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Abstract

Neuroimaging data is being increasingly utilized to address questions of individual difference. 

When examined with task-related fMRI (t-fMRI), individual differences are typically investigated 

via correlations between the BOLD activation signal at every voxel and a particular behavioral 

measure. This can be problematic because: 1) correlational designs require evaluation of t-fMRI 

psychometric properties, yet these are not well understood; and 2) bivariate correlations are 

severely limited in modeling the complexities of brain-behavior relationships. Analytic tools from 

psychometric theory such as latent variable modeling (e.g., structural equation modeling) can help 

simultaneously address both concerns. This review explores the advantages gained from 

integrating psychometric theory and methods with cognitive neuroscience for the assessment and 

interpretation of individual differences. The first section provides background on classic and 

modern psychometric theories and analytics. The second section details current approaches to t-

fMRI individual difference analyses and their psychometric limitations. The last section uses data 

from the Human Connectome Project to provide illustrative examples of how t-fMRI individual 

differences research can benefit by utilizing latent variable models.
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1. Introduction

For better or worse, there have historically been two very different research strategies taken 

in the study of human behavior (Borsboom et al., 2009; Cronbach, 1957): experimental and 

correlational (with the latter often referred to as the individual differences approach). Indeed, 

Cronbach (1957) expressed this distinction most cogently, “correlational psychology studies 

only variance among organisms; experimental psychology studies only variance among 

treatments” (pp. 681). Although these two strategies are not necessarily antagonistic, and in 
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fact can be considered complementary or synergistic, in practice they have actually tended to 

remain quite isolated from each other.

Cognitive neuroscience borrows heavily from the experimental psychology tradition, which 

aims to understand the general laws of behavior by leveraging controlled experimental 

paradigms. The experimental approach involves systematically manipulating at least one 

independent variable (e.g., group or condition) to examine its effect on a given dependent 

variable of interest, typically by assessing differences in central tendency (e.g., mean). 

Likewise, in one of the primary methods used in cognitive neuroscience research – task 

functional magnetic resonance imaging (t-fMRI) – the most common analytic framework is 

a tightly controlled experiment in which two or more groups (or conditions) are compared 

across some measure of central tendency of the blood oxygen level-dependent (BOLD) 

activation signal (e.g., differences in between-group or condition means). Critically, analysis 

of central tendencies means that any subject-to-subject differences are treated as noise and 

collapsed into the central tendency, potentially obfuscating important information about 

variation across individuals. For instance, although a specific pattern of brain activity (or 

lack thereof) might be observed in the group as a whole, it may not reflect any given 

individual within that group (Miller et al., 2002). The Simpson’s paradox is a related, though 

not identical, demonstration of this issue, wherein the direction of association between 

variables at the population level is exactly opposite to the direction of association between 

these variables within the population’s sub-groups (Kievit et al., 2013; Simpson, 1951).

The other research tradition, and one less utilized in cognitive neuroscience, is individual 

differences psychology (as mentioned above, it is sometimes referred to as “correlational” or 

“differential” psychology). Here the goal is to identify the specific dimensions of behavior 

on which humans differ, and examine how these dimensions relate to other aspects of 

behavior. Individual differences studies are often (though not always) correlational in nature, 

trying to measure the association between variables. There is no evaluation of central 

tendency, as instead individual differences studies capitalize on the between-subject 

variability rather than differences between groups or conditions1.

The primary focus on experimental manipulations within cognitive neuroscience, rather than 

on individual differences, has important implications for understanding the relevance of 

using group level results to inform the development of treatment approaches. Interventions 

developed to address dysfunctional neural systems or cognitive impairments need to be 

effective at the individual level. Thus, it is necessary to understand more directly how 

individuals vary in the way that their brains respond during various cognitive task states. 

While there have been many t-fMRI studies that use correlational methods to evaluate 

individual differences, the psychology sub-discipline of psychometrics has developed 

statistical modeling techniques that are aimed at explicitly addressing individual differences 

questions. Thus, this psychometric perspective has high relevance, but currently relatively 

low familiarity and impact, for cognitive neuroscientists interested in investigating individual 

1Even this distinction is subtle and nuanced. There have been a great many on-going theoretical discussions around whether between-
groups designs should be more properly appreciating a continuum of variation (e.g., in a clinical disorder, such as depression; Hankin 
et al., 2005) or conversely, whether individual variation analyses are failing to recognize a noisy system that in fact consists of two or 
more underlying categories (e.g., maybe not a continuum, but rather multiple underlying distinct sub-groups; Meehl, 1992).
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differences questions. The purpose of this review is to discuss the ways in which 

neuroimaging research, especially work focused on task-related BOLD activation, can be 

enhanced by increased cross-fertilization with the methods and theories of psychometrics.

There are three main portions of this review. The first gives an overview of relevant topics 

from psychometric theory, and further discusses the statistical frameworks used by 

psychometricians for addressing individual differences questions. The second section offers 

a historical perspective regarding how individual differences in t-fMRI have been analyzed, 

and conversely, discusses the limitations of these current approaches from the psychometric 

perspective. The last section provides illustrative examples conducted on publicly available 

data (from the Human Connectome Project) to demonstrate how frameworks from 

psychometric theory can be directly applied to the analysis of t-fMRI brain-behavior 

relationships as tools for enhancing research in this domain.

At the outset, it is worth clarifying the topics that will not be included in this review in order 

to minimize excessive length. First, for the purposes of this review, the term “individual 

differences” will be defined as between-subject differences. One could alternatively consider 

this review to be on inter-individual differences, as opposed to intra-individual differences, 

with the latter focused on questions relating to how a single individual differs from him/

herself in various contexts. Second, the focus of this review is to provide both a theoretical 

foundation and practical implementation of psychometric methods for t-fMRI BOLD 

activation studies; there will be little attention given to task-related or resting state 

connectivity, though some of this work may be cited as applicable and many of the issues 

discussed here apply to that literature as well. Third, this paper is devoted to analytic 

methods conducted after typical pre-processing procedures. See Dubois and Adolphs (2016) 

for further reading regarding technological advancements in MRI hardware and pre-

processing specific to individual differences. Finally, t-fMRI is only one tool in a cognitive 

neuroscientist’s arsenal for investigating neural activation patterns; other methodological 

techniques include electroencephalography (EEG), magnetoencephalography (EEG), 

positron emission tomography (PET), transcranial magnetic stimulation (TMS), and so forth. 

This review is primarily concerned with t-fMRI, given its popularity in cognitive 

neuroscience research. However, it is noteworthy that principles originating from 

psychometric theory are relevant for all measurement tools in psychology and neuroscience, 

and should therefore be highly applicable to other non t-fMRI or multimodal methods. 

Accordingly, the core tenants presented here may be pertinent at a broader level, despite the 

scope of the review, and subsequent examples, remaining fairly narrow.

2. Individual Differences and Psychometric Theory

2.1. What is Psychometrics?

Scientific investigation into the cognitive functioning of living humans can be especially 

difficult to operationalize, since the constructs of interest are not directly measurable. When 

measuring the temperature in a vat of liquid, for instance, one can safely presume that there 

is some element of transparency between the thermometer reading and the actual 

temperature. Likewise, in single unit recordings of neurons, a microelectrode (placed 

intracellularly or extracellularly) records the voltage change over time as a neuron generates 
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an action potential, and as such there is almost never a question as to what exactly the 

electrode is recording; it is a direct measurement of current generated by an action potential. 

Yet the relationship between a measurement tool in cognitive neuroscience and the behavior 

of interest is more opaque. For example, in the widely used N-back task of working memory 

(Braver et al., 1997; Gevins and Cutillo, 1993), participants must press a target button or key 

when the item presented on the current trial is the same as the item presented a certain 

number of trials beforehand (e.g., X-G-X for a 2-back condition). Working memory function 

is then measured in terms of accuracy and/or reaction time. Importantly however, accuracy 

and reaction time during the N-back are not a direct measurement of working memory. 

Rather, they are indirect measurements, or proxies, of a working memory construct. 

Similarly, BOLD imaging is an indirect measurement of neuronal firing. Neuronal firing 

elicits a hemodynamic response such that oxygenated blood levels quickly increase for 

populations of recently-active neurons. Doing so changes the relative ratio of oxygenated to 

deoxygenated blood, which can then be detected by the MRI scanner since oxygenated and 

deoxygenated blood have differing magnetic susceptibilities. In t-fMRI then, an increase in 

the BOLD signal in a particular region during a particular task is inferred to reflect 

activation in the neural populations located in that region in response to the task demands. 

Like the N-back and working memory example above however, the BOLD signal exploited 

in t-fMRI serves as a proxy, not a direct measurement, of neuronal activation. Indeed, it is 

now well-appreciated that there are many complexities in the relationship between neuronal 

firing and BOLD activation (Logothetis, 2008).

Since it is nearly impossible to directly measure a cognitive behavior, how would a 

researcher know if they are actually tapping the cognitive construct of interest? How can one 

be sure that that the N-back is assessing working memory rather than another related 

construct, such as general fluid intelligence or the fluency of perceptual processing? 

Ultimately, how does a researcher know if a measurement tool (e.g., survey, task paradigm 

etc.) is “good”? These types of questions form the backbone of psychometrics. As a field, 

psychometrics is concerned with how to quantify and measure behavior. It is the science of 

constructing and evaluating measurement tools in order to operationalize the study of 

psychological phenomena. Critically, psychometric considerations are paramount to the 

study of individual differences. In order to fully appreciate this, it is worth diving into the 

principles and applications of psychometric theory from a historical perspective (Classical 

Test Theory) and a modern perspective (latent variable modeling). The focus here will be on 

how reframing classic psychometric ideas with modern frameworks can yield more 

sophisticated approaches to studying cognitive individual difference. Later sections (i.e., 

Section 3) will then return to the relationship between psychometrics and individual 

differences as applied to t-fMRI.

2.2. Core Psychometric Tenets and Classical Test Theory

One can find Classical Test Theory (CTT), at least in part, in nearly every introductory 

psychology book, and a majority of the applied psychometrics research conducted in the 

cognitive sciences takes the CTT perspective. At the heart of CTT (sometimes referred to as 

“true score theory”) is the notion that one can never directly measure an individual’s “true” 

score on a given test because of the unavoidable problem of measurement error. The term 
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“score” reflects the numerical value obtained by the measurement tool; common scores in 

cognitive neuroscience include accuracy, reaction time, a Likert scale value, a questionnaire 

response, or even the value of the BOLD signal. Researchers directly measure an observed 

score (X), which is a function of the individual’s true score (T) and random measurement 

error (E; X=T+E). In this light, a person’s true score is the expected value of the score if the 

test were administered over an infinite number of times.

In CTT, a measurement tool must demonstrate three hierarchically organized psychometric 

qualities in order to be considered “good”: variability (or discriminating power), reliability, 

and validity. Variability is the most basic, necessary psychometric quality and refers to how 

well a tool can produce different scores for different people (P. Kline, 2015). A measurement 

tool with zero variability is effectively useless in the study of individual differences (as well 

as group differences). For instance, consider a 10-item survey designed to assess happiness. 

If all participants answer identically, then the researcher learns nothing about how happiness 

varies across different individuals. Instead, the researcher is essentially multiplying each 

individual by the same constant. Therefore, a tool must first produce a sufficient range of 

scores, while also avoiding ceiling and floor effects (which introduce a more subtle 

restriction on variability; Lord and Novick, 1968).

The second psychometric quality in the hierarchy is reliability. Reliability asks if the 

variable scores produced by the measurement tool are consistent. In the context of CTT, 

reliability is the ratio of true score variance to the total observed variance. Should a test be 

particularly subject to measurement error (which is considered random in CTT), there would 

be little true score variance relative to the total observed variance and reliability would be 

low. There are four approaches to estimating reliability from the CTT perspective: internal 

consistency reliability, test-retest reliability, parallel forms reliability, and inter-rater 

reliability. The two most relevant types referenced in this review are internal consistency 

reliability and test-retest reliability. Internal consistency reflects the degree to which the item 

responses (or trial responses) within a test are consistent, and is typically measured by 

Cronbach’s alpha. The degree to which test scores are stable across time is known as test-

retest reliability, and is typically measured via Pearson correlation (for two time points only) 

or intraclass correlation coefficient (ICC; Shrout and Fleiss, 1979; see Caceres et al., 2009 

for how ICC is used in fMRI). Importantly, one cannot have a lot of true score variance if 

there is little variability to begin with.

The third psychometric quality at the top of the hierarchy is validity. There are numerous 

subtypes of validity: construct validity, discriminant (or divergent) validity, predictive 

validity, statistical conclusion validity, internal validity, and external validity, just to name a 

few. A nuanced discussion of the differences between the various types of validity is beyond 

the scope of the current review. Pertinent here are two points: 1) the broad definition of 

validity, and the one used throughout this article, is that validity asks if the test measures 

what it intends to measure, and 2) a measurement tool cannot be valid if it cannot produce 

reliable scores. Thus, validity is dependent upon reliability, which in turn is dependent upon 

variability. The CTT approach to measuring validity is via test-criterion correlations, which 

are correlations between test scores and scores on some criterion measure (e.g., a behavioral 

measure already assumed to reflect individual differences).
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2.3. Transition from Classical to Modern Perspectives

While CTT can be very useful for conceptualizing the importance of these three 

psychometric qualities, especially reliability, CTT is also extremely limiting. CTT assumes 

that all measurement error is random and does not provide a clear avenue for addressing 

sources of systematic error. This is especially problematic in cases where known sources of 

error exist; for instance, a multicenter study would want to specify study site as a known 

source of potential variance. In response to this major pitfall of CTT, psychometricians have 

developed numerous frameworks that revolve around understanding latent variables.

2.4. Latent Variable Modeling

While the primary goal of CTT is to obtain a person’s true score on a test, the primary goal 

of latent variable modeling is to define and examine the relationship between an 

unmeasurable, latent construct and observable, measurable test scores (Borsboom et al., 

2003). Consider some of the challenges in measuring working memory on a task such as the 

N-back. Here, working memory is the latent variable of interest, or the unobserved construct 

(usually represented by circles or ellipses; Figure 1), and accuracy and reaction time during 

N-back performance are considered manifest variables, or observed variables (usually 

represented by rectangles or squares; Figure 1). Latent variable analytic methods try to find a 

set of latent variables that satisfy the local independence principle, which states that a latent 

variable can fully explain why observed variables are related to each other. That is, the 

reason two measured variables can correlate with each other is because they are caused by 

the same latent variable and thus share some amount of variance. If that shared variance is 

partialled out (and attributed to the latent variable), then the two variables will be 

independent of one another. The manifest variables are thus dependent upon the latent 

variable. Directional regression lines from the latent variable to the manifest variable 

represent these relationships (Figure 1).

There are a number of variations of latent variable analyses (e.g., structural equation 

modeling, latent class analysis, item response theory, latent profile analysis etc.); these differ 

primarily in terms of the type of data being analyzed, such as categorical versus continuous. 

The focus of this article is on structural equation modeling (SEM) as it is typically more 

appropriate in cognitive neuroscience contexts, seeing as many manifest and latent variables 

within the field are continuous (e.g., reaction time, the BOLD signal etc.). It is worth noting 

however that there is an effort to highlight a common framework for latent variable analytics 

(or a “unified approach”), rather than conceptualizing the methods as independent from each 

other (Bartholomew et al., 2011). Although further discussion here will remain on SEM 

concepts, these notations are still relevant to the broader application of latent variable 

modeling.

SEM (sometimes known as covariance structure modeling) is a rapidly growing analytic 

approach (Tomarken and Waller, 2005) that stems from factor analysis in the intelligence 

literature (Spearman, 1904) and path analysis in the genetics literature (Wright, 1921). 

Moreover, SEM itself encompasses a number of techniques including: confirmatory factor 

analysis, mediation analysis, path analysis, and latent growth modeling (see Figure 1 of 

Karimi and Meyer, 2014 for how different techniques under the SEM umbrella relate to each 
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other, as well as for a more complete history of SEM). SEM asks whether the hypothesized 

relationships between latent variables and manifest variables, as well as latent variables and 

other latent variables, “match” or are consistent with observed data (Bollen, 1989; R.B. 

Kline, 2016). This is done by comparing the variance-covariance matrix of the hypothesized, 

implied model to the variance-covariance matrix of the observed data, often using a 

maximum likelihood function for estimating model parameters. Ultimately, one can 

conceptualize SEM as a series of simultaneous regression equations relating observed and 

latent variables to each other. SEM is typically employed in a theory-driven manner: the 

researcher describes the theory in an a priori manner by specifying how observed variables 

ought to organize into latent constructs (the measurement model, which alone is akin to a 

standard confirmatory factor analysis), and how these latent factors ought to correlate with 

each other (the structural latent variable model). Relationships between latent variables can 

be directional (regression equations) or non-directional (correlations or covariances; usually 

notated via curved lines with arrowheads on both sides). Finally, one can easily conduct 

group comparisons within the SEM framework since SEM is ultimately an extension of 

regression (and therefore ANOVA). Of note, while SEM is often utilized as a confirmatory 

approach, it is possible to use SEM in an exploratory manner. Since the more common 

application of SEM is confirmatory in nature, we will refer to SEM as a confirmatory 

procedure for the duration of this article (readers interested in exploratory SEM are directed 

to Lo et al., 2016 and Gates Molenaar, 2012 for further information).

There are many advantages to using SEM that make it a powerful tool when applied to 

individual differences questions in neuroimaging (see also Lahey et al., 2012). First, and 

perhaps most important, SEM allows researchers to directly test hypotheses about the 

sources of between-subject variability. Rather than accepting that there might be systematic 

unexplained variance in a measurement, SEM provides a framework to mathematically 

model these different sources of variance, thus giving researchers the flexibility of testing 

intricate models. For example, neuroimagers can specify different scanners or study sites as 

sources of variance, or even constrain specific model parameters if previous research 

supports doing so (e.g., a priori setting the relationship between any two variables to be zero 

if no association is expected, or set two parameters to be equivalent). Second, although SEM 

is flexible enough to be utilized in many different scientific contexts, it can be directly 

optimized for the study of individual differences by treating between-subject variability as 

the primary source of data for defining latent constructs. Third, because SEM is typically 

conducted in a confirmatory manner, it is well-suited for testing theoretical hypotheses. This 

is in contrast to exploratory methods like principal component analysis and partial least 

squares, which have been used in prior neuroimaging individual difference contexts 

(Krishnan et al., 2011), but are not designed for formal hypothesis testing. Fourth, latent 

variables defined in SEM are considered “error-free” in the measurement model component, 

in that they reflect the variance shared by multiple manifest (sometimes known as 

“indicator”) variables. If there is variance shared across some number of manifest variables, 

then by definition that variance cannot be random error (random error cannot correlate with 

anything). Fifth, SEM procedures often emphasize the goodness-of-fit of the overall model. 

A hypothesized model is deemed “good” if it adequately fits the data (e.g., does the model-

implied variance-covariance matrix match the observed variance-covariance matrix?) and 
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makes sense in a broader theoretical context. These fit indices can act as stand-alone criteria 

by which researchers can assess their findings, or they can be used to complement 

significance testing of particular path coefficients (which may or may not be of interest to 

the researcher). There are numerous model fit statistics, and though the specifics of each fit 

index are not relevant to the current discussion, one will commonly find the following 

indices in the literature: Chi-Squared, Comparative Fit Index, Tucker Lewis Index, Root 

Mean Square Error of Approximation, Standard Root Mean Square Residual, Akaike 

Information Criterion, and Bayesian Information Criteria. Further, SEM is a disconfirmatory 

procedure, in that a poor-fitting model can reject the hypothesized relationships between 

latent and manifest variables, but a well-fitting model does not mean that the hypothesized 

model is inherently correct, though the SEM framework does allow for comparison across 

competing nested models (see Section 4.2 for examples of nested model comparisons). For 

more information on SEM theory and application, see Bollen (1989) and R.B. Kline (2016).

Perhaps most vital for the current discussion is that SEM, and latent variable modeling more 

generally, offers psychometric improvements over other statistical techniques. SEM 

procedures are widely used to assess various types of validity. For instance, in the domain of 

working memory, SEM approaches can be (and have been) used to define latent variables 

derived from various popular task paradigms (e.g., N-back, Operation Span, etc.) and then 

relate these to other constructs and outcome variables, such as fluid intelligence, processing 

speed, inhibition, etc. (Conway et al., 2002; Engle et al., 1999; Kane et al., 2004). As 

another example, see MacDonald et al. (2005) for how similar SEM techniques have been 

used to assess convergent and divergent validity of a well-known experimental paradigm of 

cognitive control (the AX-CPT). Assessing reliability is less straightforward in SEM than 

from the CTT perspective, but the idea is that since the latent variable is error-free, a latent 

variable must then be capturing the “true”, replicable variance and is thus reliable. 

Reliability of individual manifest items is usually considered via “communalities” (or 

squared multiple correlations of factor loadings), reflecting the percent of variance in the 

manifest item that can be explained by the latent factor. These are useful in determining 

model specification errors in scenarios where the hypothesized models do not adequately 

reflect the observed data.

One of the biggest downsides of SEM is also its greatest upside. While researchers can test 

incredibly complex and nuanced models in a seemingly parsimonious manner, it comes at 

the expense of increased researcher degrees of freedom, as there are many additional 

parameters above and beyond traditional models. Thus, it is possible to get a well-fitting 

SEM model by just manipulating various parameters. To be fair, this type of overfitting also 

occurs in non-SEM analyses via selection of dependent variables and independent variables 

from a larger pool, employing covariates etc. (Simmons et al., 2011). However, SEM is more 

explicitly flexible, making it especially susceptible to overfitting concerns. Most SEM 

software provides a measurement of magnitude of change in the chi-square goodness-of-fit 

statistic should a new model parameter be specified. That is, the chi-square statistic could 

decrease by some number and therefore improve overall model fit if a new relationship is 

specified (often allowing indicator variances to covary). These are called modification 

indices. However, in the absence of a concrete, theory-based rationale for including the 

proposed modification, strict adherence to (or over-reliance on) modification indices can 
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lead to problems with overfitting, generalizability, and interpretability (MacCallum et al., 

1992). Fortunately, researchers can look to the goodness-of-fit indices mentioned above as 

benchmarks of when to stop adding new model parameters, as many fit indices penalize 

models for increased degrees of freedom. Some have even found that using overall fit 

indices along with modification indices can help identify important model parameters (Gates 

et al., 2011).

A second hindrance of individual differences methods, including but not limited to SEM, is 

that they require very large sample sizes in order to have sufficient statistical power, 

especially as the number of parameters to estimate increases. In SEM, n = 200 is often 

considered to be the minimum number of participants needed (Boomsma, 1985); however, 

see Wolf et al., 2013 for a more detailed discussion of appropriate sample sizes in SEM, and 

why a one-size-fits-all approach can be problematic for determining sample sizes. Despite 

these concerns, the advantages of SEM make it an ideal technique for undertaking individual 

differences questions.

The information presented thus far provides a solid basis of psychometric theory but does 

not fully make clear why psychometric considerations are so important for individual 

differences questions. Likewise, because of the relative lack of interaction between 

researchers versed in psychometrics and those working in cognitive neuroscience and task 

fMRI in particular, some of these considerations are not currently appreciated. To address 

this point, the aim of the next section is to delve more fully into explaining the relationship 

between psychometrics and individual differences as they relate to t-fMRI, as well as diving 

into why latent variable methods have not been widely adopted in t-fMRI. The final section 

of the article will then try to reconcile this discrepancy by providing several examples on 

how SEM can be applied to t-fMRI datasets.

3. Individual Differences in Task fMRI

The current standard analytic method for examining individual differences in t-fMRI 

activation studies is a simple correlation measure (Pearson or Spearman). Such an approach 

often starts with a whole-brain voxel-wise analysis that correlates BOLD activity in each 

voxel with an individual difference variable (either measured out of the scanner or in the 

scanner; Lebreton and Palminteri, 2016; Vul et al., 2009; Yarkoni and Braver, 2010). Voxels 

demonstrating significant correlations are clustered to define a region of interest (ROI) or set 

of ROIs, and the interpretation is that there is a significant brain-behavior relationship 

between the ROI(s) and the individual difference variable (note that there are a few studies 

that have tried to implement latent variable approaches – these will be discussed in section 

4.1).

It is vital to appreciate that failure to understand a tool’s psychometric characteristics 

threatens the interpretation of individual differences conclusions. In a recent study, 

behavioral data from a cognitive control task (the AX-CPT) was used to directly 

demonstrate how interpretations might change in response to examining psychometric 

properties (Cooper et al., 2017). The following expands upon this notion by considering the 

three core psychometric requirements (i.e., variability, reliability, and validity) in the context 
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of t-fMRI, and ends on a discussion of why psychometrics and cognitive neuroscience have 

not been fully integrated.

3.1. Individual Differences Questions Are Psychometric Questions

Variability: A measurement tool without variability is ultimately useless in the study of 

individual differences because it provides no information regarding how individuals differ. 

While to the authors’ knowledge there has not been any overt concern that the BOLD signal 

does not generate enough variance per se, there has been much interest in the ways analytic 

approaches treat different sources of variance because aptly modeling sources of variability 

allows for statistical inference from the sample to population level (note that there have been 

a few attempts to visualize regional differences in variability; Omura et al., 2005). For 

example, switching from fixed effects to random effects models in the late 1990’s was 

explicitly done in order to model a different source of variability (in this case, modeling 

between-subject variance rather than treating it as noise; Holmes and Friston, 1998). More 

recently, some have argued that typical t-fMRI experiments fail to appropriately model 

variability at the stimulus level (Westfall et al., 2017). Re-thinking how variability is treated 

has a rich tradition in psychometric theory. Take Generalizability Theory (or “G-Theory”; 

Cronbach et al., 1963) for instance. G-Theory expanded upon CTT such that, instead of 

using a single composite random error term, the ANOVA framework was utilized to estimate 

error contributions from various sources. As Barch and Mathalon (2011) discuss in their 

review, G-Theory as applied to a t-fMRI individual differences study could potentially 

estimate variance components from person, task run, test session, or study site (for multisite 

projects). Detecting sources of excessive error variance can not only improve precision of 

reliability estimates, but the information can also be used when planning future studies in 

terms of making optimal study design decisions.

Reliability: Reliability is crucial for individual differences studies because it essentially 

places an upper bound on the ability of the measurement tool to detect an effect, as the 

correlation between any two tests will decrease as a function of the square root of reliability 

(Nunnally, 1978). Reliability in t-fMRI has been frequently discussed in the literature in 

recent years, and it is fair to say, at the very least, that reliability estimates are quite variable 

(Bennett and Miller, 2010; Yarkoni and Braver, 2010). Emphasizing the importance and 

growing popularity of this topic, there was a special issue of Cognitive, Affective, and 
Behavioral Neuroscience in 2013 dedicated to reliability and replicability (Barch and 

Yarkoni, 2013). Reliability in the context of t-fMRI can be extremely difficult to parse for a 

number of reasons. To be clear, the reliability peculiarities mentioned below are neither an 

exhaustive list of all the factors influencing reliability in t-fMRI, nor are they even 

necessarily the most important factors per se. They do however pose unique challenges from 

a psychometric and measurement theory perspective.

First, reliability in t-fMRI can be difficult to conceptualize due to the enormous amount of 

data collected on an individual subject from a single run of an experiment. It is not 

uncommon for a typical t-fMRI protocol to yield roughly 100,000 voxels across the brain 

per subject. Moreover, the BOLD data obtained from each individual voxel is a timeseries 

measured over the course of the scan sequence; thus, there is no single value for the BOLD 
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signal in a given voxel. The dimensionality of t-fMRI can therefore be overwhelming. As 

such, a number of dimensionality reduction steps go into the final dependent measures that 

are used in individual differences analyses (e.g., timeseries modeling, general linear model 

estimation of effects of interest, spatial smoothing, voxel clustering etc.).

Additionally, reliability in t-fMRI is influenced by a large number of study design factors 

such as: cognitive task used, experimental paradigm (block vs. event-related designs), 

contrast type (e.g., task > rest vs. target>nontarget), if statistical thresholding was used, and 

time interval for test-retest procedures (Bennett and Miller, 2013). Furthermore, metrics 

quantifying reliability vary by type (i.e., internal consistency reliability vs. test-retest 

reliability), and acceptable/high levels of test-retest reliability do not guarantee acceptable/

high levels for internal consistency reliability or vice versa. One must then prioritize which 

aspect of reliability to focus on based on the research question. To be fair, these issues are 

not unique to t-fMRI or even cognitive neuroscience. Yet they are still important 

considerations that must be addressed when planning a t-fMRI study.

There is also the difficulty of integrating the extra “spatial dimension” associated with t-

fMRI measurement across spatially organized elements (voxels) into reliability frameworks. 

Consider, for example, a cognitive task administered to individuals outside the scanner. 

Reliability could be examined via internal consistency – how consistent were the reaction 

times on the same trial types throughout the duration of the task – and via test-retest 

methods – how consistent are the reaction times across time points. If the same cognitive 

paradigm is then administered while participants are in the scanner, one can still examine the 

internal consistency and/or test-retest reliabilities of the BOLD signal, but it only makes 

sense to do so in a particular region or set of voxels. Holding all else constant, a t-fMRI 

paradigm can potentially yield reliable results for one region of the brain and unreliable 

results for a different region of the brain. Even in the resting state connectivity literature 

(i.e., without imposing a task context), patterns of reliability have been found to vary by 

brain region (Laumann et al., 2015). Further, spatial scale may be a critical factor, such that 

reliability at the voxel level may differ from the reliability at the ROI level, which may be 

different than reliability at the brain network level. A slightly different take on this revolves 

around how consistent is the answer to the question: “where in the brain is the BOLD 

activation located?” This is related to the notion that reliability can differ based on task. Here 

though, the focus is on whether the task can consistently elicit activation in the same regions. 

This idea of “spatial reliability” adds an extra dimension to an already highly dimensional 

problem.

Validity: It is difficult to gain new insights into human behavior if using an invalid 

measurement tool. The dominant concerns regarding validity in t-fMRI are inter-twined with 

concerns about reliability. There are threats to validity in t-fMRI data that go beyond 

reliability, however, and relate to issues such as: 1) artifacts such as movement (Power et al., 

2012; Siegel et al., 2013),, although these are tend to be more of a concern in resting state 

connectivity procedures rather than task activation studies; and 2) generalizability. External 

validity in the psychometric literature specifically concerns topics related to generalizability 

(Mook, 1983). In t-fMRI, participants are required to lie still for extended periods of time in 

the scanner, which can be quite difficult. Data from participants with excessive movement 
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are often discarded (including some frames, some runs, or even all data from the participant) 

despite these participants perhaps not being true outliers of the population under study. 

Likewise, for some participants, the particular context of lying prone and still in a highly 

noisy and unfamiliar scanning environment may significantly impact task performance (Van 

Maanen, 2016). Interestingly, there is a new movement calling for adopting predictive 

frameworks seen in machine learning in order to improve generalizability, since a variable 

showing significant explanatory power does not necessarily mean the same variable will 

show predictive power for generalizing to new observations (Dubois and Adolphs, 2016; Lo 

et al., 2015; Yarkoni and Westfall, 2017).

Related to the concept of validity is interpretability. The high dimensionality of t-fMRI data 

can make interpretability somewhat challenging. Typically, t-fMRI researchers use one of 

two methods for finding areas of the brain relevant to the behavior of interest: a ROI or a 

whole-brain voxel-wise approach. The ROI solution is to select areas of the brain in an a 
priori manner. While this helps immensely for interpreting findings, it also has drawbacks: 

1) it depends on researchers already having a theoretical foundation that constrains which 

brain areas (or ROIs) to investigate; and 2) it could potentially lead researchers to miss 

meaningful findings, since the analysis intentionally does not include the whole brain. 

Whole brain approaches often use some combination of statistical testing of task activation 

with an element of dimensionality reduction (e.g., principal component analysis or 

clustering algorithms) to find the set of voxels with BOLD task-related activation associated 

with behavioral individual differences. The result of this approach is that a potentially large 

number of brain regions (or clusters of voxels) co-activate to give rise to a particular 

behavior.

As an illustration of this point, consider the use of principal component analysis (PCA) as a 

data-driven approach to dimensionality reduction across the set of brain voxels. For 

example, in a study with a parametric manipulation of some variable (e.g., working memory 

load), the PCA might be used to cluster voxels with similar load-related activation patterns. 

In this case, if the first principal component was extracted, the top 1000 voxels with the 

highest factor loadings might be kept and treated as those representing a particular activation 

pattern. For the purpose of this hypothetical, say these voxels were located randomly 

throughout the brain. How then would one interpret the between-subject variance in this 

latent component? The variance captured by the latent variable in this case is not 

theoretically informed and is thus not clearly interpretable beyond a simple “variance shared 

across random items (brain regions)”.

The interpretability problem here is that the co-activating voxels may not make sense in a 

broader theoretical context. In this example, and as further discussed below (see Section 

4.2.1, Example 3), the question of validity must be addressed by thinking of whether the 

regions that are grouped together make sense with regard to some theoretical framework 

(i.e., does the grouping reflect known brain networks or pathways). Newer work from 

resting state connectivity may help ultimately alleviate this specific issue and enhance 

interpretability. Recent studies have shown that brain regions organize into networks (e.g., 

frontoparietal, default mode), and that these networks show similar organization across both 

“resting” states and “task” states (Cole et al., 2014; Gratton et al., 2016a; Power et al., 
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2014). Although functional networks have been defined using resting state fMRI, the 

assumption is that these networks are critical sub-units of the cortex, and thus these 

networks should also be identifiable and useful in task activation studies. Focusing on 

networks as the level of analysis seems like a particularly promising middle ground for t-

fMRI studies, as the preserved data in networks maybe more robust, due to occupying a 

higher level of brain organization, than typical whole brain voxel-wise analyses, yet are 

broader and more flexible than ROI analyses.

All told, one cannot fully interpret individual differences findings without taking into 

account psychometric considerations. Cognitive neuroscientists striving to understand brain-

behavior relationships must then grapple with psychometric concerns. Although the standard 

correlational procedure is not incorrect, its relative simplicity makes it difficult to test brain-

behavior questions that might be more complex or nuanced. This raises the question of why 

have researchers using t-fMRI not utilized the analytic techniques put forward by 

psychometric theory? Though not the sole reason, the primary hindrance in employing latent 

variable models is that t-fMRI studies, historically, have had too few participants to afford 

the type of power needed for latent variable models. To this end, a recent study by Poldrack 

et al. (2017) examined how sample sizes in t-fMRI studies have changed between 1995 and 

2015, looking at over 1,100 published studies. They found that between 1995 and 2010, the 

median sample size steadily rose from just shy of 10 subjects to just shy of 20 subjects, and 

further report that by 2015 the median sample size was 28.5 for single group analyses and 19 

per group for multiple group analyses. Although this increase is heartening from the 

perspective of statistical power, these sample size numbers are shockingly low from the 

standard perspective of SEM studies, e.g., the Boomsma et al. (1985) recommendation of 

200 participants. As such, perhaps it is not surprising then that many of the modern 

psychometric frameworks have not been adopted in the t-fMRI arena.

The importance of power cannot be overstated, and low power across all of psychological 

and neuroscience research has come under scrutiny in recent years (Button et al., 2013; 

Open Science Collaboration, 2015; Szucs and Ioannidis, 2016). But the problem is 

especially pernicious for individual differences t-fMRI research, even when using the 

correlational approach (e.g., Pearson or Spearman statistical test), since most studies use a 

threshold of around p < .001 (if not lower) for the whole brain portion of the analysis. As 

Yarkoni and Braver (2010) describe in relation to individual differences in working memory: 

“When one considers that a correlational test has only 12% power to detect even a ‘large’ 

correlation of 0.5 at p < .001 in a sample size of n = 20, it becomes clear that the typical 

fMRI study of individual differences in [working memory] has little hope of detecting many, 

if not most, meaningful effects” (p. 96). The small sample sizes and underpowered research 

thus undermine the reproducibility of t-fMRI studies (Turner et al., 2017). Since statistical 

power is important for all research, and especially vital for individual differences research, 

the following provides a brief history of sample sizes in t-fMRI in hopes of clarifying why t-

fMRI studies to date have been so woefully underpowered.
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3.2. A Brief History of Low Sample Sizes in t-fMRI

Before diving into the cultural and analytical underpinnings of small sample sizes in t-fMRI, 

it is worth pointing out that t-fMRI studies can be very costly and time-intensive, which 

could potentially explain why sample sizes were so small. However, cost alone does not 

justify the consistently low sample sizes in t-fMRI studies over the years. For example, a 

one-hour research MRI scan at Washington University in St. Louis prior to 2002 cost $200 

an hour (equivalent to $278.73 after adjusting for inflation) and has steadily risen to $630 

per hour in 2017 (S.E. Petersen, personal communication, September 12, 2017). The costs 

are therefore much higher now (at least at this institution), despite larger samples also being 

collected now (Poldrack et al., 2017). Furthermore, event related potentials (ERP) studies 

are more cost-efficient than fMRI, yet have similar patterns of small sample sizes (roughly 

10–20; S. Luck, personal communication, June 20, 2018) and a similar lack of transparency 

in sample size calculations (Larson and Carbine, 2017). The historical use of small sample 

sizes in neuroimaging is thus clearly not entirely driven by cost; there must have been other 

factors.

In 1990, Ogawa and colleagues reported their discovery that the BOLD signal could be used 

as an endogenous contrast for identifying localized regions of neural activity, providing the 

foundation for the entire field of t-fMRI. Interestingly, they directly compared BOLD 

imaging to PET (positron emission tomography) imaging. Although PET is non-invasive, 

participants are exposed to ionizing radiation, and thus PET studies standardly have 

intentionally small sample sizes. For historical context, the first activation maps from PET 

were produced in the mid to late 1980’s — before t-fMRI (Fox et al., 1986; Lauter et al., 

1985). Many researchers who began to utilize t-fMRI in the early to mid 1990’s came from 

the PET research traditions that included data collection on small sample sizes. To be clear, 

this is not true of every investigator, or even every institution. However, the cultural norms 

from PET studies certainly seem to have crossed over into the early t-fMRI studies. For 

example, the well-known fMRI processing software SPM was originally developed in order 

to analyze PET data — not fMRI data (Friston, 2007).

From the mid to late 1990’s, t-fMRI was primarily a between-groups endeavor. Between-

subject variance was treated as error in fixed effects models, and the need for random effects 

models was not fully appreciated until the late 1990’s (Holmes and Friston, 1998; Braver et 

al., 1997). Yet random effects models are less powerful than fixed effects models, leading to 

the realization that studies adopting random effects models would be severely underpowered 

if using equivalent sample sizes as their fixed effects counterparts. Similarly, the need to 

correct for false positives was not immediately apparent, and the adoption of false positive 

corrections highlighted the fact that early t-fMRI studies were severely underpowered 

(Bennett et al., 2010).

By the early 2000s, the field saw an increase in questions surrounding individual differences 

(for example, see Figure 1 of Braver et al., 2010), though they remained secondary to 

experimental manipulations. In 2009, a landmark paper on “voodoo correlations” revealed 

that correlations being reported were exceedingly high; higher than mathematically possible 

given the reliability of the measurement tools (Vul et al., 2009). The authors attribute these 

exceedingly high correlations to the “non-independence” problem, or a form of statistical 
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double dipping. Essentially, t-fMRI studies would set a threshold where significant voxels 

were grouped into a ROI, and then the same BOLD data used to create the ROIs were used 

in a subsequent selective correlational analysis (see also Kriegeskorte et al., 2009 for more 

on the non-independence problem in neuroscience). Although voodoo correlations may 

superficially seem unrelated to issues surrounding power, Yarkoni (2009) argued in a 

response to Vul et al. (2009) that the inflated correlations Vul et al. observed are not only 
caused by the non-independence problem, but that they are also due to the pervasively low 

statistical power in t-fMRI studies. Specifically, a direct consequence of low power is that 

finding a significant effect invariably leads to inflated effect sizes. Thus, while the non-

independence principle may certainly have threatened earlier t-fMRI correlations, it is the 

repercussions stemming from low statistical power that likely drove the exceedingly large 

correlations, skewing individual differences studies and their inferences (Yarkoni, 2009).

By around 2010, the implications of low power were becoming more widely acknowledged 

(Yarkoni and Braver, 2010). Even still, however, there was interesting debate over 

appropriate sample sizes for t-fMRI (see Friston, 2012 for an argument in favor of smaller 

sample sizes, and Lindquist et al., 2013 and Yarkoni, 2012 for formal and informal rebuttals, 

respectively). Ultimately, the field seems to have accepted the need for larger samples, and is 

striving towards that end.

At present, it seems as though a cultural shift is finally arriving in the field, with researchers 

and funding agencies alike becoming determined to conduct adequately powered t-fMRI 

studies. In response to all of the power criticisms over the years, t-fMRI is heading towards a 

new “big data” era wherein pooled funding sources and data sharing infrastructure allows 

consortiums to collect data on very large samples that can be shared with investigators at 

various institutions. In the United States, the first project of this kind was the Human 

Connectome Project (HCP; https://www.humanconnectome.org), which collected advanced 

neuroimaging (structural and functional), cognitive and behavioral measures, and genetic 

markers on over 1,000 participants (Barch et al., 2013; Van Essen et al., 2013). Similar 

efforts have been ongoing in Europe, including the Cam-Can study (Shafto et al., 2014), and 

UK Biobank (Sudlow et al., 2015), and newer, more ambitious projects such as the 

Adolescent Brain Cognitive Development study (https://abcdstudy.org) are currently 

underway. For more on neuroimaging big datasets and their associated technical and 

practical hurdles facing big data, see Poldrack and Gorgolewski (2014) and Smith and 

Nichols (2018). After nearly 30 years, t-fMRI research is now in a position where analytic 

methods, such as latent variable modeling, that were once untenable due to low sample sizes, 

are now within reach.

Consequently, there is much to gain from engaging in collaborative efforts between 

psychometrics and cognitive neuroscience. Those trained in measurement theory are 

especially well-equipped to address questions surrounding difficult-to-measure phenomena. 

Conversely, cognitive neuroscience may be a new frontier for many psychometricians, 

offering new opportunities for applying psychometric theory, which will likely further drive 

development and refinement of new and more powerful frameworks. Yet cognitive 

neuroscience has so far remained relatively disconnected from psychometric theory. In 

fairness, it is not just cognitive neuroscience, as cognitive psychology is also not as well 
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integrated with psychometrics as other sub-fields of psychology, such as educational 

psychology and personality psychology. Indeed, one could even argue that psychology itself 

is not well-integrated with psychometrics (see Borsboom, 2006 for an interesting take on 

this topic). Collaboration is also impeded by the fact that the field of psychometrics is 

smaller than the other psychology disciplines, and so has a narrower penetration than 

cognitive neuroscience. Yet despite the current separation of these fields, collaboration will 

be necessary in going forward to advance understanding of brain-behavior relationships.

4. Integration and Examples

Thus far, this review has taken a historical slant regarding the factors that have impeded the 

development of optimized individual differences approaches in t-fMRI. The remainder of 

this article will shift the spotlight towards how to remedy the situation going forward. The 

following first briefly explores the ways latent variable models have been previously used in 

t-fMRI. Next, seven concrete and simple examples are presented in order to illustrate some 

ways in which SEM can be harnessed for the purposes of discerning brain-behavior 

relationships. Of course, the exact ways in which SEM can be employed are entirely 

dependent on the question at hand. As such, we strived to reduce the complexity of the 

examples, in hopes that readers could see some similarities to questions they find interesting 

and ideally gain confidence in expanding upon these procedures in their own work.

4.1. Latent Variable Models and t-fMRI — What Has Been Done?

There are some previous studies that have used latent variable models like SEM in t-fMRI. 

Yet a common theme between studies that have used latent variable approaches is that many 

of them were not deployed from an individual differences perspective. In one of the earlier 

human studies, for example, the main goal of SEM was to see if effective connectivity 

changed as a function of working memory load (McIntosh et al., 1996). In the context in 

which the paper was published, individual differences were not of concern; in fact, 

additional corrections were applied to statistically control for individual variability, rather 

than exploit it (McIntosh et al. 1996). This was not uncommon. Additionally, a majority of 

the work using SEM in neuroimaging has been applied to connectivity, rather than 

activation, in trying to answer between-groups and interactions questions (Schlösser et al., 

2006). While very interesting, it is also a different context from an individual differences 

study.

In a more recent study by Beaty et al. (2016), SEM was used to assess how individual 

differences in personality traits predict functional connectivity in the default mode network. 

Yet the focus here was on individual differences in personality traits, rather than using latent 

models to define individual differences in default mode connectivity (i.e., multiple indicators 

were used to create the latent personality traits, which were then regressed onto a single 

manifest default mode connectivity variable).

Lahey et al. (2012) provided a nice demonstration of how confirmatory factor analysis (a 

technique falling under the SEM umbrella) and SEM could explain how a hypothesized 

brain network (mesocorticostriatal system) might predict behavior (impulsivity). Here, the 

latent variable representing the mesocorticostriatal system reflected contemporaneous 
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BOLD activation of multiple indicator regions (e.g., dorsal anterior cingulate, right 

ventrolateral prefrontal cortex, etc.). Importantly, they performed an element of dimension 

reduction by defining ROIs used in their CFA/SEM based on those regions that showed a 

main effect of task condition (card-guessing reward task). Their strategy was to first obtain 

contrast images for each individual subject (positive feedback > negative feedback); these 

contrast images were “then used in second-level random effects models accounting for scan-

to-scan and participant-to-participant variability to determine group mean condition-specific 

regional responses” (p. 8). This approach to ROI definition is somewhat of a limitation, in 

that it may actually reduce the potential for finding individual differences effects. In 

particular, when ROIs are selected based on showing significant condition-related effects, 

this indicates a relatively consistent effect across subjects, since in condition-based contrasts, 

between-subject variability serves as the error term, and so will reduce statistical 

significance if it is too high. Conversely, statistical power will be maximal for detecting 

individual difference effects under conditions of high between-subjects variability. Thus, 

even though Lahey et al. (2012) determined that the mesocorticostriatal latent variable 

captured significant between-subjects variability, they may have had greater statistical 

power, or even a different pattern of results, if ROIs were defined in a manner that was 

unbiased to within vs. between-subjects variability.

Lastly, Kim et al. (2007) put forth the “unified” SEM framework, which posited that the first 

stage should be comprised of an individual SEM for every single subject using BOLD 

timeseries data, then researchers should merge the path coefficients from the individual 

SEMs with subject-level covariates (e.g., gender, education etc.), and finally use a general 

linear model to ask if the covariates impacted the path coefficients. This has been further 

expanded upon in the newer “extended unified SEM” or “euSEM” (Gates et al., 2011) to 

allow for modeling of experimental effects on ROI activation, as is needed in event-related 

designs. Though not inherently specific to individual difference analyses, euSEM has 

sometimes been applied from an individual difference perspective (Hillary et al., 2011; 

Nichols et al., 2013).

4.2. SEM in Practice – Examples

Seven examples are reported below in order to provide concrete demonstrations of how SEM 

can be applied to individual differences questions in t-fMRI. Examples are grouped into two 

primary groups to assist with readability: Measurement Models and Validity includes 

examples 1–3 and Brain-Behavior Relationships includes examples 4–7. All data come from 

the publicly available Human Connectome Project (1200 subjects release; details of task 

descriptions and preprocessing pipelines can be found at Barch et al., 2013 and Glasser et 

al., 2013, respectively). Working memory as a construct, and the N-back task as a 

measurement tool have been used as examples throughout this review thus far; accordingly, 

the imaging data used in following SEM example were collected during the N-back task, 

specifically the 2-back > 0-back contrast. To reduce dimensionality, we applied the 

parcellation algorithm described by Gordon et al. (2016) resulting in 333 cortical parcels 

that comprise 13 networks where each parcel contains the per person average “cope” 

(contrast of parameter estimate). Importantly, utilizing this parcellation algorithm avoids 

some of the non-independence issues mentioned earlier, since it implements a whole-brain 
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perspective (though subcortical regions are excluded, these could easily be added as well) 

that defines regions according to a priori properties, and thus is totally agnostic to 

experimental manipulations that could complicate interpretations. That is, parcel boundaries 

applied by the algorithm were derived from resting state connectivity on a different dataset 

(Gordon et al., 2016), therefore eliminating the risk of statistical double dipping. The 

following examples will mostly deal with the frontoparietal network (FPN), which is 

comprised of 24 unique parcels. For ease and simplicity, we only include participants with 

complete data and therefore n=1017 for all analyses below. All procedures used a maximum 

likelihood estimator (see Supplement 1 for more details). Finally, all procedures presented 

here were conducted in R, primarily using two packages: 1) lavaan (Rosseel, 2012) was used 

for all statistical analyses and 2) semPlot (Epskamp, 2017) was used to create path diagrams 

for figures. Code for all of the following examples can be found in Supplement 1. Note that 

in cases where “big data” is not tenable, one might consider using a Model Implied 

Instrumental Variable (MIIV) estimation procedure, as it is robust to distributional 

assumptions and performs well with smaller sample sizes (Bollen, 1995; Bollen, 1996; 

Bollen, 2018). Those interested in MIIV may want to explore the MIIVsem R package, 

which integrates with the lavaan package (Fisher et al., 2017).

4.2.1. Measurement and Validity: Examples 1–3

4.2.1.1. Example 1 – SEM versus Averaging

4.2.1.1a. Brief Introduction and Analytic Approach: When faced with multiple variables 

that putatively index the same construct, a common practice is to simply average across the 

variables to create a single composite variable (i.e., in this case, an un-weighted average 

across all parcels). The SEM framework offers an alternative to the averaging approach. One 

downside to averaging is that any random variance that exists within the indicators is still 

captured, perhaps even compounded, in the composite score. Whereas with SEM, error 

(unexplained) variance is modeled separately from shared variance, thus effectively 

removing unexplained variance from the latent variable. As such, latent variables are often 

described as being “error-free” or having perfect reliability

To demonstrate this, we created two competing CFA models. For both models, indicators 

were all 24 FPN parcels, with one latent factor defined to reflect the FPN. Model 1a allows 

all loadings to be freely estimated. In this model, the latent factor FPN represents the 

between-subject variance that is shared across the 24 parcels. In Model 1b, all factor 

loadings are constrained to be one (path diagram not shown). Here, the latent factor FPN is 

formally almost equivalent to averaging the 24 parcels. Moreover, the benefit of using an 

alternative model (1b) in which all factor loadings are constrained to be equal to 1, rather 

than obtaining a true average, is that a chi-square difference procedure can be employed to 

directly compare nested models (i.e., a model in which one or more free parameters are fixed 

is considered a more “restricted” model and is thus nested within the full/unrestricted model 

– Model 1b is nested within Model 1a). We report four estimates of overall fit: Comparative 

Fit Index (CFI), Tucker Lewis Index (TLI), Root Mean Square Error of Approximation 

(RMSEA), and Standardized Root Mean Square Residual (SRMR). Finally, a chi-square 

difference test was conducted to statistically compare Model 1a to Model 1b.
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4.2.1.1b. Results: The constrained model (i.e., the model equivalent to a CTT average; 

Model 1b) fit significantly worse than the freely estimated model (Model 1a; Δχ2(23) = 

732.08, p < .001). Importantly, there is a great deal of heterogeneity in the factor loadings 

for Model 1a (ranging from .32 - .79; Figure 2a), indicating that all parcels within the FPN 

do not contribute equally to the shared latent variance component. Overall fit was poor for 

Model 1b (CFI - .71, TLI - .71, RMSEA - .12, SRMR - .17). Model 1a showed a clearly 

superior fit, yet by the primary criteria would still not be judged a satisfactory model (CFI - .

78, TLI - .76, RMSEA - .11, SRMR - .07). Ideally, the CFI and TLI should be .9 or above 

(higher is better) and the RMSEA and SRMR should ideally be below .08 (lower is better).

4.2.1.1c. Implications: The fact that fit indices reported above did not meet acceptable fit 

index thresholds may be indicative that Model 1a is too simple to fully capture the full 

structure of the data. The model fit can be improved by examining the modification indices 

(as described in section 2.3). Another option is to take an a-theoretical approach and let all 

residual variances of all indicators covary. However, as discussed in section 2.3, employing 

modification indices can be problematic in that doing so does not really address the 

underlying issue of the model not representing the data accurately. Additionally, researchers 

may choose to slightly modify the measurement model with procedures such as removing 

indicator variables with very low loadings (often <.50) or constraining some model 

parameters. Since the goal for the current review is to demonstrate how SEM can be used in 

the context of neuroimaging and the review is not intent on testing specific hypotheses 

constituting original research, we explicitly do not include correlated residuals of indicators 

or remove indicators with low factor loadings, at the cost of worse model fit, in an effort to 

keep these examples as simplistic as possible. As such, interpretation of fit indices should be 

relative to the models being compared (i.e., Model 1a’s fit indices were statistically better 

than Model 1b’s).

Overall, these findings indicate that the full model (Model 1a) where factor loadings were 

freely estimated was better than the restricted model (Model 1b), which essentially treated 

the latent FPN variable as an average of all 24 parcels. This suggests that an unweighted 

average approach is not the optimal way of combining parcel variables for assessing the 

FPN. If instead one utilizes the freely estimated SEM approach, the latent FPN variable 

should contain less error variance, which in turn should yield greater predictive power. We 

will return to this idea in Example 4, where we will incorporate measurement models and 

the relationships amongst latent variables. Examples 1–3, however, focus exclusively on 

measurement models (i.e., CFA).

4.2.1.2. Example 2 – Lateralization of the FPN

4.2.1.2a. Brief Introduction and Analytic Approach: Some previous work suggests that 

instead of being a unified network, the FPN contains some lateralized sub-units with 

different roles in executive control processing (Gratton et al., 2016b; Wang et al., 2014). The 

question of whether the FPN should be conceptualized as one network or two (or more) 

distinct networks is one that can be tested within an SEM framework. We used the Model 1a 

from above with freely estimated factor loadings as a model of a general FPN network. In 

this example we refer to this model as Model 2a (Note: Models 1a and 2a are defined in the 
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exact same manner, however fit indices differ very slightly because different types of 

maximum likelihood estimators were used. See Supplement 1 for more details). We then 

created a model (Model 2b) with two independent latent factors for the left FPN (parcel 1–9) 

and the right FPN (parcel 10–24). Since the indicator variables in the two competing models 

are the same, these models are considered nested and can therefore be directly compared 

with a chi-square difference test.

4.2.1.2b. Results: The lateralized model (Model 2b) fit significantly better than the single 

latent factor model (Model 2a) (Δχ2(1) = 191.33, p < .001). Overall fit was better for Model 

2b (CFI - .83, TLI - .81, RMSEA - .10, SRMR - .06), whereas Model 2a had a worse fit (CFI 

- .78, TLI - .76, RMSEA - .11, SRMR - .07). The right and left latent network variables in 

Model 2b were highly correlated at .81 (Figure 2b). Standardized factor loadings for Models 

2a-b can be found in Figures 2.

4.2.1.2c. Implications: Although we explicitly looked at lateralization of the FPN, one 

could easily extend this general framework of testing nested models to investigate other 

structures present within t-fMRI data. Rather than create a two-network model based on 

laterality (e.g., right versus left), one could have instead created other latent network 

variables to test hypotheses relevant to previous findings or theoretical accounts in the 

relevant literature (e.g., is there an important dorsal/ventral distinction in lateral prefrontal 

cortex regions – O’Reilly, 2010; or should the anterior and posterior divisions of the default 

mode network be considered separately or as one unified network – Uddin et al., 2008). 

Moreover, future studies may want to examine the stability of individual differences 

captured in a network latent variable across various task states. For example, perhaps the 

FPN is best conceptualized as single network in some cognitive tasks, but in others (e.g., N-

back, language processing), splitting the FPN into left and right hemisphere networks may 

better capture the structure of individual differences.

4.2.1.3. Example 3 – Network Specificity

4.2.1.3a. Brief Introduction and Analytic Approach: If there is a true underlying 

network-based organizational structure to the brain, a key implication is that there should be 

structure to the organization of regions within brain networks, with stronger within-network 

correlations (or more shared variance within a network) rather than between-network 

correlations (or less shared variance across networks). A corollary is then that a model in 

which indicators all belong to the same putative network should result in better fit than a) a 

model in which indicators are randomly selected or b) a model in which all indicators from 

all parcels of all networks are included, but only a single “global brain” latent variable is 

defined. For the current example, we take the former approach as it helps limit the scope to 

the FPN, though we hope future studies examine the latter scenario. Not only should the 

overall model fit be best for a model in which indicators all belong to the same reputed 

network (as opposed to a model in which parcels are randomly selected and blind to network 

assignment), but the factor loadings of the within-network parcels onto a latent network 

variable should also be consistently higher. This would suggest that there is a lot of shared 

variance across the indicators (parcels) to be captured by the latent variable (network).
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To test this hypothesis, we created four CFA models. In Model 3a, all 24 indicators were the 

same 24 that comprise the FPN network (this is the same as Models 1a and 2a). In contrast, 

for Models 3b-d, we first randomly selected 24 parcels out of the 333 possible parcels from 

any network (blind to network assignment), and then used these 24 random parcels to create 

a similar CFA in the same fashion as 3a. This was done 3 times to create Models 3b, 3c, and 

3d (of course, this was just done to provide an illustrative example; in a more rigorous 

analysis, a range of putative networks would be examined, and more randomly constructed 

“networks” would be compared). The hypothesis is that the overall fit would be best for 

Model 3a, and that the factor loadings of Model 3a would be both consistently larger and 

evenly stable across parcels than the factor loadings for Models 3b-d. Since each model uses 

a different set of manifest variables, Models 3a-d are not nested. As such, we cannot perform 

a chi-square difference test and instead simply examine which models have the best fit.

4.2.1.3b. Results: As shown in Table 1, overall fit indices are best for Model 3a where all 

parcels are from the FPN network, and are notably worse for Models 3b-d. The mean 

(range) of the standardized factor loadings were: Model 3a) .64 (.32-.79), Model 3b) .43 (.

12-.72), Model 3c) .47 (.08-.79), and Model 3d) .45 (.22-.67), thus supporting the hypothesis 

that factor loadings would be overall higher and more equally distributed in Model 3a 

compared to Models 3b-d (see Supplement 2 for all factor loadings of Models 3a-d.). In 

sum, in this example the SEM framework was used to provide convergent evidence 

validating the presence of network-based brain organizational structure during a task 

activation setting (as opposed to the resting-state, which is how the networks were derived). 

The example provides clear evidence that, at least in the case of the FPN during the N-back 

task, this functional network seems to cohere reasonably well.

4.2.1.3c. Implications: This example illustrates that evaluating latent variable model fit is 

a general-purpose approach that can be useful for making important decisions about 

methodological issues. In a psychometrically optimal dataset, regions that are thought to 

work together should also show high factor loadings onto a latent variable of interest. 

Therefore, this could be the criterion from which to evaluate different experimental factors, 

allowing future studies to address psychometric concerns not often considered in t-fMRI 

projects. For instance, common practices in cognitive neuroimaging include: creating new 

task paradigms for in-scanner use, modifying existing task paradigms, and applying 

established task paradigms to samples from different populations (e.g., administering a task 

developed for schizophrenia patients to bipolar disorder patients). For these scenarios, one 

could use a SEM procedure akin to Example 3 to determine if hypothesized manifest 

variables appropriately load onto latent variables in the measurement model. This approach 

also affords researchers the opportunity to validate brain networks in various task activation 

contexts and in various populations, as well as assess the psychometric characteristics of 

out-of-scanner behavioral measures. Further, the latent variable model approach could be 

extended to validate different types of dimensionality reduction techniques. For example, 

future studies may want to compare the network specificity based on different types of 

parcellation algorithms like the Power nodes (Power et al., 2011) or the newer multi-modal 

parcellation (Glasser et al., 2016). Furthermore, latent variable model methods can help 

distinguish between latent hubs that capture meaningful individual differences versus latent 
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hubs that do not. For instance, if between-subject variance was inconsistent across a set of 

manifest variables (like Models 3b-d), then a latent network variable created from those 

indicators would not encapsulate much shared variance. The latent network would therefore 

not be considered as a meaningful dimension of individual difference.

4.2.2. Brain-Behavior Relationships: Examples 4–7

4.2.2.1. Example 4 – SEM and Predictive Power

4.2.2.1a. Brief Introduction and Analytic Approach: The models created in Examples 1–

3 were CFAs, and therefore only included the measurement model aspect of SEM 

procedures. In Example 1, we demonstrated that latent variable modeling can more 

effectively capture between-subject variance than creating an average (or composite) 

variable. Here, we return to a similar premise, now incorporating relationship amongst the 

latent variables to demonstrate that the inclusion of outcome measures can be used as a 

criterion for determining the best model. That is, the key difference between the current 

example and Example 1 is that formal model comparisons and evaluations include the 

criterion variable of interest. We hypothesize that utilizing an SEM framework, as opposed 

to using an average (composite) variable within a simple linear regression, should yield an 

increase in predictive power.

Moreover, having a single outcome variable can often be misleading. Ideally, one would 

want multiple indicators of the same construct just as each parcel in these analyses serves as 

an indicator of the FPN latent network. This example also serves to illustrate that creating 

multiple latent variables in SEM is fairly straightforward.

To test the predictive power hypothesis, we created four nested models (4a-d), and one non-

nested model (4e). For each of the five models, the same 24 FPN parcels and one FPN latent 

variable were included, as well as four behavioral variables to create a cognitive control 

behavioral composite. The behavioral variables were selected based on prior work with the 

same HCP dataset (Lerman-Sinkoff et al., 2017) and include: 1) in-scanner 2-back accuracy 

on the N-back task, 2) in-scanner accuracy on the relational condition of the Relational 

Processing task (see Barch et al., 2013 for a description of both the N-back and the 

Relational Processing tasks as used in the HCP), 3) the Flanker task (age-adjusted) score 

from the NIH Toolbox (Gershon et al., 2013; Hodes et al., 2013), and 4) the total number of 

correct responses on the Penn Progressive Matrices (Bilker et al., 2012). For Models 4a-d, 

an FPN latent variable was created from the 24 parcels, a behavior (BEH) latent variable was 

created from the four behavioral measures, and finally a regression equation was specified to 

examine if the latent FPN network predicted the latent cognitive control (BEH) factor. In 

Model 4a, all factor loadings are freely estimated. In Model 4b, the factor loadings of the 

parcels loading onto the FPN factor are freely estimated, but factor loadings of the behavior 

latent variable are fixed to one. Model 4c is the opposite of 4b, where factor loadings of the 

behavior latent variable are freely estimated, but fixed to one for the FPN network. Model 4d 

fixes all factor loadings to equal one. Finally, Model 4e takes an approach more commonly 

seen in the literature, including creating an FPN composite based on summed z-scores of the 

24 parcels and a behavior composite based on summed z-scores for the 4 behavioral 

measures. Then a standard linear regression was performed. We formally compare Models 
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4a-d via chi-square difference test, as well as informally examine the regression results from 

Model 4e against Models 4a-d.

4.2.2.1b. Results: Model 4a showed the best overall fit statistics (Table 2), and was 

significantly better than Models 4b-d in the model comparison approach (Model 4a vs. 

Model 4b: Δχ2(3) = 370.39, p < .001; Table 3). Figure 3 shows the path diagram for Model 

4a (path diagrams for remaining models not shown for simplicity) with standardized factor 

loadings. Furthermore, Table 4 shows the regression results from all five models, with the 

comparison between Model 4a and 4e emphasized. While the regressions in both models 

significantly predict behavior (Model 4a: b* = .44, z(1017) = 8.91, p < .001; Model 4e: b* 

= .25, z(1017) = 8.93, p < .001), the R2 more than doubles between Model 4e (z-score 

composite; R2=.07) and Model 4a (all factor loadings freely estimated; R2=.20). Predictive 

power increased when utilizing an SEM framework, rather than creating simple composites 

where error variance was surely present (and perhaps even compounded).

One might be concerned that the increased R2 values reported here are an artifact of 

overfitting, in the sense that perhaps R2 increases because of sample specific variance. 

However, this is not actually the case, as the measurement model is separate from the 

structural latent variable model (e.g., relationships among latent variables), and it could be 

that R2 is lower when the latent variables are freely estimated. That said, the freely estimated 

model will likely have a higher R2 because the latent variables are more accurately measured 

(i.e., with less error). SEM models are also well-suited to choose models that will show 

generalizability to future samples. First, the larger sample size should minimize the 

influence the impact of sample specific variance, resulting in parameter estimates that are 

more stable and closer to population parameters. Second, choosing models based on fit 

indices like the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) are formally equivalent to cross-validation techniques such as k-fold cross-validation 

(AIC; Stone, 1977) and leave-one-out cross-validation (BIC; Shao, 1997). That is, selecting 

a model with the lowest AIC/BIC will minimize overfitting and result in generalizability to 

other samples. AIC/BIC values for the current analysis are shown in Table 3 and are lowest 

for Model 4a (the freely estimated model), which thus mitigates some of these overfitting 

concerns.

4.2.2.1c. Implications: There are a number of ways in which the enhanced predictive 

power of SEM can benefit cognitive neuroscientists. For instance, one of the most 

immediately fruitful applications of SEM is likely to be contextualizing individual 

differences at different “levels” of the brain. For example, a new study by Bolt et al. (2018) 

used SEM to ask how brain-behavior associations could change depending upon whether the 

level of analysis was at the individual ROI or the network level. They used a similar 

procedure as that shown here, such that parcellation algorithms were applied to get a set of 

parcels representative of a putative network (i.e., 24 parcels for the FPN network), and then 

selected one of those parcels as an a candidate ROI. They then probed the relationship 

between the latent network predicting behavior, and the ROI specifically predicting 

behavior. They repeated this process for different task contexts and behaviors: 1) FPN during 

the N-back predicting N-back accuracy, 2) FPN during the Relational task predicting 
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relational accuracy, and 3) the cingulo-opercular network during the arithmetic task 

predicting arithmetic accuracy. For the first two of the three SEM analyses, they showed that 

the association between a ROI-level variable and behavioral variable disappeared after 

controlling for the network-level variable. However, the reverse was true for the last SEM 

such that the individual ROI-level variable predicted arithmetic accuracy over and above the 

latent network variable. They therefore conclude that brain-behavior associations can vary 

depending on the level of analysis (region of interest vs. network), and that both should be 

taken into consideration. The study by Bolt and colleagues (2018) is an interesting use case 

for SEM in the context of individual differences, and one that is likely to continue.

4.2.2.2. Example 5 – Convergent and Divergent Validity

4.2.2.2a. Brief Introduction and Analytic Approach: Since effectively interrogating 

individual differences questions hinges on psychometric considerations, many individual 

difference researchers are thus concerned with addressing questions surrounding validity. 

Researchers may want to ensure that an individual difference variable of interest correlates 

with other measures that it ought to correlate with, known as convergent validity. Similarly, 

divergent (or discriminant) validity ensures that an individual difference variable of interest 

does not correlate with measures it ought to not correlate with. For instance, HCP 

participants underwent 7 t-fMRI protocols, two of which were the N-back working memory 

task and a motor tapping task in which subjects were simply asked to tap their fingers, toes, 

or move their tongues in an effort to map motor regions (see Barch et al., 2013 for details on 

all 7 task protocols). The FPN would be expected to be particularly engaged during the N-

back task (Cole et al., 2012); however, preferential engagement of the FPN would not be 

expected during the motor tapping task. Conversely, one would expect a network comprised 

of parcels from somatomotor regions to be especially activated by the motor task, but not 

especially activated (over and above other networks) during the N-back. Furthermore, 

between-subject variance captured by a latent FPN variable during the N-back should likely 

correlate with an out-of-scanner individual difference measure in the cognitive domain 

whereas the same FPN latent variable should not predict an out-of-scanner individual 

difference measure within the motor domain and vice versa. The purpose of Example 5 is to 

illustrate that convergent/divergent validity can be easily tested within the SEM framework.

Two SEMs were created, both taking the same structure: one latent FPN factor was defined 

by the same 24 FPN parcels measured during the N-back 2 back > 0 back contrast, and a 

new right hand (HAND) latent factor was defined by 20 parcels within the right hemisphere 

somatomotor cortex measured during the HCP motor task right hand > left hand contrast 

(i.e., the same parcellation algorithm was applied to the motor task for right hand, motor task 

for left hand, and then left was subtracted from right to generate the contrast). Then, 

regressions were set up such that the PMAT (an out-of-scanner individual difference 

measure of fluid intelligence that ought to relate to the N-back) was regressed on the latent 

FPN and latent HAND factors. Similarly, the Strength (age-adjusted) out-of-scanner 

individual difference measure of grip strength was regressed onto the latent FPN and HAND 

factors. We further ensured that the FPN and HAND latent factors would not correlate with 

each other, and that the PMAT and Strength individual difference measures would not 

correlate with each other. This was done to more precisely target convergent/divergent 
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validity questions. Subjects with complete data were used, yielding a sample size of n = 

1012. Model 5a was defined exactly as described above. In Model 5b, the only difference is 

that regression equations were defined, but constrained to be equal. Models 5a and 5b were 

then formally compared to test that the expected associations were significantly different 

from one another (i.e., that the FPN to PMAT association is significantly stronger than the 

FPN to HAND association, and vice versa). We hypothesized that the FPN (measured during 

the N-back) should predict the PMAT, but not Strength whereas the HAND network 

(measured during the motor task) should predict Strength, but not PMAT.

4.2.2.2b. Results: Indeed, Model 5a (freely estimated regression parameters) was 

significantly better than Model 5b (constrained regression parameters; Δχ2(4) = 758.89, p 
< .001), indicating divergent validity. Moreover, the regressions from Model 5a demonstrate 

that both the FPN and HAND latent networks exhibit good convergent validity (Figure 4). 

The PMAT was significantly predicted by FPN during the working memory task (b* = .25, 

z(1009) = 6.83, p < .001), but not by the HAND variable (b* = .01, z(1009) = .33, p = .739). 

Conversely, the Strength individual difference measure as significantly predicted by the 

HAND latent factor (b* = .10, z(1009) = 3.12, p = .002), but not by the FPN latent variable 

(b* = .02, z(1009) = .46, p = .650).

4.2.2.2c. Implications: As more neuroimaging studies shift focus onto individual 

differences questions, being able to flexibly evaluate psychometric concerns, such as 

validity, will become increasingly important. The SEM framework can easily accommodate 

these types of questions. Though this example is only a very crude assessment of 

convergent/divergent validity, it is not difficult to imagine future studies including the FPN 

measured during the motor task and the HAND network measured during the N-back for a 

more thorough assessment of convergent and divergent validity (see Example 7 for a 

somewhat similar idea). Relatedly, researchers may want to harness SEM procedures to 

ensure than any in-scanner task adaptation does not compromise the integrity of the task 

(e.g., if a task is originally designed for schizophrenia patients, but adapted for use in bipolar 

disorder patients, one could use similar procedures to ensure that the task is still tapping the 

same underlying construct in the bipolar patients as it did in the schizophrenia patients).

4.2.2.3. Example 6 – Relative Influence of Task Contexts and Brain Networks

4.2.2.3a. Brief Introduction and Analytic Approach: A majority of the work in functional 

networks has been done in the resting state connectivity literature. If these networks are 

appropriate ways of carving the brain into meaningful sub-units, then the networks should 

still be functionally present in task activation contexts. However, it remains unclear if there 

is something jointly important about both the task and the network in predicting individual 

differences. In other words, a standard assumption – which is not often directly tested – is 

that specific brain networks are preferentially relevant for predicting individual differences 

that are most strongly tied to the functioning of that given network (e.g., the FPN network is 

preferentially important for predicting individual differences in working memory and 

executive control function). However, it could be the case that individual difference effects 

are not strongly tied to a particular network and could be accounted for by some more global 

measure of brain activity. Likewise, it could be the case that there is network-specific 
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prediction of individual differences, but not selectively tied to a particular task context. The 

purpose of the following example, and the one after it, is to show how testing complex 

questions about brain-behavior relationships, like partitioning task and network 

contributions, can be addressed within an SEM framework.

Here, the same 24 indicators were defined to load onto a single FPN latent network variable 

during the N-back working memory task. Similarly, 39 indicators of the visual network, also 

measured during the N-back task, were added into the model, and were defined to load onto 

a single Visual (VIS) latent network variable. The VIS network was added here for 

comparison purposes, to test the assumption that activation of this network is less likely to 

reflect individual differences in working memory/executive control per se. To examine this 

question, we added a general latent factor called Task in which both the FPN and VIS 

indicators loaded, since activation was measured in both during the same N-back task. 

Importantly, the model was set up such that all correlations between these three latent 

variables (Task, FPN, and VIS) were constrained to equal zero. The resulting model is 

standardly termed a “bifactor” SEM. The Task latent factor reflects the variance shared 

across all indicators. The FPN latent factor reflects the remaining shared variance shared 

across all 24 FPN indicators, but critically, after controlling for the Task factor. Similarly, the 

VIS latent factor reflects the variance shared across all 39 visual indicators, after the 

variance shared across all indicators has been removed (because it is now captured by the 

Task latent factor). The same cognitive control behavioral latent factor (BEH) from Example 

4 was used here as a primary outcome. Finally, we regressed the BEH latent variable on the 

FPN, VIS, and Task latent variables. Since all data were obtained during the N-back task, the 

sample size is the same as Examples 1–4 (n = 1019).

4.2.2.3b. Results: Primary results can be found in Figure 5. Individual differences in the 

FPN latent variable significantly predicted the cognitive control behavior (b* = .45, z(1015) 

= 8.56, p < .001). The VIS latent factor did not predict BEH (b* = .06, z(1015) = .32, p = .

751). This is not surprising because after the variance shared across all parcels was extracted 

into the Task latent factor, there was very little unique variance left in the VIS network – 

factor loadings onto the VIS latent variable were very low (near zero and even some 

negatives; factor loadings for this analysis can be found in Supplement 4). That is, the shared 

variance amongst VIS parcels was also shared amongst FPN parcels, and was best accounted 

for by a more global Task latent variable. Interestingly, the Task latent factor did 

significantly predict BEH (b* = .13, z(1015) = 3.46, p = .001). This indicates that both the 

FPN brain network and, possibly the N-back task context itself, are both important elements 

of individual difference. Overall fit estimates were within the range of the other previous 

examples: CFI - .75, TLI - .73, RMSEA - .08, SRMR - .07.

4.2.2.3c. Implications: This example has, thus far, been the most complex SEM presented, 

yet highlights the ways in which researchers can test nuanced hypotheses. Importantly, we 

simultaneously accounted for the task state and neural activation inherent in t-fMRI data, 

and partitioned the variance accordingly. In addition to expanding this to include more 

networks and tasks, future studies could also use this approach for testing hypotheses 

regarding the importance of task-related and brain-related individual differences dimensions. 
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For example, one might hypothesize that individual differences in sensorimotor behaviors 

may be best fit by a global activity factor, whereas more specific brain networks and/or task 

activation contexts may better capture individual differences in more classically “higher 

order” cognitive behaviors.

4.2.2.4. Example 7 – Are Brain Networks Independent of Task Context?

4.2.2.4a. Brief Introduction and Analytic Approach: In the previous example, two brain 

networks obtained during the same task activation context (the N-back) were interrogated in 

order to determine if each brain network, and the task network, were meaningful dimensions 

of individual difference. In this final example, we take a slightly different approach to ask a 

very related question. Though networks can be defined in various task contexts (or resting 

state), it remains unclear if brain networks are particularly useful individual difference 

dimensions if and only if measured during a particular task (e.g., the FPN during the N-

back), or if the network itself, independent of task context, is the crucial individual 

difference dimension. Importantly, if a brain network is thought to be the vital individual 

difference dimension in a task-independent manner, then any parcel within that network, in 

any task context, would be considered multiple measurements of the same underlying 

construct. Put differently, if the FPN acts in a task-independent manner, then one could 

obtain 24 measurements of the network (one per parcel) during the N-back task and an 

additional 24 measurements of the network during another context, such as the motor task, 

thus effectively doubling the number of indicators and supposedly better capturing the “true” 

FPN network. In this scenario, the latent FPN factor measured during the N-back task should 

share a lot of variance with the latent FPN factor measured during the motor task, and even 

converge to form a second-order latent FPN factor that would be considered a “global” FPN 

factor. Yet if the FPN does not act in a task-independent manner, then there would be little 

variance shared between the FPN networks from the two task contexts, and the second-order 

latent variable would not reflect a meaningful individual difference dimension.

We defined an SEM accordingly: a latent FPN network variable from the N-back, a latent 

FPN network variable from the motor task, and then a second-order “global” FPN latent 

factor. Additionally, we include the same cognitive control behavioral composite (BEH) seen 

in Examples 4 and 6. Regression equations were specified in order to determine which of the 

three latent factors best predict behavior. No additional constraints were placed. Since this 

model includes the motor task, n = 1012.

4.2.2.4b. Results: The hypothesis that the FPN acts in a task-independent manner was not 

supported by the data (Figure 6). Specifically, the N-back working memory FPN did not 

load at all onto the global FPN factor, and the global FPN factor was entirely comprised of 

variance from the FPN motor factor. Neither the global FPN nor FPN motor factors 

significantly predicted behavior, whereas the FPN working memory factor did significantly 

predict BEH (b* = .45, z(1008) = 8.59, p < .001). Though not shown here, we conducted a 

follow-up analysis in which a similar model was defined, yet the second-order global factor 

was not fit (this was done to make sure our results were not skewed simply due to fitting the 

second-order variable). The FPN measured during the motor task still did not predict BEH in 

this follow-up procedure. Overall fit estimates for Model 7 were within the range of the 
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other previous examples: CFI - .74, TLI - .73, RMSEA - .08, SRMR - .06. Taken together, 

these findings suggest that the FPN is a meaningful source of cognitive individual 

difference, but potentially only when examined through the lens of a specific task context 

that is thought to be dependent on the functions supported by the FPN.

4.2.2.4c. Implications: Examples 6 and 7 were primarily included to illustrate that very 

complex questions surrounding individual differences in brain networks can be examined 

from a latent variable perspective. In particular, Examples 6 and 7 take slightly different, but 

related approaches to better understanding the circumstances around which a brain network 

might capture meaningful between-subject variance. Future studies could expand upon this 

in a multitude of ways. For example, one could examine the relative stability of a brain 

network across a variety of task contexts. Or perhaps examine whether a brain network is a 

better or worse dimension of individual differences across various behavioral sub-domains 

(e.g., rather than just examining executive control, one could assess how a network might 

change across proactive and reactive control states; Braver et al., 2010; Braver, 2012). In all, 

these are just some of the ways that latent variable approaches like SEM can be harnessed 

for nuanced hypothesis testing regarding the neural underpinnings of cognitive individual 

difference.

4.3. Other SEM Uses

The above seven examples were presented to demonstrate how SEM could be applied in 

standard t-fMRI settings. However, these are not the only ways in which SEM can be 

implemented. Below is a brief description of other use cases not touched upon in the above 

examples.

The brain is a dynamic organ that changes over time. SEM is well equipped to handle 

longitudinal data, allowing researchers to interrogate how brain-behavior relationships 

change given repeated measures data. A SEM model could be used in this way by 

incorporating autoregressive effects and cross-lagged effects (construct at time 1 can predict 

a different construct at time 2) or contemporaneous effects (a construct predicting a different 

construct, but not lagged in time). Relevant concrete t-fMRI questions that could be 

addressed with such an approach include testing if individual differences are stable across 

multiple waves of data collection (on par with the idea of test-retest reliability), or even over 

the course of development or age-related declines. For more on the longitudinal applications 

of SEM, see Little, 2013.

Seeing as t-fMRI is currently undergoing a “big data” revolution of sorts, it is noteworthy 

that SEM frameworks can ease some of the challenges associated with analyzing these types 

of datasets. Depending on the size of the dataset, one might have the unique opportunity to 

replicate their findings. For instance, the Adolescent Brain Cognitive Development study 

(see section 3.2) will be assessing over 10,000 children. Researchers may want to use the 

SEM framework to demonstrate brain-behavior associations on 5,000 children first, and then 

test the same model on the remaining 5,000 children in hopes of reproducing the brain-

behavior relationships, while avoiding overfitting concerns. One could use a similar 

approach for completely avoiding the non-independence error that plagues t-fMRI 
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correlational studies (Kriegeskorte et al., 2009; Vul et al., 2009). By dividing the dataset in 

half, one could use the standard procedure of first defining relevant voxel clusters via 

demonstration of a correlation to an individual differences behavioral measure. The 

measurement model would then be defined in terms of latent variables (across the voxel 

clusters or regions). But then validation and hypothesis testing of this model would be in the 

held-out data (i.e., keeping constant the loading factors). This would be a prime example of 

complementary hypothesis generating and hypothesis testing studies. Finally, SEM can 

easily accommodate covariates that could potentially impact big data projects (Smith and 

Nichols, 2018). For example, data can be collected on different types of scanners at different 

locations. If the data are coded accordingly, then study site or scanner type (categorical 

variables) could be entered into the SEM as covariates. In such cases, the observed covariate 

is regressed onto the latent variable (the arrow switches direction), since the interpretation 

would be that some of the variance in the latent factor is accounted for by the covariate. 

Similar approaches could be taken for potentially psychologically more interesting 

covariates as well, such as gender, age, and ethnicity.

5. Conclusions

Understanding the intricacies of brain-behavior relationships requires more flexible analytic 

methods beyond correlations; likewise, interpreting these individual difference findings 

requires in-depth knowledge of the psychometric qualities of both behavioral assessments 

and t-fMRI measurements. Concepts and methodological tools from the field of 

psychometrics, such as latent variable modeling (including SEM), can help with both points. 

Latent variable approaches provide researchers with unprecedented opportunities to formally 

and rigorously take a hypothesis testing perspective to questions surrounding the neural 

underpinnings of cognitive individual difference. Application of such analytic methods 

allows cognitive neuroscientists to incorporate known sources of between-subject variance 

(e.g., task contexts, task performance, brain networks, non-task related individual 

differences, etc.) into parsimonious, theoretically-specified models, ultimately yielding a 

more holistic understanding of brain-behavior relationships. We hope that this review will 

encourage the greater integration of such approaches as a mean to enhance the rigor and 

scope of individual differences questions being addressed within cognitive neuroscience 

research.
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Highlights

• Understanding individual differences requires consideration of psychometrics

• Psychometric frameworks are not often used in fMRI due to power/sample 

size issues

• Latent variable models are flexible and can address psychometric concerns

• Individual differences in fMRI can be better understood via latent variable 

models

• Recent big data fMRI projects provide opportunity to harness latent variable 

models
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Figure 1. 
SEM schematic. Three measurement models (outlined with dashed blue boxes) are shown: 

manifest variables (squares) Items 1 – 4 loading on to latent variable (circle) A; Items 5 – 8 

loading onto latent variable B; and Items 9 – 12 loading onto latent variable C. Curved, 

double-sided arrows reflect residual variances (not shown for latent variables for simplicity). 

The structural latent variable model model (gray background) reflects relationships between 

latent variables A, B, and C (straight regression lines).
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Figure 2. 
SEM path diagrams for Example 2. Model 2a (right) treats the FPN as a single, unified 

network (this path diagram also corresponds to Models 1a and 3a). Model 2b (right) splits 

the FPN network into lateralized sub-units (right FPN and left FPN). The correlation 

between right FPN and left FPN latent variables is shown via curved double-sided arrow. 

Standardized factor loadings are shown for both.
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Figure 3. 
SEM path diagram for Model 4a from Example 4. Model 4a allows all parameters to be 

freely estimated (not constrained). Standardized factor loadings for the 24 parcels on the 

FPN latent variable, and the 4 cognitive measures on the behavioral (BEH) latent variable 

are shown. Standardized regression weight for FPN predicting BEH is shown. *p < .05, 

**p<.01, ***p<.001.
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Figure 4. 
SEM path diagram for Example 5. Convergent validity: the HAND network (blue), as 

measured during the motor task, should predict grip strength (STR; gray). The FPN (red), as 

measured during the N-back, should predict fluid intelligence measured by Penn Progressive 

Matrices (PMAT; green). Divergent validity: HAND should not predict PMAT, and FPN 

should not predict STR. Standardized regression weights are shown. *p < .05, **p<.01, 

***p<.001. Factor loadings can be found in Supplement 3.
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Figure 5. 
SEM path diagram for Example 6. Bifactor SEM such that the TASK (purple) latent variable 

reflects the between-subjects variance across all parcels, after controlling for respective 

brain networks. FPN (red) is the between-subject variance across 24 FPN parcels, after 

controlling for TASK. Visual (VIS; blue) is the between-subject variance across 39 visual 

parcels, after controlling for TASK. Standardized regression weights from the bifactor SEM 

predicting the latent behavioral (BEH) variable are shown. *p < .05, **p<.01, ***p<.001. 

Factor loadings can be found in Supplement 4.
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Figure 6. 
SEM path diagram for Example 7. The FPN as measured during the N-back (red) and the 

FPN as measured during the motor task (blue) are shown. A second-order global factor 

(FPN all; purple) was fit to capture the shared variance between FPN in the N-back and FPN 

in the motor task. Standardized factor loadings are shown in gray. Standardized regression 

weights are shown for each of the three latent FPN variables predicting the latent behavioral 

(BEH) variable. *p < .05, **p<.01, ***p<.001. Factor loadings can be found in Supplement 

5.
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Table 1.

Fit Indices of Models 3a-d

Model CFI TLI RMSEA SRMR

3a-FPN .78 .76 .11 .07

3b-Random .54 .49 .12 .11

3c-Random .47 .42 .15 .11

3d-Random .51 .46 .12 .11
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Table 2.

Fit Indices of Models 4a-d

Model CFI TLI RMSEA SRMR

4a-AllFree .78 .76 .09 .06

4b-NetworkFree .76 .75 .10 .08

4c-BehavFree .71 .71 .10 .16

4d-NoFree .70 .69 .11 .17

“AllFree” – all factor loadings freely estimated; “NetworkFree” – factor loadings for FPN freely estimated, but factor loadings for BEH 
constrained; “BehavFree” – factor loadings for BEH freely estimated, but factor loadings for FPN constrained; “NoFree” – all factor loadings 
constrained.
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Table 3.

Model Comparison of Models 4a-d

Model df dfdiff χ2 χ2
diff AIC BIC

4a-Free  349  3513.83  241418  241699

4b-NetworkFree  352  3  3789.43  370.39***  241688  241954

4c-BehavFree  372  20  4539.10  515.53***  242397  242565

4d-NoFree  375  3  4810.02  313.89***  242662  242815

“AllFree” – all factor loadings freely estimated; “NetworkFree” – factor loadings for FPN freely estimated, but factor loadings for BEH 
constrained; “BehavFree” – factor loadings for BEH freely estimated, but factor loadings for FPN constrained; “NoFree” – all factor loadings 
constrained.

*
p < .05

**
p<.01

***
p<.001.
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Table 4.

Regressions from Models 4a-e

Model b* SE Z R2

4a-AllFree .44*** .02 8.91 .20

4b-NetworkFree .38*** .01 8.09 .15

4c-BehavFree .43*** .02 10.86 .19

4d-NoFree .38*** .01 9.98 .14

4e-ZScoreComposite .25*** .03 8.93 .07

“AllFree” – all factor loadings freely estimated; “NetworkFree” – factor loadings for FPN freely estimated, but factor loadings for BEH 
constrained; “BehavFree” – factor loadings for BEH freely estimated, but factor loadings for FPN constrained; “NoFree” – all factor loadings 
constrained.

*
p < .05

**
p<.01

***
p<.001.
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