Skip to main content
. Author manuscript; available in PMC: 2021 Dec 8.
Published in final edited form as: IEEE/ACM Trans Comput Biol Bioinform. 2020 Dec 8;17(6):1846–1857. doi: 10.1109/TCBB.2019.2910061

TABLE VI.

Optimal Hyperparameters for LINCS Full MOA

GCNN regularization 1.09e–2
num_epochs 350
Fs [[9]]
M [137, 49]
Ks [[7]]
batch_size 92
pool apool1
learning_rate 1.23e–3
decay_steps 405
decay_rate 9.91e–1
dropout 6.98e–1
momentum 8.79e–1
ps [[2]]
FF-ANN activation relu
alpha 1.69
power_t 3.30e–1
learning_rate_init 1.09e–1
hidden_layer_sizes [955]
learning_rate adaptive
momentum 8.64e–1
early_stopping True
nesterovs_momentum True
KNNs weights distance
metric canberra
n_neighbors 12
Linear Classifier penalty l1
l1_ratio 4.06e–1
alpha 1.23e–3
loss log
n_jobs −1
tol 1.00e–5
learning_rate invscaling
eta0 3.17e–4
power_t 1.84e–1
Random Forest max_depth 100
max_leaf_nodes None
criterion gini
n_estimators 211
min_samples_split 2
min_weight_fraction_leaf 1.27e–6
min_impurity_decrease 1.70e–5
min_samples_leaf 1
Decision Tree max_features None
criterion entropy
max_depth 10
splitter best
min_samples_leaf 2
min_impurity_decrease 1.23e–3
min_samples_split 2
max_leaf_nodes None
min_weight_fraction_leaf 2.08e–3