Skip to main content
. Author manuscript; available in PMC: 2021 Dec 8.
Published in final edited form as: IEEE/ACM Trans Comput Biol Bioinform. 2020 Dec 8;17(6):1846–1857. doi: 10.1109/TCBB.2019.2910061

TABLE VIII.

Optimal Hyperparameters for LINCS Full Primary Site

GCNN regularization 3.08e–3
num_epochs 350
Fs [[41]]
batch_size 68
M [135, 12]
ps [[2]]
decay_steps 380
momentum 9.45e–1
learning_rate 3.13e–3
pool apool1
decay_rate 9.89e–1
Ks [[5]]
dropout 5.62e–1
FF-ANN learning_rate_init 5.53e–2
activation relu
momentum 8.67e–1
nesterovs_momentum True
learning_rate invscaling
power_t 2.26e–1
early_stopping False
hidden_layer_sizes [997]
alpha 8.20e–1
KNNs n_neighbors 11
metric canberra
weights uniform
Linear Classifier learning_rate invscaling
l1_ratio 7.85e–1
power_t 8.51e–2
loss modified-huber
penalty l2
eta0 2.99e–6
alpha 4.94e–1
Random Forest criterion entropy
max_depth 100
min_samples_leaf 1
min_weight_fraction_leaf 3.87e–4
n_estimators 401
max_leaf_nodes None
min_samples_split 4
min_impurity_decrease 2.89e–4
Decision Tree max_depth 100
min_samples_leaf 1
min_weight_fraction_leaf 2.53e–3
min_samples_split 2
criterion gini
min_impurity_decrease 7.73e–5
max_features 250
splitter best
max_leaf_nodes None