

TABLE VII

Optimal Hyperparameters for LINCS Full Subtype

GCNN

regularization 5.42e–3

num_epochs 300

pool mpool1

M [150, 150, 14]

batch_size 88

Fs [[43]]

momentum 9.73e–1

learning_rate 2.95e–3

ps [[2]]

decay_steps 362

decay_rate 9.76e–1

Ks [[8]]

dropout 4.54e–1

FF-ANN

activation relu

nesterovs_momentum True

hidden_layer_sizes [997]

learning_rate invscaling
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early_stopping False

learning_rate_init 5.53e–2

power_t 2.26e–1

alpha 8.20e–1

momentum 8.67e–1

KNNs

metric canberra

weights uniform

n_neighbors 1

Linear Classifier

learning_rate invscaling

alpha 3.63e–1

power_t 1.14e–1

l1_ratio 7.37e–1

penalty l2

eta0 9.91e–5

loss modified huber

Random Forest

criterion gini

max_depth 25

min_samples_leaf 1

max_leaf_nodes 500

n_estimators 411

min_weight_fraction_leaf 4.33e–4

min_samples_split 2

min_impurity_decrease 3.64e–5

Decision Tree

min_impurity_decrease 3.19e–5

criterion entropy

min_weight_fraction_leaf 1.12e–2

max_leaf_nodes 100

min_samples_leaf 1

min_samples_split 2

max_depth 5

splitter best

max_features None

TABLE VIII

Optimal Hyperparameters for LINCS Full Primary Site

GCNN

regularization 3.08e–3

num_epochs 350

Fs [[41]]

batch_size 68
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M [135, 12]

ps [[2]]

decay_steps 380

momentum 9.45e–1

learning_rate 3.13e–3

pool apool1

decay_rate 9.89e–1

Ks [[5]]

dropout 5.62e–1

FF-ANN

learning_rate_init 5.53e–2

activation relu

momentum 8.67e–1

nesterovs_momentum True

learning_rate invscaling

power_t 2.26e–1

early_stopping False

hidden_layer_sizes [997]

alpha 8.20e–1

KNNs

n_neighbors 11

metric canberra

weights uniform

Linear Classifier

learning_rate invscaling

l1_ratio 7.85e–1

power_t 8.51e–2

loss modified-huber

penalty l2

eta0 2.99e–6

alpha 4.94e–1

Random Forest

criterion entropy

max_depth 100

min_samples_leaf 1

min_weight_fraction_leaf 3.87e–4

n_estimators 401

max_leaf_nodes None

min_samples_split 4

min_impurity_decrease 2.89e–4

Decision Tree

max_depth 100

min_samples_leaf 1

min_weight_fraction_leaf 2.53e–3

min_samples_split 2

McDermott et al. Page 20

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



criterion gini

min_impurity_decrease 7.73e–5

max_features 250

splitter best

max_leaf_nodes None

TABLE IX

Optimal Hyperparameters for LINCS Prostate Only MOA

GCNN

regularization 4.00e–3

num_epochs 200

Fs [[25]]

batch_size 55

M [168, 14, 9]

Ks [[15]]

ps [[2]]

pool mpool1

learning_rate 5.00e–3

decay_steps 415

decay_rate 9.50e–1

momentum 9.70e–1

dropout 5.00e–1

FF-ANN

learning_rate invscaling

nesterovs_momentum True

hidden_layer_sizes [997]

learning_rate_init 5.53e–2

momentum 8.67e–1

early_stopping False

alpha 8.20e–1

power_t 2.26e–1

activation relu

KNNs

metric canberra

weights distance

n_neighbors 13

Linear Classifier

eta0 3.17e–4

l1_ratio 4.06e–1

tol 1.00e–5

penalty l1

learning_rate invscaling

alpha 1.23e–3
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n_jobs −1

power_t 1.84e–1

loss log

Random Forest

min_samples_split 2

criterion entropy

min_weight_fraction_leaf 6.01e–5

min_samples_leaf 2

max_depth None

min_impurity_decrease 3.68e–4

max_leaf_nodes None

n_estimators 53

Decision Tree

min_impurity_decrease 1.46e–3

min_samples_leaf 1

min_weight_fraction_leaf 1.81e–4

max_depth 25

max_features 250

criterion entropy

max_leaf_nodes None

min_samples_split 2

splitter best

TABLE XI

Optimal Hyperparameters for MGH NeuroBank Corpus Level 5

GCNN

regularization 5.00e–2

decay_steps 400

learning_rate 1.00e–3

pool apool1

momentum 9.00e–1

num_epochs 350

batch_size 20

M [100, 60]

ps [[2]]

decay_rate 9.60e–1

Ks [[7]]

Fs [[25]]

dropout 5.00e–1

FF-ANN

hidden_layer_sizes [946, 193]

alpha 1.11

power_t 8.87e–1
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early_stopping False

learning_rate_init 9.86e–1

nesterovs_momentum True

learning_rate constant

momentum 8.76e–1

activation relu

KNNs

n_neighbors 7

metric canberra

weights distance

Linear Classifier

learning_rate invscaling

tol 1.00e–5

n_jobs −1

power_t 1.84e–1

penalty l1

eta0 3.17e–4

loss log

l1_ratio 4.06e–1

alpha 1.23e–3

Random Forest

max_depth 25

max_leaf_nodes 500

min_weight_fraction_leaf 4.33e–4

min_samples_split 2

min_samples_leaf 1

n_estimators 411

criterion gini

min_impurity_decrease 3.64e–5

Decision Tree

min_samples_split 2

max_depth 10

criterion entropy

min_impurity_decrease 1.23e–3

max_leaf_nodes None

min_weight_fraction_leaf 2.08e–3

min_samples_leaf 2

max_features None

splitter best

TABLE X

Optimal Hyperparameters for MGH NeuroBank Corpus Level 4

GCNN regularization 2.65e–2
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decay_steps 410

learning_rate 1.01e–2

pool mpool1

momentum 8.14e–1

num_epochs 350

batch_size 25

M [138, 60]

ps [[2]]

decay_rate 9.98e–1

Ks [[26]]

Fs [[31]]

dropout 6.22e–1

FF-ANN

hidden_layer_sizes [976]

alpha 1.16

power_t 3.21e–1

activation relu

learning_rate_init 4.05e–1

early_stopping False

momentum 9.07e–1

tol 1.00e–5

nesterovs_momentum True

learning_rate invscaling

KNNs

n_neighbors 6

metric canberra

weights distance

Linear Classifier

learning_rate invscaling

tol 1.00e–5

n_jobs −1

power_t 1.84e–1

penalty l1

eta0 3.17e–4

loss log

l1_ratio 4.06e–1

alpha 1.23e–3

Random Forest

max_depth 25

max_leaf_nodes 500

min_weight_fraction_leaf 4.33e–4

min_samples_split 2

min_samples_leaf 1

n_estimators 411
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criterion gini

min_impurity_decrease 3.64e–5

Decision Tree

min_samples_split 2

max_leaf_nodes None

criterion gini

min_impurity_decrease 7.73e–5

min_weight_fraction_leaf 2.53e–3

min_samples_leaf 1

max_features 250

max_depth 100

splitter best
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Fig. 1. 
Transcriptomics data is measured by quantifying the mRNA produced during transcription. 

The output of this process is a vector with each dimension quantifying the expression of a 

particular gene. Both technical (e.g., misplaced reads) and biological (e.g., tissue type) 

factors add variance to these data. Images: [21], [22]
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Fig. 2. 
Gene expression corpora are often produced by cloning a small number of cellular sources, 

then perturbing and profiling those clones. Image:[21].
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Fig. 3. 
The regulatory relationships between L1000 landmark genes, as determined according to 

[37]. Nodes (red dots) are genes and edges between them represent known or suspected 

regulatory interactions. Note that many genes only have one known edge connecting them to 

much denser clusters within the center of the graph. This may reflect biological processes, or 

that some proteins are studied much more than others.
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TABLE II

Performance (mean ± standard deviation) for the full, tissue-heterogenous LINCS corpus

Task Classifier Name Accuracy Macro F1

Primary Site

GCNN 93.9 ± 0.28 90.5 ± 0.82

FF-ANN 90.6 ± 0.44 85.6 ± 0.97

KNNs 89.6 ± 0.30 87.2 ± 0.61

Linear Classifier 60.9 ± 0.50 47.6 ± 0.63

Random Forest 57.2 ± 0.48 40.2 ± 0.77

Decision Tree 44.4 ± 0.70 24.7 ± 2.22

Majority Class 27.9 ± 0.16 3.63 ± 0.02

Subtype

GCNN 93.5 ± 0.34 91.7 ± 2.1

FF-ANN 90.5 ± 0.30 88.5 ± 0.54

KNNs 89.8 ± 0.13 90.2 ± 0.27

Linear Classifier 62.6 ± 0.62 56.3 ± 1.06

Random Forest 51.7 ± 0.37 22.3 ± 0.49

Decision Tree 41.1 ± 0.21 18.4 ± 0.62

Majority Class 34.0 ± 0.21 3.62 ± 0.02

MOA

GCNN 46.4 ± 0.35 31.6 ± 0.65

FF-ANN 45.9 ± 0.43 29.6 ± 0.60

KNNs 43.5 ± 0.50 29.5 ± 0.58

Linear Classifier 39.1 ± 0.29 20.6 ± 0.39

Random Forest 32.3 ± 0.40 11.5 ± 0.31

Decision Tree 28.7 ± 0.31 8.5 ± 0.29

Majority Class 16.4 ± 0.16 0.57 ± 0.005
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TABLE III

Performance (mean ± standard deviation) on the prostate LINCS corpus and MOA prediction task.

Classifier Name Accuracy Macro F1

GCNN 67.7 ± 0.76 46.0 ± 0.42

FF-ANN 68.3 ± 0.60 50.4 ± 0.71

KNNs 66.5 ± 0.71 46.2 ± 0.89

Linear Classifier 63.8 ± 0.52 42.6 ± 1.03

Random Forest 60.4 ± 0.48 37.4 ± 0.41

Decision Tree 53.2 ± 1.16 32.6 ± 0.91

Majority Class 34.54 ± 0.05 5.71 ± 0.01
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TABLE V

Per (Non-BD) Subject Generalization Accuracy (mean ± standard deviation) on the MGH NeuroBank Corpus.

Classifier Name Accuracy Macro F1

GCNN 47.7 ± 6.78 48.9 ± 7.40

FF-ANN 48.7 ± 7.85 50.1 ± 8.34

KNNs 37.9 ± 5.39 39.0 ± 6.68

Linear Classifier 44.1 ± 4.03 44.7 ± 4.21

Random Forest 38.8 ± 5.37 38.3 ± 6.76

Decision Tree 22.0 ± 3.85 21.8 ± 3.59
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