Skip to main content
. Author manuscript; available in PMC: 2021 Dec 8.
Published in final edited form as: IEEE/ACM Trans Comput Biol Bioinform. 2020 Dec 8;17(6):1846–1857. doi: 10.1109/TCBB.2019.2910061

TABLE IX.

Optimal Hyperparameters for LINCS Prostate Only MOA

GCNN regularization 4.00e–3
num_epochs 200
Fs [[25]]
batch_size 55
M [168, 14, 9]
Ks [[15]]
ps [[2]]
pool mpool1
learning_rate 5.00e–3
decay_steps 415
decay_rate 9.50e–1
momentum 9.70e–1
dropout 5.00e–1
FF-ANN learning_rate invscaling
nesterovs_momentum True
hidden_layer_sizes [997]
learning_rate_init 5.53e–2
momentum 8.67e–1
early_stopping False
alpha 8.20e–1
power_t 2.26e–1
activation relu
KNNs metric canberra
weights distance
n_neighbors 13
Linear Classifier eta0 3.17e–4
l1_ratio 4.06e–1
tol 1.00e–5
penalty l1
learning_rate invscaling
alpha 1.23e–3
n_jobs −1
power_t 1.84e–1
loss log
Random Forest min_samples_split 2
criterion entropy
min_weight_fraction_leaf 6.01e–5
min_samples_leaf 2
max_depth None
min_impurity_decrease 3.68e–4
max_leaf_nodes None
n_estimators 53
Decision Tree min_impurity_decrease 1.46e–3
min_samples_leaf 1
min_weight_fraction_leaf 1.81e–4
max_depth 25
max_features 250
criterion entropy
max_leaf_nodes None
min_samples_split 2
splitter best