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Abstract

Osteoporosis is a highly prevalent disorder characterized by low bone mineral density and an 

increased risk of fracture, termed osteoporotic fracture. Notably, bone mineral density, 

osteoporosis and osteoporotic fracture are highly heritable; however, determining the genetic 

architecture, and especially the underlying genomic and molecular mechanisms, of osteoporosis in 

vivo in humans is still challenging. In addition to susceptibility loci identified in genome-wide 

association studies, advances in various omics technologies, including genomics, transcriptomics, 

epigenomics, proteomics and metabolomics, have all been applied to dissect the pathogenesis of 

osteoporosis. However, each technology individually cannot capture the entire view of the disease 

pathology and thus fails to comprehensively identify the underlying pathological molecular 

mechanisms, especially the regulatory and signalling mechanisms. A change to the status quo calls 

for integrative multi-omics and inter-omics analyses with approaches in ‘systems genetics and 
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genomics’. In this Review, we highlight findings from genome-wide association studies and 

studies using various omics technologies individually to identify mechanisms of osteoporosis. 

Furthermore, we summarize current studies of data integration to understand, diagnose and inform 

the treatment of osteoporosis. The integration of multiple technologies will provide a road map to 

illuminate the complex pathogenesis of osteoporosis, especially from molecular functional aspects, 

in vivo in humans.

Osteoporosis, the most common bone disorder worldwide (FIG. 1), is characterized by low 

bone mineral density (BMD) and an increased risk of osteoporotic fracture1. According to 

the WHO, osteoporosis is defined as a BMD that lies 2.5 standard deviations or more below 

the average value for young healthy women (T-score ≤2.5)2. Consequently, the clinical 

diagnosis and assessment of osteoporosis is mainly based on measurements of BMD3. Of 

note, BMD has a heritability of 0.6–0.8, meaning that 60–80% of the variation in BMD is 

inherited from parents and the remainder is derived from the environment4. In addition, 

osteoporotic fracture, which is the end point clinical outcome of osteoporosis, has a 

heritability of 0.5–0.7 (REF.5). Despite this strong heritability, determining the genetic 

architecture (BOX 1), and especially the underlying genomic and molecular mechanisms of 

osteoporosis in vivo in humans, is challenging.

Genome-wide association studies (GWAS) have identified hundreds of susceptibility loci for 

osteoporosis6. However, the causal variants and/or genes and their molecular functional 

mechanisms are largely unknown. Other omics technologies, that is, transcriptomics, 

epigenomics, proteomics, metabolomics and metagenomics (BOX 1), individually might 

provide a useful glimpse into the windows of osteoporosis pathophysiology. However, data 

generated by single-omics technologies are not comprehensive enough to capture the 

complete pictures of the molecular events leading to osteoporosis. A change in the status 

quo calls for integrative multi-omics and/or inter-omics analyses with approaches in systems 

genetics and genomics.

Compared with individual-omics studies, multi-omics studies can provide pathways of 

information from the original root cause of a disease (for example, genetic variations) to 

functional consequences or relevant interactions7,8. Therefore, multi-omics data can provide 

a clearer and more comprehensive view of the pathogenesis of osteoporosis. This knowledge 

is important as it is not currently possible to accurately identify all patients who will 

experience osteoporotic fracture from measurements of BMD.

In this Review, we briefly introduce the mechanisms of bone homeostasis before providing a 

broad survey of GWAS and the multiple-omics studies on osteoporosis (FIG. 2). We discuss 

the advantages and challenges of each technology and then focus on studies in which 

multiple levels of omics are integrated to elucidate the potential molecular mechanisms for 

osteoporosis. We also discuss the current methods and challenges in combining and 

interpreting multi-omics data in osteoporosis studies.
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Bone homeostasis

Bone homeostasis is mainly controlled by the action of osteoblasts, osteocytes and 

osteoclasts; bone is a highly metabolically active tissue, which undergoes a continuous cycle 

of bone formation mediated by osteoblasts and bone resorption facilitated by osteoclasts. 

Importantly, disruption of bone homeostasis has a fundamental role in the pathogenesis of 

osteoporosis9.

The cells that comprise bone tissue have diverse origins. For example, osteoblasts are 

derived from mesenchymal stem cells, which can also give rise to adipocytes, chondrocytes 

and myocytes10 (FIG. 3). Osteoblasts produce bone by synthesizing extracellular matrix 

consisting of various proteins, the most abundant being type I collagen. The extracellular 

matrix is known as the osteoid when first deposited and is subsequently mineralized through 

the accumulation of calcium phosphate as hydroxyapatite (Ca10(PO4)6(OH)2). Multiple 

transcription factors (such as RUNX2 and OSX) and the major developmental signals (such 

as WNT signalling) are reported to regulate osteoblast differentiation and function11. By 

contrast, the bone resorbing osteoclasts are large, multinucleated cells formed by the fusion 

of precursors from the monocyte-derived macrophage lineage12 (FIG. 3). Osteoclasts can 

dissolve minerals and digest bone matrix by secreting hydrochloric acid and proteolytic 

enzymes13. Similar to osteoblasts, multiple factors are reported to regulate osteoclast 

differentiation and/or function, including macrophage colony-stimulating factor (M-CSF), 

receptor activator of nuclear factor-κB ligand (RANKL), cytokines (for example, IL-1) and 

αVβ3 integrin14.

The major cellular component of bone tissue is osteocytes, which are cells that originate 

from osteoblasts; these cells are deeply embedded in bone tissue and comprise >90% of all 

bone cells15. Osteocytes can orchestrate bone homeostasis by regulating the function of 

bone-forming osteoblasts and bone-resorbing osteoclasts. For example, osteocytes regulate 

bone formation by secreting modulators of the WNT signalling pathway such as activators 

(nitric oxide and ATP) and inhibitors (sclerostin and DKK1)16. Moreover, osteocytes also 

express RANKL and M-CSF to increase osteoclast activity as well as osteoprotegerin and 

nitric oxide to inhibit osteoclast formation and activity16. A detailed description of the 

crosstalk between the three major bone cellular subsets falls outside the scope of this 

Review, but can be found in REF.17.

The genome influences the maintenance of bone homeostasis by encoding many factors that 

modulate the differentiation and activities of bone cells. In addition to several components in 

the aforementioned signalling pathways, hundreds of common genetic variants associated 

with BMD or osteoporotic fracture have been discovered. Beginning in the next section, we 

will present an update on what is known about genetic risk factors for osteoporosis.

Susceptibility loci derived from GWAS

Mainly through testing millions of single nucleotide polymorphisms (SNPs), GWAS have 

been used to identify over 500 susceptibility loci for osteoporosis-related traits18–20 

(Supplementary Table 1). The sample sizes of early single-sample GWAS were fairly small 
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(<10,000)21–24, resulting in limited statistical power; indeed, only risk loci with an effect 

size (BOX 1) ranging from 7.8 × 10−4 to 1.4 × 10−2 could be identified21–24 (BOX 2). 

However, with the increases in sample size and improvements in statistical power, GWAS 

meta-analyses can identify more risk loci with effect sizes of 10−4 to 10−3 (BOX 2). For 

example, the GEnetic Factors for OSteoporosis (GEFOS) consortium, which consists of 

unrelated participants and sample sizes ranging from 19,195 to 66,628, has identified dozens 

of new susceptibility loci (such as EN1)25 and has replicated some risk loci identified by 

earlier GWAS26–30 (such as ESR1 and LRP5). In mice, En1 expression was only observed in 

osteogenic lineages, and conditional loss of En1 resulted in low bone mass25. As the 

oestrogen receptor, ESR1 affects bone formation in both osteoblasts progenitors31 and 

mature osteoblasts32. ESR1 could also induce the transcription of Fas ligand in osteoblasts, 

resulting in a paracrine signal to induce osteoclast apoptosis31. In the canonical WNT 

signalling pathway in bone formation, the activation of β-catenin through LRP5 and Frizzled 

results in the upregulation of transcription factors that are crucial for osteoblast 

differentiation33 (FIG. 3). Together, the loci identified from GEFOS cumulatively explained 

~ 6% of the phenotypic variance in BMD.

The UK Biobank project34 is remarkable due to its huge number of samples obtained from 

participants from the UK general population. Importantly, two GWAS in ~140,000 and 

420,000 UK Biobank participants have identified 203 and 518 loci, respectively, associated 

with variation in ultrasound-based measurements of estimated heel BMD (eBMD)6,35 (FIG. 

3). For example, DAAM2 was identified in a UK Biobank study; reduction of DAAM2 

protein levels resulted in reduced bone mineralization6. In addition, the largest UK Biobank 

cohort has nearly 100% power to identify loci with an effect size of 1 × 10−5 (BOX 2). The 

loci identified from studying the UK Biobank cohort can cumulatively explain 20% of the 

phenotypic variance in eBMD, therefore substantially increasing our understanding of the 

genetic architecture of osteoporosis.

Several groups have also used GWAS to carry out age-specific and sex-specific 

analyses30,35. Variants in ESR1 and in close proximity to RANKL showed a clear age-

dependent effect on BMD30. A single variant, rs17307280, at FAM9B on the X chromosome 

was significantly associated with eBMD in men only35. The function of FAM9B in bone 

homeostasis is still unknown. Of note, a direct link exists between oestrogen deficiency after 

menopause and the development of osteoporosis36 in women. Consequently, researchers 

have also attempted to investigate specific risk loci in premenopausal37 and 

postmenopausal38 women. SNPs in WNT16 and ESR1 were identified to be associated with 

lumbar spine BMD in premenopausal women37. WNT16 is a member of the WNT 

signalling pathway and Wnt16 knockout mice have reduced bone strength39. In 

postmenopausal women38, variants in TNFRSF11B, SPTBN1, ESR1 and LRP4 were 

reported to be susceptibility loci for osteoporotic fracture. The protein encoded by 

TNFRSF11B is osteoprotegerin, which functions as a decoy receptor of RANKL to inhibit 

bone resorption40. In vivo evidence suggested that LRP4 in osteoblasts could suppress bone 

formation and promote osteoclastogenesis through acting as a receptor of sclerostin41.
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The missing heritability problem.

The BMD-associated loci identified so far in GWAS still cannot account for all the 

heritability in osteoporosis. Consideration of gene–environment interactions might explain 

part of this ‘missing heritability’42. Researchers could explore gene–environment 

interactions through investigating the effects of genetic variants on osteoporosis in specific 

population subgroups affected by specific environmental factors (for example, smoking). In 

addition, many alternative approaches have been developed to serve as complementary 

methods for the standard SNP-based GWAS described earlier in this Review. For example, 

copy number variation-based GWAS focus on identifying variation in gene copy number. 

The first copy number variation-based GWAS identified that a deletion variant of UGT2B17 
was associated with hip osteoporotic fracture43. UGT2B17 encodes an enzyme catabolizing 

steroid hormones that have effects on bone formation43.

Another useful approach is that used in gene-based GWAS, which regard a gene as a basic 

unit for association analyses, thereby improving the statistical power (BOX 2) by 

overcoming the potential allelic heterogeneity (BOX 1) and reducing the number of 

independent statistical tests from millions (for SNPs) to tens of thousands (for genes)44. A 

2018 study found three novel BMD-associated genes (UBTF, AAAS and C11orf58) through 

a gene-based GWAS strategy44. The roles of the proteins encoded by these three genes in 

bone homeostasis are still unknown. A powerful technique for identifying biological 

pathways that might be involved in a heritable trait is pathway-based GWAS, which 

considers SNPs in multiple genes in a related pathway jointly. The first pathway-based 

GWAS for osteoporosis identified a pathway that regulates autophagy as being associated 

with ultradistal radius BMD45. In addition to overcoming the effect of allelic heterogeneity 

and improving statistical power, gene-based GWAS and/or pathway-based GWAS also 

enable direct comparison between different populations with different linkage disequilibrium 

patterns and/or functional alleles46.

Bivariate GWAS aim to discover SNPs associated with two different traits and could identify 

pleiotropic genes as well as the key mechanistic links between two diseases. Any identified 

pleiotropic genes could provide insight into a genetic mechanism shared by both traits as 

well as potentially facilitating repurposing of conventional drugs used for one disease for 

new use in the other. A relevant example in osteoporosis research was a study identifying 

SNPs in SOX6 (REF.47) and the TOM1L2-SREBF1 locus48, which have pleiotropic effects 

on both BMD and lean mass. Finally, summary databased approaches, such as joint 

association studies49, pleiotropic conditional false discovery rate method50 and co-

expression network prediction51, which are methods that use GWAS summary statistics 

alone, have also identified a large amount of novel BMD loci.

Clinical translation of GWAS findings.

To address the missing heritability problem, researchers could explore more loci under an 

omnigenic model52, which proposes that gene regulatory networks are so interconnected that 

most heritability can be explained by effects on genes outside core pathways. New findings 

will provide novel insights into the genetic mechanism of osteoporosis as well as 

osteoporosis risk prediction. For example, two studies53,54 have reported that genetic 
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profiling of BMD-associated SNPs could improve the accuracy of osteoporotic fracture 

prediction. In addition, a genetic algorithm that uses SNPs as predictors also showed a 

strong correlation with eBMD (correlation coefficient R = 0.415)55. By contrast, for clinical 

applications such as drug target design, loci with large genetic effects on BMD and 

osteoporotic fracture risk might be more valuable. We should spare no effort to dissect the 

clinical applications of known risk loci, which is an ultimate goal of all GWAS.

The success of GWAS demonstrates the usefulness of disease genomics to translational 

medicine. Generally, compared with those without genetic support, drug targets that are 

reported as susceptibility loci in GWAS are twice as likely to succeed in clinical trials56. For 

osteoporosis, GWAS have provided genetic support for five of the eight (63%) approved 

anti-osteoporosis therapeutics. For example, RANKL is the drug target of denosumab and 

the genetic association between RANKL and BMD has been reported by GWAS18. In 

addition, GWAS results could provide resources for drug repositioning. Some of the 

susceptibility loci for BMD and osteoporotic fracture are shared with many other diseases 

and, consequently, some osteoporosis-associated genes have already been used as drug 

targets for other diseases (Supplementary Table 2). For example, the eBMD-associated gene 

ACHE is an approved drug (donepezil) target for Alzheimer disease. Accumulating 

evidence57,58 has indicated that osteoporosis and hip fracture are common complications 

observed in patients with Alzheimer disease, although the mechanisms underlying this 

association remain poorly understood. In addition, as an inhibitor of ACHE, donepezil might 

serve as a potential drug for osteoporosis as it could prevent RANK-induced bone loss via 

inhibition of osteoclast differentiation59.

The challenges of GWAS.

Several challenges exist for the use of GWAS in osteoporosis, which should be addressed in 

future studies. For example, diverse phenotypes (BMD at different skeletal sites using 

different measurements) are now included in osteoporosis GWAS, resulting in inconsistent 

results. The inconsistencies might be due to the heterogeneity among the different types of 

measurements of BMD, as the genetic correlation coefficients between the commonly used 

dual-energy X-ray absorptiometry and other measurements (for example, ultrasonography 

and quantitative CT) range from 0.505 to 0.917 (REF.60). However, even when studies use 

the same type of measurement, there is still heterogeneity between BMD measured at 

different skeletal sites. In addition, as the ultimate goal of osteoporosis research is to reduce 

the incidence and prevalence of osteoporotic fracture, GWAS should use osteoporotic 

fracture as a direct phenotype. Several novel genes (such as FAM210A, GRB10 and ETS2) 

have been identified as susceptibility loci by GWAS directly comparing individuals who 

have had an osteoporotic fracture and healthy controls61. The specific functions of these 

genes in bone homeostasis are still unknown. However, most of these studies combined 

heterogeneous forms of osteoporotic fracture at different skeletal sites, which have different 

aetiologies; the results obtained might therefore entail both false positive or false negative 

findings, which are difficult to discern. Two studies examined osteoporotic fracture at 

specific sites: vertebral fracture62 and hip fracture63. Two SNPs (rs2468531 and 

rs12742784) located in the non-coding region were found to be associated with vertebral 

fracture62. One SNP (rs13182402) within the ALDH7A1 gene was associated with hip 
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fracture. The ALDH7A1 protein degrades and detoxifies acetaldehyde, which inhibits 

osteoblast proliferation and results in decreased bone formation63. We suggest that vertebral 

fracture might not be the best phenotype to study, as no consensus definition of vertebral 

fracture currently exists. By contrast, hip fracture has a consensus definition and might 

represent a feasible alternative for study.

The replication of findings in distinct GWAS is a routine process for validating the statistical 

results from the discovery sample64,65. However, inconsistent findings that occur between 

different studies might be caused by limited statistical power (BOX 2) or heterogeneous 

effects66 between distinct populations and ethnicities64. These effects could explain 

discrepancies between studies, and even the different findings between GEFOS-1 and 

GEFOS-2 (REFS26,28), which were conducted by largely the same research group. Future 

meta-analyses of GWAS should enable researchers to fully consider the heterogeneity.

Another potential issue of GWAS is the difficulty in determining the causal variants of a 

specific phenotype owing to complex patterns of linkage disequilibrium. Some statistical 

inference methods, such as PAINTOR67, GCTA-COJO68 and FINEMAP69, have been 

applied for the fine-mapping of plausibly causal variants for BMD with high 

confidence6,35,70. However, most fine-mapping algorithms need reference genotype data to 

estimate the linkage disequilibrium relationship between genetic variants, which introduces 

inescapable bias when the reference data and original GWAS data are not perfectly 

matched71.

Finally, although GWAS have identified hundreds of independent loci for osteoporosis-

related traits (Supplementary Table 1), the underlying causal functional variants and 

biological regulatory mechanisms are still largely unknown. The use of GWAS alone might 

not be able to address these issues; however, considering functional genomics could provide 

new insights.

Insights from ‘omics’ studies

Functional genomics and other omics studies, which focus on, for example, global gene 

transcription, translation and protein–protein interactions, have identified a list of 

biomarkers for osteoporosis, providing insights into the biological pathways involved. Here, 

we review these studies, including transcriptomics, epigenomics, proteomics and 

metabolomics (BOX 1).

Transcriptomics.

Transcriptomics studies are used to identify differentially expressed genes between patients 

with osteoporosis and control individuals. Further functional experiments are used to 

validate the roles of these genes in osteoblastic and osteoclastic differentiation and/or 

activity. So far, most of the research has studied the precursor cells of osteoblasts (that is, 

human bone marrow mesenchymal stem cells (BMSCs)) or osteoclasts (for example, 

circulating monocytes) (Supplementary Table 3).
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The first comparative gene expression study of circulating monocytes was carried out in 

individuals with high or low lumbar spine BMD measured with dual-energy X-ray 

absorptiometry and identified three upregulated genes (CCR3, HDC and GCR) in 

participants with low BMD72. The products of these genes are CC-chemokine receptor 3 

(CCR3), histidine decarboxylase and glucocorticoid receptor, respectively. They are all 

known to be involved in osteoclastogenesis73–75. In addition to mRNA, the levels of non-

coding RNA, such as microRNA76, long non-coding RNA (lncRNA)77 and circular RNA78, 

have also been studied. For example, a 2019 study77 reported that lncRNA-ORLNC1 was 

overexpressed in bone tissues of patients with osteoporosis compared with controls, with a 

T-score ≥1, and were also upregulated in bone tissue, serum and BMSCs of ovariectomy-

induced osteoporotic mice compared with the sham-operated group. Further functional 

studies in BMSCs of mice showed that a lncRNA-ORLNC1–miR-296–PTEN signalling axis 

functions as a critical regulator for the switch between the osteogenesis and adipogenesis of 

BMSCs, that is, whether or not these cells differentiate into osteoblasts or adipocytes (FIG. 

3).

Except for a few studies focused on a particular gene, for example, a synonymous variant in 

exon 9 of CD44 that might increase the susceptibility to osteoporosis by affecting the 

splicing mechanism79, transcriptomics studies of osteoporosis generally do not consider 

alternative splicing. Of note, alternative splicing is a ubiquitous regulatory mechanism of 

gene expression and RNA mis-splicing is related to a large array of human diseases80. 

Therefore, transcriptomics studies that take alternative splicing into consideration are needed 

in the field of bone research.

Epigenomics.

Epigenetic factors, mainly DNA methylation and histone modification, have considerable 

effects on the differentiation and activities of bone cells81 and might contribute to 

pathogenetic mechanisms of osteoporosis82. The early epigenetic studies of osteoporosis 

often focused on a few candidate genes with known importance in bone biology 

(Supplementary Table 4). For example, one study compared the DNA methylation levels at 

the SOST promoter region in bone biopsy samples from postmenopausal women with 

osteoporosis (n = 4) and healthy controls (n = 4)83. They found that the SOST promoter 

showed higher DNA methylation in patients with osteoporosis than in controls, which was 

replicated in an independent cohort of 63 postmenopausal women (27 with osteoporosis and 

36 without osteoporosis). Interestingly, the authors also observed strong positive 

associations between bone SOST mRNA and serum levels of sclerostin with BMD. Because 

sclerostin is known as an inhibitor of bone formation84, the authors speculated that the 

increase in SOST promoter methylation and the reduction of SOST expression in patients 

with osteoporosis might represent a compensatory mechanism to counteracting osteoporosis-

associated bone loss. However, conflicting results were reported by a 2019 study comparing 

femoral bone tissues from 16 Chinese patients with osteoporosis who had femoral neck 

and/or trochanter fractures and 16 controls (patients with traumatic factures but normal 

BMD), wherein SOST gene expression (at both mRNA and protein levels) was significantly 

increased and SOST promoter was slightly hypo-methylated in patients with osteoporosis85. 
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Therefore, the association between SOST methylation and expression with osteoporosis 

warrants further investigation.

Importantly, a few groups have explored the epigenome-wide association study (EWAS) of 

DNA methylation with osteoporosis in humans (Supplementary Table 4). For example, in 

2013, the first EWAS of human bone detected 241 differentially methylated CpG sites in 

femoral head trabecular bone specimens between 27 patients with osteoporotic hip fractures 

and 26 patients with hip osteoarthritis86. Bone samples from true control individuals were 

not available owing to the ethical difficulties in obtaining bone biopsy samples from healthy 

people. So far, the largest EWAS using bone specimens were performed in 84 

postmenopausal women with substantially varied BMD87 and identified 63 differentially 

methylated CpGs associated with BMD.

Owing to the difficulty in obtaining human bone tissue samples, some EWAS 

(Supplementary Table 4) used whole blood as a proxy to test for the associations of DNA 

methylation with osteoporosis and BMD. One notable example study performed a large-

scale EWAS for femoral neck and lumbar spine BMD in whole blood of 5,515 individuals88; 

however, the study did not reveal strong consistent association signals for DNA methylation 

at any of the >450,000 tested CpG sites. The lack of statistically significant associations 

between blood DNA methylation and osteoporosis was also reported in another independent 

EWAS89. Together, these findings suggest that blood DNA methylation patterns might not 

efficiently reflect the epigenomic status of bone cells if whole blood is used.

It is worth mentioning that aside from DNA methylation, other epigenetic features (for 

example, histone modification and high-order chromatin structure) have rarely been studied 

for osteoporosis82. Compared with many other human tissues and cell types, current data on 

the epigenetic architecture of human primary bone tissue and cells are rather scarce, even in 

large-scale consortium projects such as ENCODE90 and NIH Roadmap91.

Proteomics.

To further investigate the molecular determinants of BMD, proteomics studies have been 

carried out to catalogue proteins expressed in bone-related cells or tissues, to identify 

proteins that are involved in the pathogenesis of osteoporosis, and to investigate protein 

biomarkers that are diagnostic of osteoporosis or predictive of osteoporotic fracture. 

Importantly, a 2008 study identified 38 differentially expressed BMD-associated proteins 

from the proteome of circulating monocytes in Chinese premenopausal women with 

discordant hip BMD92. The significance of ANXA2 and GSN proteins to osteoporosis was 

later cross-validated in independent cellular proteomics studies in white women with varying 

BMD93,94. Of note, ANXA2 could regulate osteoclastogenesis93 (FIG. 3) and the function 

of osteoblasts95, and increased plasma levels of this protein were shown to serve as a risk 

biomarker for osteoporosis and to predict osteoporotic fracture in Chinese individuals aged 

over 65 years95. The first comprehensive proteome knowledgebase (BOX 1) for human 

monocytes, developed in 2017 (REF.96), involves a total of 2,237 unique protein-encoding 

genes and provides a reference map for future in-depth research on monocyte biology and 

osteoporosis.
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In addition to protein biomarkers developed from cellular proteomics studies, a number of 

potential protein biomarkers have been identified directly from plasma or serum proteomics 

studies. For example, one group identified a diagnostic fingerprint (BOX 1) for bone 

turnover in the serum of postmenopausal women, which could serve as a reflection of the 

increased osteoclast activity, leading to increased bone turnover, that is associated with 

decreasing BMD97. Besides, multiple layers of evidence were integrated to further ascertain 

the significance of proteins and genes of interest for osteoporosis. For example, a prior 

proteomics study discovered that superoxide dismutase 2 (SOD2) in circulating monocytes 

was significantly upregulated at protein level in vivo in Chinese individuals with low versus 

high hip BMD92. By integrating evidence from DNA, RNA and protein levels, a pursuant 

study ascertained SOD2 as a susceptibility gene for osteoporosis in Chinese populations98. 

Furthermore, proteome-based network and pathway studies identified important groups of 

proteins for osteoporosis99,100. For example, a mass spectrometry-based quantitative 

proteomics study integrated with network analysis identified two novel pathways, that is, 

regulation of actin cytoskeleton and “leukocyte transendothelial migration” as being related 

to osteoporosis96.

Some serum or plasma-derived protein biomarkers with diagnostic potential for osteoporotic 

fracture were identified from cross-sectional studies (Supplementary Table 5). Furthermore, 

serum-derived protein biomarkers predictive of incident osteoporotic fracture were identified 

from prospective studies (Supplementary Table 6). For example, a prospective study101 

suggested that increased serum levels of sclerostin are associated with increased risk of hip 

fracture. Excitingly, the antibody of sclerostin, that is, romosozumab (Evenity), has been 

approved by the FDA as a novel drug to treat osteoporosis in postmenopausal women with 

high risk of fracture.

Metabolomics.

The human metabolome (BOX 1) reflects downstream changes in gene sequence and gene 

and/or protein expression. Thus, small changes in genes, their transcription and the 

translation of proteins that are hard to detect in other omics studies can be amplified at the 

metabolomic level102, enabling the most powerful screening of biomarkers or therapeutic 

targets closely related to disease or phenotype. Of note, preclinical studies carried out in 

postmenopausal osteoporosis animal models have shown different metabolomic profiles 

compared with control animals, especially regarding changes in amino acid and lipid 

metabolism103,104.

The first metabolomics study of osteoporosis in humans compared high and low BMD 

groups and reported four distinguishing metabolites: lactate, acetone, acetate and 

glutamine105. Subsequently, eight metabolomics studies investigating osteoporosis in 

humans have been published and have reported >100 metabolites associated with BMD 

(Supplementary Table 7). In line with the findings of animal studies, human studies also 

highlight the importance of amino acid and lipid metabolism in bone. In particular, many 

amino acids were reported to be associated with BMD by multiple independent 

studies105–109. For example, glutamine is increased107,110 and proline is decreased in 

menopausal women with decreased BMD109. Moreover, carbohydrate108 and nucleoside106 
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metabolism are also altered in women with decreased BMD. Finally, BMD-related 

metabolic pathways have been reported, including bile acid biosynthesis, which might affect 

intestinal calcium absorption107, and the tricarboxylic acid cycle, which might be related to 

increased oxidative stress in patients with low BMD108.

Metabolomics research of osteoporosis is in the early stages. For example, all the current 

studies (Supplementary Table 7) are cross-sectional. Although two studies used Mendelian 

randomization (BOX 1) to provide potential evidence for a causal relationship of identified 

metabolites with osteoporosis110,111, well designed longitudinal studies are necessary. In 

addition, potential sex differences in osteoporosis-related metabolites should be investigated, 

as most published studies only include women. For meaningful data generation, metabolite 

identity validation and absolute quantification should follow untargeted metabolomics 

analysis, which was used in all the current studies. These steps are necessary for conducting 

functional research of identified metabolites to derive meaningful biological knowledge112.

Summary.

Currently, functional genomics and other omics studies of osteoporosis have limitations, for 

example, the use of inappropriate tissue and/or cell specimens, small sample sizes and 

subsequent low statistical power, poorly characterized cohorts, and/or lack of healthy control 

individuals. Normal bone samples from healthy individuals are difficult to obtain as bone 

biopsy is invasive and carries a small risk of bleeding, fracture and/or infection. 

Consequently, bone samples obtained by biopsy from patients with osteoarthritis have been 

used as surrogate controls in several studies of osteoporosis86. However, the use of 

osteoarthritis bone samples might not be an ideal study design, as it is questionable to what 

extent cells from osteoarthritis bone resemble normal bone cells. Several studies have 

suggested that the trabecular structure and gene expression of osteoarthritis bone, at least in 

the vicinity of articular tissue, might differ from those of normal healthy bone113,114.

In contrast to genetic variants, functional genomic and other omics changes are cell and 

tissue specific and therefore studies must be performed in bone or bone lineage cells. 

Moreover, bone itself is a heterogeneous tissue, composed of a number of different cell types 

(FIG. 3) and failure to account for the cellular heterogeneity might lead to false-positive or 

false-negative results115,116. A large consortium aiming to generate large-scale data for bone 

or bone lineage cells, such as the Cancer Genome Atlas Program for cancer, would greatly 

improve our ability to understand, diagnose, treat and prevent osteoporosis.

An integrative approach

Although each omics approach has provided useful information to begin to understand the 

pathophysiology of osteoporosis, no single omics approach (BOX 1) can capture the entire 

biological complexity of osteoporosis. Thus, approaches to integrate multi-omics data have 

emerged to create a holistic picture of osteoporosis. Next, we describe ways in which 

integrative multi-omics can help GWAS loci interpretation and the identification and 

prioritization of osteoporosis-related genes and pathways.
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Integrating multi-omics data to interpret GWAS.

The function of genetic variants located in coding regions of DNA, that is, in exons, is 

straightforward to study. However, the majority of GWAS susceptibility loci are located in 

non-coding or intergenic regions117, which poses challenges to the functional interpretation 

of risk variants and the translation of GWAS findings into clinical application. Therefore, the 

first crucial step is to prioritize and/or pinpoint the true causal and/or functional variants118.

A complementary approach to fine-mapping is to leverage multiple layers of epigenomic or 

functional data to assign potential functions for genetic variants identified by GWAS. For 

example, the assay for transposase-accessible chromatin using sequencing (known as ATAC-

seq) is widely used to evaluate the accessibility of chromatin at the location of possible 

functional GWAS variants. Databases like RegulomeDB119 can also be used to annotate 

SNPs with known and predicted regulatory elements such as regions of DNase I 

hypersensitivity and binding sites of transcription factors. The systematic analyses of the 

epigenetic features in all known osteoporosis risk loci identified by GWAS could identify 

common regulatory elements for osteoporosis-associated genes and might predict new 

osteoporosis-linked genes with similar regulatory features120. Using machine learning 

algorithms, researchers can extract intricate regulatory information underlying GWAS 

variants and use this knowledge to predict new osteoporosis susceptibility variants121. For 

example, one study predicted 37,584 new candidate osteoporosis-associated SNPs by 

applying a random forest model121. However, epigenetic regulatory analysis on GWAS 

variants have largely relied on reference epigenomic data (for example, NIH Roadmap 

Epigenomics Project) in which epigenomic profiles of each unique type of human tissues or 

cells were mostly generated from only one individual. Therefore, the allelic effects of 

GWAS variants on the inter-individual variation of cell-specific and/or tissue-specific 

epigenomic profiles (for example, individuals with different genotypes at a specific loci 

might have different levels of chromatin accessibility at the corresponding region in a 

specific tissue or cell of interest) are largely unknown. Future investigation with genomic 

and epigenomic data generated from the same set of a large number of participants should 

help uncover the allelic regulatory effects of osteoporosis-associated genetic variants on the 

epigenome.

Expression quantitative trait loci (eQTL) analysis (BOX 1) in osteoblasts122 and 

osteoclasts123 has helped to characterize the function of causal genetic variants located 

outside of exons and their downstream target genes in osteoporosis. For example, microarray 

profiles of undifferentiated osteoblasts from 95 unrelated donors of Swedish origin were 

used to identify eQTL for BMD GWAS122. Data in cultured primary osteoclasts from 158 

individuals were used to identify colocalizing eQTL for genes associated with BMD123. 

Moreover, eQTL analysis on other bone-related cells and tissues, such as circulating 

monocytes120, lymphocytes124 or whole blood124,125, have also been widely applied to 

decipher the regulatory roles of GWAS variants in osteoporosis. For example, lymphocytes 

and peripheral blood eQTL were used to identify LINC00339 as a potentially causal gene 

for BMD GWAS124. The current sample sizes of eQTL studies on bone tissues are fairly 

small (<200); future studies in large samples are needed to increase the statistical power. In 

addition, the observed eQTL mapping on osteoporosis-associated GWAS variants might be 
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accidental owing to high linkage disequilibrium with the true causal variant. To address this 

problem, several colocalization analysis approaches126,127 have been developed to determine 

whether susceptibility loci identified by GWAS and eQTL share the same causal variant.

Importantly, studies in 3D chromatin interactions, which are measured by high-throughput 

chromatin interaction capture (known as Hi-C) analysis, have revealed a new regulatory 

mechanism by which functional GWAS variants could regulate distant gene expression via 

the formation of long-range (BOX 1) loops6. For example, the first Hi-C analysis in human 

osteoblasts and osteocytes revealed that the genes that had chromatin interactions with 

causal eBMD-associated variants were strongly enriched for osteocyte signature genes6, 

suggesting that osteoporosis-associated genetic variants affect crucial bone-related genes by 

long-range regulation. A 2019 study further demonstrated that 57% of the identified 

chromatin interaction pairs linking osteoporosis-associated SNPs to gene promoters fell in 

distant genes only128. In one notable study, researchers found that five functional SNPs were 

located in an intergenic super-enhancer that could regulate the expression of RANKL (FIG. 

3) via long-range chromosomal interactions (>100 kb)129. In addition, the intergenic non-

coding osteoporosis-associated GWAS variant rs6426749 at 1p36.12 could regulate 

LINC00339 expression via long-range loop formation (~ 360 kb)124. Downregulation of 

LINC00339 significantly increases the expression of CDC42 in osteoblasts, which is a 

pivotal regulator involved in bone metabolism124.

When integrating multi-omics data to interpret osteoporosis GWAS susceptibility loci, the 

most commonly used method is to build evidence for a functional variant signal through the 

pairwise analyses of data sets6,124. Multi-dimensional methods that can analyse three or 

more data sets simultaneously (for example, Bayesian models130) will further advance our 

understanding of osteoporosis aetiology.

Gene and network-based studies.

As genes do not function in isolation, the integration of different omics datasets at the level 

of genes and gene networks represents a critical approach to further increase our system-

level understanding of the genetic basis of osteoporosis. For example, one group applied the 

weighted gene co-expression network analysis (WGCNA)131 tool to transcriptomic 

expression data from bone tissues obtained from the Hybrid Mouse Diversity Panel132 (BOX 

1) and identified gene co-expression networks (termed as modules) that are highly 

associated with BMD133. From a specific BMD-associated module, they selected two ‘hub’ 

genes (that is, genes that are highly correlated with many other genes in a given module), 

Maged1 and Pard6g, for subsequent in vitro and in vivo molecular function analyses. 

Specifically, knocking down the expression of Maged1 and Pard6g in osteoblasts lead to 

altered osteoblast proliferation and differentiation, and mice deficient in Maged1 had 

decreased BMD133. These results demonstrated the power of using a systems biology 

approach to discover novel genes and regulatory mechanisms involved in osteoporosis.

The network information obtained from the above analyses can be used to identify or 

prioritize novel disease-related genes that might not reach genome-wide significance in 

conventional GWAS analysis. For example, one group constructed a WGCNA network for 

1,574 genes that had GWAS nominal evidence of association (P < 0.05) with BMD using 
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gene expression data from transiliac bone biopsy samples obtained from 84 postmenopausal 

white women (39 with BMD T-score ≤ −1.0 and 45 with BMD T-score > −1.0) and 

discovered one module containing 44 highly interconnected genes significantly associated 

with BMD134. Further detailed submodule analyses suggested several novel candidate genes 

(for example, HOMER1 and SPTBN1) that are important for bone metabolism134. 

HOMER1 encodes a member of the Homer family of dendritic proteins and has an 

important role in glutamate signalling, which is involved in regulation of bone 

remodelling135. Interestingly, a 2017 study using a similar strategy also predicted the gene 

SPTBN1 as a causal GWAS gene51. SPTBN1 encodes a molecular scaffolding protein and is 

broadly expressed in many tissues and cell types, including high expression in osteoblasts51. 

Moreover, Sptbn1 heterozygous knockout (Sptbn1+/−) mice displayed significantly altered 

whole body BMD compared with the controls51, confirming the critical role of this gene in 

the regulation of BMD. In addition to WGCNA, other more sophisticated algorithms for 

network construction and analysis of multi-omics data are quickly emerging and therefore 

provide exciting opportunities for future osteoporosis research136,137.

Validation through functional studies

With numerous genes identified from GWAS, different omics studies and integrative 

analyses, the next step is to validate their functional roles in the pathogenesis of 

osteoporosis. The development of the CRISPR–Cas9 genome editing tool138 has 

revolutionized molecular biology and genetics. For osteoporosis-associated gene functional 

studies, CRISPR–Cas9 has been used for coding-gene knockout139, gene mutation repair140 

and validation of the effects of non-coding enhancers124,129. For example, CRISPR–Cas9-

mediated knockouts of DAAM2 in osteoblast cell lines resulted in a marked reduction in 

inducible mineralization6.

Databases that record the consequences of disrupting each of the protein-coding genes in 

mice provide rich resources for validating the functional effects of candidate genes derived 

from GWAS and different omics studies. For example, The Origins of Bone and Cartilage 

Disease project, which is part of the International Knockout Mouse Consortium, aims to test 

over 1,600 mutant C57BL/6 strains with systemic single gene deletions for abnormalities of 

bone and cartilage. Although not specific to bone, similar databases, such as Mouse Genome 

Informatics and International Mouse Phenotyping Consortium, also provide integrated 

genetic, genomic and biological data to facilitate the study of osteoporosis. In addition to 

acting as validation resources, the identification of extreme skeletal phenotypes in mutant 

mouse lines in these databases can also serve as a new approach for osteoporosis-associated 

gene discovery141. For example, a 2014 study142 analysed high-throughput screening data 

for 3,762 distinct global gene knockout mouse lines and identified multiple genes affecting 

bone mass.

Conclusions

As mentioned above, functional genomics studies of osteoporosis need to be conducted 

using skeletal samples and should also account for cellular heterogeneity, both of which pose 

obvious difficulties for human studies. The recent rapid development of single-cell omics 
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technologies provides us with powerful new tools to individually or even simultaneously 

(that is, single-cell multi-omics approaches) assess various omics features at the resolution 

of individual cells143, which can revolutionize our understanding of cellular heterogeneity. 

For example, using single-cell RNA sequencing, a 2018 study was able to successfully 

identify the long-sought multipotent human skeletal stem cell that exclusively differentiates 

into bone, cartilage and stroma but not adipose144. Application of the single-cell omics 

approaches to the field of osteoporosis research will enable us to explore known and 

unknown cellular heterogeneity in bone cells and tissues and dissect the cell-intrinsic and 

cell-specific mechanisms underlying osteoporosis.

To bridge the gap between the statistical associations and biological regulatory mechanisms, 

various experimental approaches can be used to test the function of osteoporosis 

susceptibility loci. Rather than testing the function of genetic variants one-by-one, high-

throughput methods developed in 2017 (REF.145) (for example, massively parallel reporter 

assay and self-transcribing active regulatory region sequencing) can be used to examine 

thousands of variants in a single experiment. Applying such high-throughput methods into 

the post-GWAS studies of osteoporosis will lay functional evidence and mechanisms over 

the association results.

Another area for future osteoporosis research is the study of the human gut microbiome146 

— a number of studies in animal models147 and humans148 have provided compelling 

evidence for the importance of the gut microbiome in bone metabolism and health. With the 

strong interactions known to exist between the gut microbiome and the host genome149, 

future host and microbiome multi-omics integration studies might lead to a major 

breakthrough in the prediction and therapeutic treatment of osteoporosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• Osteoporosis, which is the most common bone disorder worldwide, and its 

related traits (low bone mineral density and osteoporotic fracture) are highly 

heritable.

• Multiple omics technologies, including genomics, transcriptomics, 

epigenomics, proteomics and metabolomics, have been applied to identify the 

molecular factors contributing to the pathogenesis of osteoporosis.

• Building upon the success in single-omics discovery research, studies have 

integrated data from different omics levels to better elucidate the molecular 

and functional mechanisms for osteoporosis.

• Integration of omics approaches can provide a holistic road map to 

comprehensively illuminate the complex pathogenesis of osteoporosis and 

fulfil the potential of personalized disease risk prediction, intervention and 

treatment as well as drug development or re-purposing.
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BOX 1 |

Key terms in genetic and omics studies

Allelic heterogeneity

Multiple single nucleotide polymorphisms within the same gene and/or pathway jointly 

affect the same trait.

Distant gene

If a genetic variant affects the expression or otherwise interacts with genes other than the 

nearest gene, the target genes are referred as distant genes of the variant of interest.

Effect size

The portion of phenotypic variance that is explained by the tested variant.

Epigenomics

The study of genome-wide reversible modifications of DNA or DNA-associated proteins 

such as DNA methylation, histone acetylation and chromatin organization.

Expression quantitative trait loci (eQTL) analysis

A technique for assessing the associations between transcript expression and genotype to 

identify genetic variants that explain the variation in gene expression levels.

Fingerprint

Specific expression profiles of proteins, which can be used as characteristics to 

distinguish different individuals.

Genetic architecture

The characteristics of genetic variation that are responsible for heritable phenotypic 

variability150.

Genome-wide association studies (GWAS)

Studies using a hypothesis-free method to investigate the associations between genetic 

variants and traits, including diseases.

Hybrid mouse diversity panel

A collection of approximately 100 well-characterized inbred strains of mice that can be 

used to analyse the genetic and environmental factors underlying complex traits.

Knowledgebase

A library used to store complex structured and unstructured information by a computer 

system.

Long-range

The distance between regulatory regions and their target genes is considered far, usually 

>100 kb.
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Mendelian randomization

Mendelian randomization is a method of using genetic variants to determine whether an 

observational association between a risk factor and an outcome is consistent with a causal 

effect.

Metabolomics

A field of omics science to systematically measure small molecules, commonly knowns 

as metabolites, within cells, biofluids, tissues or organisms.

Ome

The objects of one field of study in biology, for example, the genome, proteome or 

metabolome.

Proteomics

The identification and quantification of the entire protein complement of a cell, tissue or 

organism under a specific, defined set of conditions.

Transcriptomics

The study of the complete set of RNA transcripts (including messenger, transfer, 

ribosomal and non-coding regulatory RNAs) produced by a cell or tissue under specific 

conditions.

Weighted gene co-expression network analysis (WGCNA)

A commonly used systems biology method for studying the correlation patterns among 

genes. WGCNA can be used for finding clusters (referred to as modules) of genes sharing 

similar expression patterns across a set of samples, and for relating modules to disease 

status and sample traits using module behaviour and topology characteristics.
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BOX 2 |

Statistical power calculations

Statistical power is important in genome-wide association studies (GWAS) as it is the 

parameter that determines how effectively a given study will identify susceptibility loci. 

The statistical power of statistical significance is the probability that an association test 

statistic will reject a false null hypothesis. As an association test statistic asymptotically 

(that is, approaching a curve arbitrarily closely) follows a 1-degree of freedom, non-

central χ2 distribution, statistical power is solely determined by the non-centrality 

parameter λ of this distribution (λ ≥ 0).

Statistical power is confounded by a variety of factors, including cryptic relatedness 

(individuals are more closely related to one another than assumed by the investigator) and 

population stratification151. In an ideal scenario in which an unrelated sample (that is, of 

individuals that are independent from each other) is drawn from a homogeneous 

population and under an additive mode of inheritance, the non-centrality parameter λ has 

a simple form152:

λ ≈ N × e

where N is the sample size and e is the effect size, which is defined as the portion of 

phenotypic variance that is explained by the target variant, that is, variant-level 

heritability.

Of note, statistical power is non-relevant to variant allele frequency. Therefore, to detect 

associated variants of 1
n  of the original effect size, the sample size should increase to n 

times the original sample size to reach the same level of statistical power. Refer to the 

figure to see the power calculated under several typical sample size settings for a GWAS 

scan (type I error rate threshold α = 5 × 10−8). For any given sample size, the range of 

effect size with intermediate power falls into a relatively narrow interval. For example, 

under the largest sample size shown in the figure (5,000,000), this GWAS setting has 

nearly 100% power to detect variants with effect size > 1 × 10−5 but nearly 0% power to 

detect variants with effect size < 1 × 10−6.
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Fig. 1 |. Prevalence of osteoporosis in populations of age 50 years and older in selected countries.
The prevalence of osteoporosis in the non-institutionalized USA population was calculated 

using data collected by the National Health and Nutrition Examination Survey 2005–2010 

(REF.153). The statistics for six European countries (France, Germany, Italy, Spain, Sweden 

and the UK) were retrieved from a report by the International Osteoporosis Foundation154. 

The statistics for China and Korea were obtained from a meta-analysis study published in 

2016 (REF.155) and the Korea National Health and Nutrition Examination Survey 2008–

2010 (REF.156), respectively. Data for Canada, Japan and Australia were obtained from a 

2014 study157.
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Fig. 2 |. Integrating multi-omics data to elucidate the molecular mechanisms of osteoporosis.
Multiple omics technologies, including genomics (mainly refers to genome-wide association 

studies (GWAS)), transcriptomics, epigenomics, proteomics and metabolomics, have been 

applied to dissect the pathogenesis of osteoporosis. Each technology individually can only 

provide limited insights into the biological mechanisms of osteoporosis. By integrating 

multiple omics data and following-up functional experiments in cell lines and/or animal 

models, researchers could capture a comprehensive view of the pathogenesis of this disorder.
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Fig. 3 |. differentiation process of osteoblasts and osteoclasts.
Bone is a highly metabolically active tissue, which undergoes a continuous cycle of bone 

formation mediated by osteoblasts and bone resorption facilitated by osteoclasts. The cells 

that comprise bone tissue have diverse origins. Osteoblasts are derived from mesenchymal 

stem cells, which can also give rise to adipocytes, chondrocytes and myocytes. Osteoclasts 

are large, multinucleated cells formed by fusion of precursors derived from the monocyte–

macrophage lineage. As the major cellular component of bone tissue, osteocytes originate 

from osteoblasts. We list several representative genes linked to bone metabolism by omics 

studies; functional experiments support their involvement in bone homeostasis. GWAS, 

genome-wide association studies; PTHR, parathyroid hormone receptor.
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