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Abstract

Alignment of structural RNAs is an important problem with a wide range of applications.

Since function is often determined by molecular structure, RNA alignment programs should

take into account both sequence and base-pairing information for structural homology iden-

tification. This paper describes C++ software, RNAmountAlign, for RNA sequence/struc-

ture alignment that runs in O(n3) time and O(n2) space for two sequences of length n;

moreover, our software returns a p-value (transformable to expect value E) based on Karlin-

Altschul statistics for local alignment, as well as parameter fitting for local and global align-

ment. Using incremental mountain height, a representation of structural information comput-

able in cubic time, RNAmountAlign implements quadratic time pairwise local, global and

global/semiglobal (query search) alignment using a weighted combination of sequence and

structural similarity. RNAmountAlign is capable of performing progressive multiple align-

ment as well. Benchmarking of RNAmountAlign against LocARNA, LARA, FOLDALIGN,

DYNALIGN, STRAL, MXSCARNA, and MUSCLE shows that RNAmountAlign has reasonably

good accuracy and faster run time supporting all alignment types. Additionally, our exten-

sion of RNAmountAlign, called RNAmountAlignScan, which scans a target genome

sequence to find hits having high sequence and structural similarity to a given query

sequence, outperforms RSEARCH and sequence-only query scans and runs faster than

FOLDALIGN query scan.

Introduction

A number of different metrics exist for comparison of RNA secondary structures, including

base pair distance (BP), string edit distance (SE) [1], mountain distance (MD) [2], tree edit dis-

tance (TE) [3], coarse tree edit distance (HTE) [4], morphological distance [5] and a few other

metrics. In what appears to be the most comprehensive published comparison of various sec-

ondary structure metrics [6], it was shown that all of these distance measures are highly corre-

lated with respect to Pearson correlation when computing distances between structures taken

from the Boltzmann low-energy ensemble of secondary structures [7] for the same RNA

sequence—so-called intra-ensemble correlation. In contrast, these distance measures have low
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Pearson correlation when computing distances between structures taken from Boltzmann

ensembles of different RNA sequences of the same length—so-called inter-ensemble correla-

tion. For instance, the intra-ensemble correlation between base pair distance (BP) and moun-

tain distance (MD) is 0.822, while the corresponding inter-ensemble correlation drops to

0.210. Intra-ensemble correlation between string edit distance (SE) and the computationally

more expensive tree edit distance (TE) is 0.975, while the corresponding intra-ensemble corre-

lation drops to 0.590—see Table 1.

Due to poor inter-ensemble correlation of RNA secondary structure metrics, and the fact

that most secondary structure pairwise alignment algorithms depend essentially on some form

of base pair distance, string edit distance, or free energy of common secondary structure, we

have developed the first RNA sequence/structure pairwise alignment algorithm that is based

on (incremental ensemble) mountain distance. Our software, RNAmountAlign, uses this

distance measure, since the Boltzmann ensemble of all secondary structures of a given RNA of

length n can represented as a length n vector of real numbers, thus allowing an adaptation of

fast sequence alignment methods. Depending on the command-line flag given, our software,

RNAmountAlign can perform pairwise alignment, (Needleman-Wunsch global [8], Smith-

Waterman local [9] or semiglobal [10] alignment) as well as progressive multiple alignment

(global and local), computed using a guide tree as in CLUSTAL [11]. Expect values E for local

alignments are computed using Karlin-Altschul extreme-value statistics [12, 13], suitably

modified to account for our new sequence/structure similarity measure. Additionally,

RNAmountAlign can determine p-values (hence E-values) by parameter fitting for the nor-

mal (ND), extreme value (EVD) and gamma (GD) distributions.

We benchmark the performance of RNAmountAlign on pairwise and multiple global

sequence/structure alignment of RNAs against the widely used programs LARA, FOLDALIGN,

DYNALIGN, LocARNA, STRAL and MXSCARNA. LARA (Lagrangian relaxed structural align-

ment) [14] formulates the problem of RNA (multiple) sequence/structure alignment as a prob-

lem in integer linear programming (ILP), then computes optimal or near-optimal solutions to

this problem. The software FOLDALIGN [15–17], and DYNALIGN [18] are different O(n4)

approximate implementations of Sankoff’s O(n6) optimal RNA sequence/structure alignment

algorithm. FOLDALIGN sets limits on the maximum length of the alignment as well as the

maximum distance between subsequences being aligned in order to reduce the time complex-

ity of the Sankoff algorithm. DYNALIGN [18] implements pairwise RNA secondary structural

alignment by determining the common structure to both sequences that has lowest free

energy, using a positive (destabilizing) energy heuristic for gaps introduced, in addition to set-

ting bounds on the distance between subsequences being aligned. In particular, the only

Table 1. Pearson correlation between various secondary structure metrics.

BP MD SE TE HTE

BP 0.210 0.134 0.133 0.230

MD 0.822 0.519 0.607 0.515

SE 0.960 0.853 0.590 0.310

TE 0.943 0.879 0.975 0.597

HTE 0.852 0.844 0.879 0.913

Pearson correlation between various secondary structure metrics, as computed in [6]: base pair distance (BP), string

edit distance (SE) [1], mountain distance (MD) [2], tree edit distance (TE) [3] and coarse tree edit distance (HTE)

[4]. Lower triangular values indicate intra-ensemble correlations; upper triangular values indicate inter-ensemble

correlations. Table values are taken from [6].

https://doi.org/10.1371/journal.pone.0227177.t001
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contribution from nucleotide information in Dynalign is from the nucleotide-dependent

free energy parameters for base stacking, dangles, etc. LocARNA (local alignment of RNA)

[19, 20] is a heuristic implementation of PMcomp [21] which compares the base pairing proba-

bility matrices computed by McCaskill’s algorithm. Although the software is not maintained,

STRAL [22] which is similar to our approach, uses up- and downstream base pairing probabil-

ities as the structural information and combines them with sequence similarity in a weighted

fashion. MXSCARNA [23] is a progressive multiple alignment algorithm based on the pairwise

alignment algorithm of SCARNA [24]. In contrast to Sankoff-type methods, SCARNA is a heu-

ristic algorithm that performs alignment based on the detection of fixed-length stem candi-

dates that belong to the consensus secondary structure of given sequences.

LARA, mLocARNA (extension of LocARNA), FOLDALIGNM [16, 25] (extension of FOL-
DALIGN), Multilign [26, 27] (extension of DYNALIGN), STRAL and MXSCARNA support

multiple alignment. LARA computes all pairwise sequence alignments and subsequently uses

the T-Coffee package [28] to construct multiple alignments. Both FOLDALIGNM and mLo-
cARNA implement progressive alignment of consensus base pairing probability matrices using

a guide tree similar to the approach of PMmulti [21]. For a set of given sequences, Multi-
lign uses DYNALIGN to compute the pairwise alignment of a single fixed index sequence to

each other sequence in the set, and computes a consensus structure. In each pairwise align-

ment, only the index sequence base pairs found in previous computations are used. More itera-

tions in the same manner with the same index sequence are then used to improve the structure

prediction of other sequences. The number of pairwise alignments in Multilign is linear

with respect to the number of sequences. STRAL and MXSCARNA perform multiple alignment

in a fashion similar to CLASTALW [29]. Table 2 provides an overview of various features, to

the best of our knowledge, supported by the software benchmarked in this paper.

In this paper we provide a very fast, comprehensive software package capable of pairwise/

multiple local/global/semiglobal alignment with p-values and E-values for statistical significance.

Moreover, due to its speed and relatively good accuracy, the software can be used for whole-

genome scans for homologues of an RNA as query, a similar modality as in the software

RSEARCH [30]. This type of whole-genome scan is in contrast to Infernal [31], which

requires a multiple alignment of distinct RNAs to construct a covariance model for whole-

genome searches. Searching for homologues from only a single sequence is potentially useful in

the case of orphan RNAs, very recently discovered RNAs that do not belong to any known RNA

family.

Table 2. Software features.

Software Local Global Semiglobal E-value F1(Pairwise) SPS(Multiple)

RNAmountAlign ✓ ✓ ✓ ✓ 0.84 0.81

LocARNA ✓ ✓ — — 0.81 0.86

LARA — ✓ — — 0.84 0.85

FOLDALIGN ✓ ✓ — ✓ 0.80 0.74

DYNALIGN — ✓ — — 0.68 0.63

STRAL — ✓ — — 0.82 —

MXSCARNA ✓ ✓ — — 0.84 0.84

Overview of features in software used in benchmarking tests, where ✓ [resp. —] indicates the presence [resp. absence] of said feature, to the best of our knowledge.

Average F1 [resp. SPS] scores for the pairwise [resp. multiple] global alignment are given, computed as explained in the text. F1 score is defined as the harmonic mean of

the sensitivity (Sen) and positive predictive value (PPV). SPS is defined as the number of correctly nucleotide pairs in the alignment produced by a given algorithm,

divided by the total number of aligned nucleotide pairs in the reference alignment.

https://doi.org/10.1371/journal.pone.0227177.t002
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Materials and methods

Quadratic time alignment using affine gap cost is implemented in RNAmountAlign using

the Gotoh method [32] with the following pseudocode, shown for the case of semiglobal align-

ment. In our query scan form of semiglobal alignment, if a = a1, . . ., an is the query sequence

and b = b1, . . ., bm is the current genomic window being searched for an occurrence of a, then

there is no penalty for gaps occurring to the left of the nucleotide of b aligned with a1 nor for

gaps occurring to the right of the nucleotide of b aligned with am, although internal gaps are

penalized. This is obtained by the following pseudocode, as also found in [33]. Let g(k) denote

an affine cost for size k gap, defined by g(0) = 0 and g(k) = gi + (k − 1) � ge for positive gap initia-

tion [resp. extension] costs gi [resp. ge]. For query a = a1, . . ., an and target b = b1, . . ., bm,

define (n + 1) × (m + 1) matrices M, P, Q as follows: Mi,0 = g(i) for all 1� i� n, M0,j = 0 for all

1� j�m, while for positive i, j we have Mi,j = max (Mi−1,j−1 + sim (ai, bj), Pi,j, Qi,j), where sim
is a similarity measure formally defined later in Eq (17). For 1� i� n, 1� j�m, let P0,j = 0

and Pi,j = max(Mi−1,j + gi, Pi−1,j + ge), and define Qi,0 = 0 and Qi,j = max(Mi,j−1 + gi, Qi,j−1 +

ge, 0). Determine the maximum semiglobal alignment score in row n, then perform backtrack-

ing to obtain an optimal semiglobal alignment.

Incremental ensemble mountain height

A secondary structure for a given RNA nucleotide sequence a = a1, . . ., an is a set s of base

pairs (i, j), where 1� i< j� n, such that:

1. if (i, j) 2 s then ai, aj form either a Watson-Crick (AU,UA,CG,GC) or wobble (GU,UG)

base pair,

2. if (i, j) 2 s then j − i> θ = 3 (a steric constraint requiring that there be at least θ = 3 unpaired

bases between any two positions that are paired),

3. if (i, j) 2 s then for all i0 6¼ i and j0 6¼ j, (i0, j) =2 s and (i, j0) =2 s (nonexistence of base triples),

4. if (i, j) 2 s and (k, ℓ) 2 s, then it is not the case that i< k< j< ℓ (nonexistence of

pseudoknots).

Secondary structures can be depicted in several equivalent manners, but in this paper, we

use the dot-bracket notation in which matching left and right parenthesis positions indicate

base-paired nucleotides. For instance, the EMBL accession code, sequence and secondary

structure of a 53 nt type III hammerhead ribozyme from peach latent mosaic viroid (PLMVd),

obtained from the Rfam database [34], is given as follows

> AJ550901.1/282-334
12345678901234567890123456789012345678901234567890123
GAAGAGUCGCGCUAAGCGCACUGAUGAGUCUUUGAGAUAAGACGAAACUCUUC
.((((((.((((. . .)))). . .. . .‥((((. . .. . .‥)))). . .)))))).
Positions 1 and 53 (for instance) are unpaired, as indicated by a dot, while positions 2 and

52 are paired and form the outermost base pair (2, 52), positions 12, 16 are paired and base

pair (12, 16) constitutes one of the two apical (hairpin) loops, while the other apical (hairpin)

loop is closed by the base pair (31, 40), etc.

Given an RNA sequence a = a1, . . ., an, the base pairing probabilities pai;j are defined by

pai;j ¼
X

s2Sa ;ði;jÞ2s

expð� EðsÞ=RTÞ
Z

Z ¼
X

s2Sa

expð� EðsÞ=RTÞ
ð1Þ

RNAmountAlign: Local, global, semiglobal pairwise and multiple RNA sequence/structure alignment
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where Z is the partition function, Sa denotes the set of secondary structures of a, E(s) is the free

energy of secondary structure s using energy parameters from [35]. Given a = a1, . . ., an of

length n, the mountain height [36] hs(k) of a secondary structure s of a at position k is defined

as the number of base pairs in s that lie between an external loop and k, formally given by

hsðkÞ ¼ jfði; jÞ 2 s : i � kgj � jfði; jÞ 2 s : j � kgj ð2Þ

We follow [2, 36] in our definition of mountain height, and related notions of ensemble moun-

tain height and distance, while [37] and Vienna RNA package [4] differ in an inessential man-

ner by defining hs(k) = |{(i, j) 2 s: i< k}| − |{(i, j) 2 s: j� k}|. If we consider the secondary

structure s, defined as a set of base pairs (i, j) where 1� i< j� n, as a dot-bracket notation,

then hs(k) is simply the running count, where in scanning from left-to-right we add 1 to the

count for each open parenthesis (, and subtract 1 from the count for each closed parenthesis

), encountered between 1, . . ., k.

The ensemble mountain height hh(k)i [37] for RNA sequence a = a1, . . ., an at position k is

defined as the average mountain height, where the average is taken over the Boltzmann ensem-

ble of all low-energy structures s of sequence a. If base pairing probabilities pi,j have been com-

puted, then it follows that

hhðkÞi ¼
Xk

i¼1

Xn

j¼kþ1

pi;j ð3Þ

and hence the incremental ensemble mountain height, which for values 1< k� n is defined by

ma(k) = hh(k)i − hh(k − 1)i can be computed by

maðkÞ ¼
Xn

j¼kþ1

pk;j �
Xk

i¼1

pi;k ð4Þ

It is clear that −1�ma(k)� 1, and that both ensemble mountain height and incremental

ensemble mountain height can be computed in time that is quadratic in sequence length n,

provided that base pairing probabilities pi,j have been computed. Except for the cubic time

taken by a C-library function call of export_bppm() from from Vienna RNA package [4],

the software RNAmountAlign has quadratic time and space requirements. The following

pairwise alignment of 72 nt tRNA AL671879.2 and 69 nt tRNA D16387.1, both taken from the

BRAliBase 2.1 K2 database [38], was generated by the RNAmountAlign web server,

with default parameters of gap initiation −3, gap extension −1 and structural weight γ = 1/2,

which latter equally weights the contributions from sequence and structural similarity. The

alignment produced by RNAmountAlign is identical to the reference alignment from BRA-
liBase 2.1 K2, although sequence identity is only 28% (twilight zone). The consensus

structure, shown in S1 Fig, is produced by a call of RNAalifold from Vienna RNA Package,

given the alignment produced by RNAmountAlign; Fig 1 is an alternative display of this

alignment as a superimposition of the (gapped) ensemble mountain heights of tRNA

AL671879.2 and tRNA D16387.1.

> AL671879.2
GGGGAUGUAGCUCAGUGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGUUCGAU

CCCCGGCAUCUCCA
> D16387.1
GUUUCAUGAGUAUAGC---AGUACAUUCGGCUUCCAACCGAAAGGUUUUUGUAAACAACC

AAAAAUGAAAUA
> RNAalifold consensus structure

RNAmountAlign: Local, global, semiglobal pairwise and multiple RNA sequence/structure alignment
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(((((((..((((. . .. . ..)))).(((((. . .. . ..))))). . ..((((((. . .. . .)))))))
)))))).

Transforming distance into similarity

In [39], Seller’s (distance-based) global pairwise alignment algorithm [40] was rigorously

shown to be equivalent to Needleman and Wunsch’s (similarity-based) global pairwise align-

ment algorithm [8]. Recalling that Seller’s alignment distance is defined as the minimum,

taken over all alignments of the sum of distances d(x, y) between aligned nucleotides x, y plus

the sum of (positive) weights w(k) for size k gaps, while Needleman-Wunsch alignment simi-

larity is defined as the maximum, taken over all alignments of the sum of similarities s(x, y)

between aligned nucleotides x, y plus the sum of (negative) gap weights g(k) for size k gaps,

Fig 1. Ensemble mountain height display of the alignment computed by RNAmountAlign for 72 nt tRNA AL671879.2 and 69 nt tRNA D16387.1, both

taken from BRAliBase 2.1 K2, using default gap parameters of −3 for gap initiation and −1 for gap extension, and structural weight γ = 1/2. The

alignment produced by RNAmountAlign is identical to the reference alignment from BRAliBase 2.1 K2, although sequence identity is only 28% (twilight

zone). The gap in the D16387.1 curve above corresponds to the size 3 gap in the alignment described in the text.

https://doi.org/10.1371/journal.pone.0227177.g001
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Smith and Waterman [39] show that by defining

dðx; yÞ ¼ max
a;b2fA;C;G;Ug

sða; bÞ � sðx; yÞ ð5Þ

wðkÞ ¼
k
2
� max
a;b2fA;C;G;Ug

sða; bÞ � gðkÞ ð6Þ

and by taking the minimum distance, rather than maximum similarity, the Needleman-

Wunsch algorithm is transformed into Seller’s algorithm. Though formulated here for RNA

nucleotides, equivalence holds over arbitrary alphabets and similarity measures (e.g.

BLOSUM62).

To improve the intuitive understanding of our structural distance measure STRSIM, we ini-

tially define a simple distance measure d0 between dot-bracket symbols. For dot-bracket sym-

bol x 2 { (, •, ) }, define the sign function by

signðkÞ ¼

1 if x ¼ ð

0 if x ¼ �

� 1 if x ¼ Þ

8
>>><

>>>:

ð7Þ

Now define the distance d0(x, y) = |sign(x) − sign(y)| between dot-bracket symbols x, y 2 { (, •,

) } by

d0ðx; yÞ ¼

0 if x ¼ y

1 if ½x ¼ �; y 2 f ð ; Þ g� or ½x 2 f ð ; Þ g; y ¼ ��

2 if ½x ¼ ð ; y ¼ Þ � or ½x ¼ Þ ; y ¼ ð �

8
>>><

>>>:

ð8Þ

Let A ¼
s�

1
� � � s�N

t�
1
� � � t�N

 !

denote a fixed alignment between two arbitrary secondary structures

s, t of (possibly different) lengths n, m, where s�i ; t
�
i 2 f ð ; �; Þ ; � g, the dash − denotes the gap

symbol, and where a gap is never aligned above another gap—this follows the notational con-

vention for representation of alignments in [41]. We define the structural alignment distance
for A by summing d0ðs�i ; t

�
i Þ over those positions i where neither character s�i ; t

�
i is a gap symbol,

then adding w(k) for all size k gaps in A.

Using incremental ensemble mountain height from Eq (4), we can generalize structural

alignment distance from the simple case of comparing two dot-bracket representations of sec-

ondary structures to the more representative case of comparing the low-energy Boltzmann

ensemble of secondary structures for RNA sequence a to that of RNA sequence b. Given RNA

sequences a = a1, . . ., an and b = b1, . . ., bm, and given a fixed sequence alignment

a�
1
� � � a�N

b�
1
� � � b�N

 !

let A ¼
mað1Þ

�
� � �maðNÞ

�

mbð1Þ
�
� � �mbðNÞ

�

 !

denote the corresponding alignment between the

incremental ensemble mountain heights ma(1) � � �ma(n) of a and and the incremental ensem-

ble mountain heights mb(1) � � �mb(m) of b. Generalize structural distance d0 defined in Eq (8)

to d1 defined by d1(ai, bj) = |ma(i) −mb(j)|, where ma(i) and mb(j) are real numbers in the inter-

val [−1, 1], defined by Eq 4. Define ensemble structural alignment distance for A by summing

d1(ai, bj) over all aligned positions i, j for which neither character is a gap symbol, then adding

positive weight w(k) for all size k gaps. By Eqs (5) and (6), it follows that an equivalent ensemble
structural similarity measure between two positions ai, bj, denoted STRSIM(ai, bj), is obtained

RNAmountAlign: Local, global, semiglobal pairwise and multiple RNA sequence/structure alignment
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by multiplying d1 and w(k) by −1:

STRSIMðai; bjÞ ¼ � jmaðiÞ � mbðjÞj ð9Þ

This equation will be used later, since our algorithm RNAmountAlign combines both

sequence and ensemble structural similarity. Indeed, −|ma(i) −mb(j)| 2 [−2, 0] with maximum

value of 0 while RIBOSUM85-60, shown in Table 3, has similarity values in the interval [−1.86,

2.22]. In order to combine sequence with structural similarity, both ranges should be rendered

comparable as shown in the next section.

Pairwise alignment

In order to combine sequence and ensemble structural similarity, we determine a multiplica-

tive scaling factor αseq and an additive shift factor αstr such that the mean and standard devia-

tion for the distribution of sequence similarity values from a RIBOSUM matrix [30] (after

being multiplied by αseq) are equal to the mean and standard deviation for the distribution of

structural similarity values from STRSIM (after additive shift of αstr). The RIBOSUM85-60

nucleotide similarity matrix used in this paper is given in Table 3, and the distributions for

RIBOSUM and STRSIM values are shown in Fig 2 for the 72 nt transfer RNA AL671879.2.

Given query a = a1, . . ., an [resp. target b = b1, . . ., bn], let pA, pC, pG, pU [resp. p0A; p
0
C; p

0
G; p

0
U]

denote the nucleotide relative frequencies for a [resp. b], i.e. the proportion of occurrences of

each nucleotide A,C,G,U in query a [resp. target b]. Define the mean μseq and standard devia-

tion σseq of RIBOSUM nucleotide similarities by

mseq ¼
X

x;y2fA;C;G;Ug

pxp
0

y � RIBOSUMðx; yÞ ð10Þ

sseq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x;y2fA;C;G;Ug

pxp
0

y � RIBOSUMðx; yÞ
2
� m2

seq

r

ð11Þ

Compute the base pairing probabilities pai;j of query sequence a for 1� i� j� n, and pbi;j of

target sequence b for 1� i� j�m by a call to the matrix bppm, using the Vienna RNA Pack-

age C-library.

Define the expected left pa
ð

and right pa
Þ

base pairing probabilities, and the expected
unpaired probability pa

�
of query sequence a by the following

Table 3. RIBOSUM85-60 similarity scores.

A C G U

A +2.22 -1.86 -1.46 -1.39

C -1.86 +1.16 -2.48 -1.05

G -1.46 -2.48 +1.03 -1.74

U -1.39 -1.05 -1.74 +1.65

Initial portion of RIBOSUM85-60 similarity matrix for RNA nucleotides from [30]. RIBOSUM matrices also contain

base pairing substitution scores, currently unused by RNAmountAlign.

https://doi.org/10.1371/journal.pone.0227177.t003
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Fig 2. For 72 nt tRNA query sequence AL671879.2, there are 12 A’s, 20 C’s, 24 G’s, and 16 U’s so nucleotide relative frequencies are approximately pA
� 0.167, pC� 0.278, pG� 0.333, pU� 0.222, and for 69 nt tRNA target sequence D16498.1, there are 26 A’s, 12 C’s, 12 G’s, and 19 U’s so nucleotide

relative frequencies are approximately pA� 0.377, pC� 0.174, pG� 0.174, pU� 0.275. From the base pairing probabilities computed by RNAfold -p,

we have query frequencies p( = 0.3035, p• = 0.3930, p) = 0.3035 and target frequencies p( = 0.2835, p• = 0.433, p) = 0.2835, so by Eqs (10), (11), (13) and

(14), we have μseq = −0.9098, σseq = 1.5871 and μstr = −0.8298, σstr = 0.6967. By Eqs (15) and (16), we determine that RIBOSUM scaling factor αseq = 0.4390

and αstr = 0.4305 (all values shown rounded to 4-decimal places). Using these values, the scaled RIBOSUM mean is now −0.39936, now equal to the shifted
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pa
ð
¼

1

n
�
Xn

k¼1

Xn

j¼kþ1

pak;j

pa
Þ
¼

1

n
�
Xn

k¼1

Xk� 1

i¼1

pai;k

pa
�
¼ 1 � pa

ð
� pa

Þ

ð12Þ

Analogously define the corresponding probabilities pb
ð
, pb

Þ
, pb
�

for the target sequence b.

Setting s0(x, y) = −d0(x, y), where d0(x, y) is defined in Eq (8), for given query [resp. target]

base pairing probabilities p(, p•, p) [resp. p0
ð
; p0
�
; p0

Þ
] of dot-bracket characters, it follows that

the mean μstr and standard deviation σstr of structural similarities can be computed by

mstr ¼
X

x;y2f ð ;�; Þ g

pxp
0

y � s0ðx; yÞ ð13Þ

sstr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x;y2f ð ;�; Þ g

pxp
0

y � s0ðx; yÞ
2
� m2

str

r

ð14Þ

Now we compute a multiplicative factor αseq and an additive shift term αstr, both dependent

on frequencies pA, pC, pG, pU and p(, p•, p), such that the mean [resp. standard deviation] of

nucleotide similarity multiplied by αseq is equal to the mean [resp. standard deviation] of struc-

tural similarity after addition of shift term αstr:

aseq ¼ sstr=sseq ð15Þ

astr ¼ aseq � mseq � mstr ð16Þ

Given the query RNA a = a1, . . ., an and target RNA b = b1, . . ., bm with incremental ensem-

ble mountain heights ma(1) � � �ma(m) of a, mb(1) � � �mb(m) of b, and user-defined weight 0�

γ� 1, our final similarity measure is defined by

simgðai; bjÞ ¼ ð1 � gÞ � aseq � RIBOSUMðai; bjÞ

þg � ðastr þ STRSIMðai; bjÞÞ
ð17Þ

where αseq, αstr are computed by Eqs (15) and (16) depending on probabilities pA, pC, pG, pU
[resp. p0A; p

0
C; p

0
G; p

0
U] and p(, p•, p) [resp. p0

ð
; p0
�
; p0

Þ
] of the query [resp. target]. All benchmark-

ing computations were carried out using γ = 1/2, although it is possible to use position-specific

weight γi,j defined as the average probability that i is paired in a and j is paired in b.

Our structural similarity measure is closely related to that of STRAL, which we discovered

only after completing a preliminary version of this paper. Let plai ¼
P

j<ip
a
j;i and prai ¼

P
j>ip

a
i;j

be the probability that position i of sequence a is paired to a position on the left or right,

STRSIM mean, and both the scaled RIBOSUM standard deviation and shifted STRSIM standard deviation equal 0.6967. Panels (a) resp. (b) show the

distribution of RIBOSUM resp. STRSIM values for the nucleotide and base pairing probabilities determined from query and target, while panel (c) shows

the distribution of αseq-scaled RIBOSUM and αstr-shifted STRSIM values. It follows that the distributions in panel (c) have the same (negative) mean and

same standard deviation.

https://doi.org/10.1371/journal.pone.0227177.g002
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respectively. The similarity measure used in STRAL is defined by

simSTRAL
g
ðai; bjÞ ¼ g � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
plai � plbj

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
prai � prbj

q
Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � prai � plai Þ � ð1 � prai � plai Þ

p
� RIBOSUMðai; bjÞ

ð18Þ

From Eqs (17) and (4) our measure can be defined as

simgðai; bjÞ ¼ g � ðastr � jðprai � plai Þ � ðpr
b
j � plbj ÞjÞ

þð1 � gÞ � aseq � RIBOSUMðai; bjÞ
ð19Þ

Though clearly very related, RNAmountAlign was developed independently, without knowl-

edge of STRAL, and offers a number of functionalities unavailable in STRAL, which latter

appears to be no longer maintained. For instance, RNAmountAlign supports local and semi-

global alignment, and reports p-values and E-values; these features are not available in STRAL.

Since we were unable to compile STRAL, our benchmarking results for STRAL use an adapta-

tion of our code to support Eq (18). There are nevertheless some differences in how progres-

sive alignment is implemented in STRAL that could affect run time.

To illustrate the method, suppose that the query [resp. target] sequence is the 72 nt tRNA

AL671879.2 [resp. 69 nt tRNA D16498.1] with sequence GGGGAUGUAG CUCAGUGGUA

GAGCGCAUGC UUCGCAUGUA UGAGGCCCCG GGUUCGAUCC CCGGCAUCUC CA.

Then nucleotide query [resp. target] probabilities are (approximately) pA� 0.167, pC� 0.278,

pG� 0.333, pU� 0.222. For the 69 nt tRNA target sequence D16498.1 with sequence GUU

UCAUGAG UAUAGCAGUA CAUUCGGCUU CCAACCGAAA GGUUUUUGUA

AACAACCAAA AAUGAAAUA the nucleotide relative frequencies are approximately

p0A � 0:377, p0C � 0:174, p0G � 0:174, p0U � 0:275. From the base pairing probabilities

returned by RNAfold -p [4], we determine that p( = 0.3035, p• = 0.3930, p) = 0.3035 [resp.

p0
ð
¼ 0:2835, p0

�
¼ 0:433, p0

Þ
¼ 0:2835]. Using these probabilities in Eqs (10)–(14), we deter-

mine that μseq = −0.9098, σseq = 1.5871 and μstr = −0.8298, σstr = 0.6967. By Eqs (15) and (16),

we determine that RIBOSUM scaling factor αseq = 0.4390 and αstr = 0.4305 (all values shown

rounded to 4-decimal places). Using these values, the scaled RIBOSUM mean is now −0.39936,

now equal to the shifted STRSIM mean, and both the scaled RIBOSUM standard deviation

and shifted STRSIM standard deviation equal 0.6967. Since the mean and standard deviation

of αseq-scaled RIBOSUM values are identical with that of αstr-shifted STRSIM values, hence

can be combined in Eq (17). Although sequence identity of the reference alignment of these

tRNAs from BRAliBase 2.1 K2 is only 28%, the global alignment produced by RNA-
mountAlign is identical to that the reference alignment, using default parameters of gap ini-

tiation −3, gap extension −1, and structural weight γ = 1/2 in Eq (17).

Fig 2 depicts the distribution of RIBOSUM85-60 [resp. STRSIM] values in this case, both

before and after application of scaling factor αseq [resp. shift αstr]—recall that αseq and αstr]

depend on pA, pC, pG, pU, p(, p•, p) of tRNA AL671879.2 and p0A; p
0
C; p

0
G; p

0
U ; p

0
ð
; p0
�
; p0

Þ
of tRNA

D16498.1.

Statistics for pairwise alignment

Karlin-Altschul statistics for local pairwise alignment. For a finite alphabet A and simi-

larity measure s, suppose that the expected similarity
X

x;y2A

pxpy � sðx; yÞ is negative and that s(x, y)

is positive for at least one choice of x, y. In the case of BLAST, amino acid and nucleotide simi-

larity scores are integers, for which the Karlin-Altschul algorithm was developed [12]. In
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contrast, RNAmountAlign similarity scores are not integers (or more generally values in a

lattice), because Eq (17) combines real-valued αseq-scaled RIBOSUM nucleotide similarities

with real-valued αstr-shifted STRSIM structural similarities, which depend on query [resp. tar-

get] probabilities pA, pC, pG, pU, p(, p•, p) [resp. p0A; p
0
C; p

0
G; p

0
U ; p

0
ð
; p0
�
; p0

Þ
]. For that reason, we

use Theorem 1 of Karlin, Dembo and Kawabata [13], reformulated using the notation of this

paper, where the similarity score s(x, y) for RNA nucleotides x, y is defined by Eq (17).

Theorem 1 (Karlin, Dembo, Kawabata [13])

Given similarity measure s between nucleotides in alphabet A = {A, C, G, U}, let λ� be the
unique positive root of E½esðx;yÞ� ¼

X

x;y2A

pxp0y � e
lsðx;yÞ, and let random variable Sk denote the score of

a length k gapless alignment. For large local alignment score z,

P M >
ln nm
l
� þ z

� �

� expð� K�e� l�zÞ ð20Þ

where M denotes maximal segment scores for local alignment of random RNA sequences a1, . . .,

an and b1, . . ., bm, and where

K� ¼
exp � 2

P1

k¼1

1

k
� ðE½el

�Sk;Sk<0� þ PðSk � 0Þ

� �

l
�E½Skel

��Sk �

ð21Þ

Fitting data to probability distributions. Data were fit to the normal distribution (ND)

by the method of moments (i.e. mean and standard deviation were taken from data analysis).

Data were fit to the extreme value distribution (EVD)

Pðx < sÞ ¼ 1 � expð� KelsÞ ð22Þ

by an in-house implementation of maximum likelihood to determine λ, K, as described in sup-

plementary information to [30]. Data were fit to the gamma distribution by using the function

fitdistr(x, ‘gamma’) from the package MASS in the R programming language, which

determines rate and shape parameters for the density function

f ðx; a;lÞ ¼
l
axa� 1e� lx

GðaÞ
ð23Þ

with where α is the shape parameter, the rate is 1/λ, where λ is known as the scale parameter.

Multiple alignment

Suppose pA, pC, pG, pU are the nucleotide probabilities obtained after the concatenation of all

sequences. Let p(, p•, p) be computed by individually folding each sequence and taking the

arithmetic average of probabilities of (, • and ) over all sequences. The mean and standard

deviation of sequence and structure similarity are computed similar to Eqs (10)–(14).

mseq ¼
X

x;y2fA;C;G;Ug

pxpy � RIBOSUMðx; yÞ ð24Þ

sseq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x;y2fA;C;G;Ug

pxpy � RIBOSUMðx; yÞ
2
� m2

seq

r

ð25Þ

RNAmountAlign: Local, global, semiglobal pairwise and multiple RNA sequence/structure alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0227177 January 24, 2020 12 / 34

https://doi.org/10.1371/journal.pone.0227177


mstr ¼
X

x;y2f ð ;�; Þ g

pxpy � s0ðx; yÞ ð26Þ

sstr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x;y2f ð ;�; Þ g

pxpy � s0ðx; yÞ
2
� m2

str

r

ð27Þ

Sequence multiplicative scaling factor αseq and the structure additive shift factor αstr are com-

puted from these values using Eqs (15) and (16).

As in CLUSTAL [42] and the CLUSTAL Omega [43], our software RNAmountAlign
implements progressive multiple alignment using the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) [44] and p. 360 of [41]. In UPGMA, one first defines a similarity

matrix S, where S[i, j] is equal to (maximum) pairwise sequence similarity of sequences i and j.
A rooted tree is then constructed by progressively creating a parent node of the two closest sib-

lings. Parent nodes are profiles (PSSMs) that represent alignments of two or more sequences,

hence can be treated as pseudo-sequences in a straightforward adaptation of pairwise align-

ment to the alignment of profiles. Let’s consider an alignment of N sequences A ¼

a�
11
� � � a�

1M

� � �

a�N1
� � � a�NM

0

B
@

1

C
A composed of M columns. Let Ai ¼ fa�1i; a

�
2i; . . . ; a�Nig denote column i of the

alignment (for 1� i�M). Suppose p(i, x), for x 2 {A, C, G, U, −}, indicates the probability of

occurrence of a nucleotide or gap at column i of alignment A. Then sequence similarity SEQ-

SIM between two columns is defined by

SEQSIMðAi;AjÞ ¼
X

x2fA;C;G;U;� g

X

y2fA;C;G;U;� g

pði; xÞ � pðj; yÞ � Rðx; yÞ ð28Þ

where

Rðx; yÞ ¼

(
0 if x ¼ � or y ¼ �

RIBOSUMðx; yÞ otherwise
ð29Þ

The structural measure for a profile is computed from the incremental ensemble heights

averaged over each column. Let mA(i) denote the arithmetic average of incremental ensemble

mountain height at column Ai

mAðiÞ ¼

P
1�j�Nma�j

ðiÞ

N
ð30Þ

where ma�j
ðiÞ is the incremental ensemble mountain height at position i of sequence a�j

obtained from Eq (4). Here, let ma�j
ðiÞ ¼ 0 if a�ji is a gap. Structural similarity between two col-

umns is defined by

STRSIMðAi;AjÞ ¼ � jmAðiÞ � mAðjÞj ð31Þ
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Finally, the combined sequence/structure similarity is computed from

simgðAi;AjÞ ¼ ð1 � gÞ � aseq � SEQSIMðAi;AjÞ

þg � ðastr þ STRSIMðAi;AjÞÞ
ð32Þ

Benchmarking

Accuracy measures

Sensitivity, positive predictive value, and F1 score for pairwise alignments were computed as

follows. Let A ¼
a�

1
� � � a�N

b�
1
� � � b�N

 !

denote an alignment, where ai, bi 2 {A, C, G, U, −}, and the

aligned sequences include may contain occurrences of the gap symbol ‘−’, provided that not

both a�i and b�i are gap symbols. The number TP of true positives [resp. FP of false positives] is

the number of alignment pairs ða�i ; b
�
i Þ in the predicted alignment that belong to [resp. do not

belong to] the reference alignment. The sensitivity (Sen) [resp. positive predictive value (PPV)]

of a predicted alignment is TP divided by reference alignment length [resp. TP divided by pre-

dicted alignment length]. The F1 score is the harmonic mean of sensitivity and PPV, so

F1 ¼ 2

ð1=SenÞþð1=PPVÞ. For the computation of Sen, PPV, and F1, we consider not only nucleotide

pairs (ai, bj), but also include pairs of the form (ai, —) [resp. (—, bj)], which represent an inser-

tion in the top sequence of alignment A (equivalently a deletion from the bottom sequence of

A) [resp. deletion from the top sequence of A (equivalently an insertion in the bottom

sequence of A)]. Suppose that the (toy) alignment A

a�
1

a�
2

a�
3

a�
4

a�
5

a�
6

a1 a2 a3 � a4 a5

a ¼ A C G � U A

b ¼ A � � C U A

b1 � � b2 b3 b4

b�
1

b�
2

b�
3

b�
4

b�
5

b�
6

is produced by an algorithm (such as RNAmountAlign, FOLDALIGN, MXSCARNA, etc.).

Then a = a1a2a3a4a5, a = ACGUA, b = b1b2b3b4, b = ACUA. The length of alignment A is

N = 6, while a�
1
� � � a�

6
¼ ACG � UA and b�

1
� � � b�

6
¼ A � � CUA. If B is the (toy) alignment of

the same sequences

c�
1

c�
2

c�
3

c�
4

c�
5

a1 a2 a3 a4 a5

a ¼ A C G U A

b ¼ A C � U A

b1 b2 � b3 b4

d�
1

d�
2

d�
3

d�
4

d�
5

taken from a reference database (such as BRAliBase 2.1), then sequences a, b are as
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above, the length of alignment B is M = 5, while c�
1
� � � c�

5
¼ ACGUA and d�

1
� � � d�

5
¼ AC � UA.

The number TP of correctly aligned pairs is 4, since

ða1; b1Þ ¼ ða�1; b
�
1
Þ ¼ ðA;AÞ ¼ ðc1; d1Þ ¼ ðc�1; d

�
1
Þ;

ða4; b3Þ ¼ ða�5; b
�
5
Þ ¼ ðU;UÞ ¼ ðc4; d3Þ ¼ ðc�4; d

�
4
Þ;

ða5; b4Þ ¼ ða�6; b
�
6
Þ ¼ ðA;AÞ ¼ ðc5; d4Þ ¼ ðc�5; d

�
5
Þ;

ða3; � Þ ¼ ða�3; b
�
3
Þ ¼ ðG; � Þ ¼ ðc3; � Þ ¼ ðc�3; d

�
3
Þ;

Because TP = 4, rather than 3 (if we had instead counted only aligned nucleotide pairs), the

computations of F1 score, Sen, and PPV are duly affected.

To compare predicted structures with consensus Rfam structures, we computed the Mat-

thews correlation coefficient (MCC) [45] as follows:

MCC ¼
TPstr � TNstr � FPstr � FNstrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPstr þ FPstrÞðTPstr þ FNstrÞðTNstr þ FPstrÞ þ ðTNstr þ FNstrÞ
p ð33Þ

where TPstr is the number of correctly predicted base pairs, FPstr is the number of incorrectly

predicted base pairs, TNstr is the number of potential base pairs absent in both predicted and

reference structures and FNstr is the number of base pairs in the reference structure that were

not predicted.

In the case of local alignment, since the size of the reference alignment is unknown, only

the predicted alignment length and PPV are reported. To compute the accuracy of multiple

alignment, we used sum-of-pair-scores (SPS) [11], defined as the number of correctly nucleo-

tide pairs in the alignment produced by a given algorithm, divided by the total number of

aligned nucleotide pairs in the reference alignment. For completeness, and to contrast this

with our definition of sensitivity, PPV and F1 score, we formally define SPS as follows. Suppose

that A denotes a multiple alignment of the form A ¼

a�
1;1
� � � a�

1;M

� � �

a�N;1 � � � a
�
N;M

0

B
B
@

1

C
C
A. For 1� i, j�M, 1� k

� N define pi,j,k = 1 if the nucleotide a�i;k is aligned with the nucleotide a�j;k in both the reference

and predicted alignments, and pi,j,k = 0 otherwise. Sum-of-pairs score SPS is then the sum,

taken over all i, j, k, of the pi,j,k. Though SPS can be considered as the average sensitivity, taken

over all sequence pairs in the alignment, this is not technically correct in our case, since our

definition of sensitivity also counts pairs of the form (X, —) and (—, X), where X 2 {A, C, G,

U}, from the reference alignment.

To measure the conservation of secondary structures in alignments, structural conservation

index (SCI) was computed using RNAalifold [46]. RNAalifold computes SCI as the

ratio of the free energy of the alignment, computed by RNAalifold, with the average mini-

mum free energy of individual structures in the alignment. SCI values close to 1 [resp. 0] indi-

cate high [resp. low] structural conservation. All computations made with Vienna RNA

Package used version 2.1.7 [4] using default Turner 2004 energy parameters [35]).

Dataset for global and local alignment comparison

For pairwise global alignment benchmarking in Table 4, Figs 3 and 4, and S2–S4 Figs all 8, 976

pairwise alignments in k2 from BRAliBase 2.1 database [38] were used. Note that BRA-
liBase 2.1 does not include consensus secondary structures for the reference alignments,

which are required in the computation of MCC. However, since BRAliBase 2.1 align-

ments are obtained from Rfam 7.0, we searched for the exact occurrences BRAliBase 2.1
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Table 4. F1 scores for pairwise global alignment.

Type NumAln SeqId MA(F) LocARNA(F) LARA(F) FA(F) DA(F) STRAL(F) MXSCARNA(F)

5.8S rRNA 76 0.72 ± 0.13 0.90 ± 0.09 0.82 ± 0.07 0.87 ± 0.15 0.89 ± 0.11 0.66 ± 0.22 0.88 ± 0.12 0.91 ± 0.09

5S rRNA 1162 0.60 ± 0.14 0.84 ± 0.16 0.87 ± 0.13 0.85 ± 0.16 0.86 ± 0.14 0.69 ± 0.17 0.82 ± 0.20 0.85 ± 0.14

Cobalamin 188 0.43 ± 0.10 0.56 ± 0.16 0.38 ± 0.17 0.49 ± 0.20 0.43 ± 0.24 0.36 ± 0.19 0.54 ± 0.17 0.57 ± 0.14

Entero 5 CRE 48 0.88 ± 0.06 0.98 ± 0.04 0.99 ± 0.04 0.99 ± 0.05 0.99 ± 0.02 0.87 ± 0.13 0.97 ± 0.06 0.98 ± 0.04

Entero CRE 65 0.80 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.96 ± 0.07 0.99 ± 0.04 0.76 ± 0.17 1.00 ± 0.03 0.99 ± 0.02

Entero OriR 49 0.84 ± 0.06 0.95 ± 0.07 0.92 ± 0.09 0.94 ± 0.08 0.94 ± 0.07 0.84 ± 0.15 0.95 ± 0.07 0.96 ± 0.04

gcvT 167 0.44 ± 0.13 0.61 ± 0.19 0.61 ± 0.24 0.57 ± 0.25 0.40 ± 0.33 0.44 ± 0.19 0.62 ± 0.20 0.62 ± 0.18

Hammerhead 1 53 0.71 ± 0.17 0.89 ± 0.13 0.90 ± 0.11 0.87 ± 0.16 0.83 ± 0.25 0.52 ± 0.27 0.88 ± 0.16 0.87 ± 0.14

Hammerhead 3 126 0.66 ± 0.21 0.86 ± 0.20 0.88 ± 0.21 0.88 ± 0.20 0.80 ± 0.31 0.71 ± 0.31 0.90 ± 0.16 0.89 ± 0.16

HCV SLIV 98 0.85 ± 0.05 0.99 ± 0.03 0.98 ± 0.04 0.98 ± 0.03 0.99 ± 0.03 0.81 ± 0.34 0.99 ± 0.03 0.98 ± 0.03

HCV SLVII 51 0.83 ± 0.09 0.97 ± 0.06 0.96 ± 0.06 0.93 ± 0.10 0.95 ± 0.07 0.71 ± 0.22 0.95 ± 0.07 0.96 ± 0.06

HepC CRE 45 0.86 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.77 ± 0.29 1.00 ± 0.00 1.00 ± 0.00

Histone3 84 0.78 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

HIV FE 733 0.87 ± 0.04 1.00 ± 0.02 1.00 ± 0.02 0.98 ± 0.05 0.99 ± 0.05 0.64 ± 0.29 1.00 ± 0.02 1.00 ± 0.02

HIV GSL3 786 0.86 ± 0.04 0.99 ± 0.02 0.99 ± 0.02 0.98 ± 0.05 0.99 ± 0.02 0.80 ± 0.19 0.99 ± 0.02 0.99 ± 0.02

HIV PBS 188 0.92 ± 0.02 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.02 0.99 ± 0.03 0.91 ± 0.11 1.00 ± 0.01 0.99 ± 0.02

Intron gpII 181 0.46 ± 0.13 0.64 ± 0.17 0.64 ± 0.17 0.63 ± 0.17 0.50 ± 0.28 0.49 ± 0.18 0.65 ± 0.15 0.65 ± 0.15

IRES HCV 764 0.65 ± 0.11 0.88 ± 0.16 0.45 ± 0.19 0.86 ± 0.17 0.68 ± 0.38 0.85 ± 0.08 0.88 ± 0.08 0.89 ± 0.11

IRES Picorna 181 0.84 ± 0.07 0.97 ± 0.03 0.61 ± 0.04 0.96 ± 0.04 0.95 ± 0.04 0.85 ± 0.11 0.96 ± 0.04 0.96 ± 0.04

K chan RES 124 0.74 ± 0.10 0.99 ± 0.02 0.98 ± 0.05 0.89 ± 0.19 0.95 ± 0.08 0.58 ± 0.26 0.95 ± 0.11 0.96 ± 0.05

Lysine 80 0.50 ± 0.13 0.72 ± 0.13 0.54 ± 0.15 0.71 ± 0.18 0.66 ± 0.16 0.50 ± 0.16 0.72 ± 0.15 0.71 ± 0.15

Retroviral psi 89 0.88 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.92 ± 0.04 0.74 ± 0.12 0.93 ± 0.04 0.93 ± 0.03

S box 91 0.60 ± 0.10 0.75 ± 0.13 0.76 ± 0.16 0.79 ± 0.14 0.67 ± 0.24 0.54 ± 0.16 0.77 ± 0.12 0.80 ± 0.10

SECIS 114 0.44 ± 0.16 0.59 ± 0.21 0.62 ± 0.21 0.57 ± 0.25 0.54 ± 0.25 0.39 ± 0.24 0.61 ± 0.20 0.61 ± 0.19

sno 14q I II 44 0.75 ± 0.10 0.92 ± 0.10 0.89 ± 0.16 0.85 ± 0.20 0.89 ± 0.19 0.58 ± 0.27 0.91 ± 0.13 0.92 ± 0.10

SRP bact 114 0.48 ± 0.16 0.65 ± 0.21 0.66 ± 0.21 0.63 ± 0.25 0.65 ± 0.21 0.51 ± 0.22 0.61 ± 0.25 0.66 ± 0.21

SRP euk arch 122 0.51 ± 0.20 0.62 ± 0.29 0.35 ± 0.17 0.64 ± 0.28 0.64 ± 0.26 0.50 ± 0.26 0.61 ± 0.29 0.64 ± 0.27

T-box 18 0.68 ± 0.15 0.77 ± 0.17 0.49 ± 0.17 0.68 ± 0.25 0.70 ± 0.17 0.59 ± 0.21 0.74 ± 0.15 0.74 ± 0.14

TAR 286 0.87 ± 0.04 0.99 ± 0.03 0.99 ± 0.02 0.99 ± 0.03 0.98 ± 0.04 0.83 ± 0.19 0.99 ± 0.04 0.99 ± 0.02

THI 321 0.45 ± 0.10 0.68 ± 0.16 0.66 ± 0.20 0.68 ± 0.18 0.50 ± 0.29 0.48 ± 0.18 0.65 ± 0.20 0.69 ± 0.15

tRNA 2039 0.43 ± 0.12 0.75 ± 0.21 0.85 ± 0.16 0.82 ± 0.19 0.76 ± 0.27 0.66 ± 0.23 0.72 ± 0.22 0.75 ± 0.20

U1 82 0.63 ± 0.17 0.79 ± 0.17 0.70 ± 0.13 0.79 ± 0.19 0.80 ± 0.14 0.67 ± 0.20 0.77 ± 0.17 0.80 ± 0.17

U2 112 0.64 ± 0.16 0.75 ± 0.17 0.63 ± 0.13 0.76 ± 0.19 0.73 ± 0.22 0.59 ± 0.19 0.75 ± 0.18 0.76 ± 0.17

U6 30 0.83 ± 0.06 0.93 ± 0.05 0.89 ± 0.09 0.90 ± 0.08 0.88 ± 0.10 0.72 ± 0.14 0.93 ± 0.06 0.92 ± 0.07

UnaL2 138 0.77 ± 0.08 0.93 ± 0.08 0.92 ± 0.09 0.89 ± 0.15 0.91 ± 0.10 0.65 ± 0.29 0.94 ± 0.08 0.92 ± 0.06

yybP-ykoY 127 0.39 ± 0.14 0.58 ± 0.20 0.54 ± 0.23 0.57 ± 0.25 0.40 ± 0.33 0.46 ± 0.22 0.56 ± 0.20 0.55 ± 0.21

Pooled Average 249.33 0.63 0.84 0.81 0.84 0.80 0.68 0.82 0.84

Average F1 scores (± one standard deviation) for pairwise global alignment of RNAmountAlign and four widely used RNA sequence/structure alignment algorithms

on the benchmarking set of 8,976 pairwise alignments from the BRaliBase K2 database [38]. For each indicated Rfam family, the the number of alignments

(NumAln), sequence identity (SeqId), and F1 scores for RNAmountAlign, LocARNA, LARA, FOLDALIGN, and DYNALIGN are listed, along with pooled averages

over all 8,976 pairwise alignments. Parameters used in Eq (17) for RNAmountAlign were similarity matrix RIBOSUM85-60, structural similarity weight γ = 1/2, gap

initiation gi = −3, gap extension ge = −1.

https://doi.org/10.1371/journal.pone.0227177.t004
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sequences in Rfam 7.0 and computed their Rfam consensus structure. Some BRAliBase
alignments are manually curated and thus different from Rfam alignments for which consen-

sus structure could not be obtained. This produced 7, 154 pairwise BRAliBase alignments

with their consensus structures. For the computation of MCC in S5 Fig, this subset of reference

alignments were used.

For each pairwise alignment, a consensus structure was determined from the Rfam family

consensus structure by removing gaps, removing base pairs (i, j) which are noncanonical or

for which j − i� θ = 3. These derived consensus structures were used as the reference struc-

tures in the computation of MCC. To be explicit, consider the following toy example of multi-

ple alignment in Stockholm format—for illustrative purposes, pretend that this is an Rfam

Fig 3. (Left) F1 score and (Right) structural conservation index (SCI) for pairwise global alignments using RNAmountAlign, LocARNA, LARA,

FOLDALIGN, DYNALIGN, STRAL, MXSCARNA, and sequence-only(γ = 0). F1 score and SCI are shown as a function of reference alignment sequence identity

for pairwise alignments in the BRAliBase 2.1 database used for benchmarking. Moving averages taken for centered, symmetric windows of size 11.

https://doi.org/10.1371/journal.pone.0227177.g003

Fig 4. Run time of pairwise global alignment for RNAmountAlign, LocARNA, LARA, FOLDALIGN, DYNALIGN, and MXSCARNA. (Left) The log base 10 run

time is shown as a function of reference alignment length for pairwise alignments in the BRAliBase 2.1 K2 database used for benchmarking. Moving averages

taken for centered, symmetric windows of size 51. (Right) Actual run time for RNAmountAlign, LARA and MXSCARNA on the same data. Unlike the left panel

the actual run time is shown, rather than log run time, without any moving average taken.

https://doi.org/10.1371/journal.pone.0227177.g004
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seed alignment of a small RNA family (recall that additional requirements must be met con-

cerning number of sequences and average nucleotide length for an Rfam family to be selected).

# STOCKHOLM 1.0
positions 123456789012345678
Eg1 GGACAAGCAAUGCUUGCC
Eg2 GG-CAAGCA-UGCUUGAC
Eg3 GGACAAGCAAUGCUUGCC
#=GC SS_cons�-⋘�___⋙⋙>
#=GC RF GGACAAGCAAUGCUUGCC
This multiple alignment would then produce the following consensus structures for the

pairwise alignment of Eg1 with Eg2.

> Eg1
123456789012345678
GGACAAGCAAUGCUUGCC
((.(((((. . .)))))))
> Eg2
1234567890123456
GGCAAGCAUGCUUGAC
(.((((. . ..)))).)
Note that the Rfam consensus indicates that positions 2 and 17 are paired in the multiple

sequence alignment, hence the reference structure for Eg1 has the GC base pair (2, 17) as

expected. However, the the corresponding positions in Eg2 are G,A. To avoid violating the

requirement (1) in the definition of secondary structure, the reference structure for Eg2 has

dots at positions 2 and 15. Note that the Rfam consensus indicates a hairpin loop at positions 8

and 12 of the multiple sequence alignment, so the consensus structure for Eg1 contains the

base pair (8, 12). However, since Eg2 contains A-U, this hairpin would contain only two nucle-

otides A,U, which would violate condition (2) of the definition of secondary structure. For that

reason, there is no base pair (7, 10) in the reference structure of Eg2.

For multiple global alignment benchmarking, we used k5 BRAliBase 2.1, which

includes 2,405 reference alignments, each composed of 5 sequences. For pairwise local align-
ment benchmarking, 75 pairwise alignments having sequence identity� 70% were randomly

selected from each of 20 well-known families from the Rfam 12.0 database [34], many of

which were considered in a previous study [47], yielding a total of 1500 alignments. Following

[48], these alignments were trimmed on the left and right, so that both first and last aligned

pairs of the alignment do not contain a gap symbol. For sequences a = a1, . . ., an [resp. b = b1,

. . ., bm] from each alignment, random sequences a0 [resp. b0] were generated with the same

nucleotide frequencies, then a random position was chosen in a0 [resp. b0] in which to insert a

[resp. b], thus resulting in a pair of sequences of lengths 4n and 4m. Finally, since sequence

identity was at most 70%, the RIBOSUM70-25 similarity matrix was used in RNAmountA-
lign. Preparation of the benchmarking dataset for local alignment was analogous to the

method used in multiple local alignment of [48].

Dataset for correlation of p-values for different distribution fits

A pool of 2220 sequences from the Rfam 12.0 database [34] was created as follows. One

sequence was selected from each Rfam family having average sequence length at most 200 nt,

with the property that the base pair distance between its minimum free energy (MFE) struc-

ture and the Rfam consensus structure was a minimum. For example, the 102 nt sequence

with EMBL accession code AAOX01000028.142464-42565 was selected from family RF00167

RNAmountAlign: Local, global, semiglobal pairwise and multiple RNA sequence/structure alignment
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since its MFE structure was identical to its Rfam consensus structure, while the 178 nt

sequence with EMBL accession code AE016827.11325416-1325239 was selected from RF00168

since the base pair distance between its MFE structure and its Rfam consensus structure was

11—the base pair distance between MFE and consensus structure for all other sequences from

RF00168 was greater than or equal to 11. Subsequently, for each of 500 randomly selected

query sequences from the pool of 2220 sequences, 1000 random target sequences of length 400

nt were generated to have the same expected nucleotide frequency as that of the query. For

each query and random target, five semiglobal alignments were created using gap initiation

costs of gi 2 {−1, −2, −3, −4, −5} with gap extension cost ge equal to one-third the gap initiation

cost. For each alignment score x for query and random target, the p-value was computed as

1 − CDF(x) for ND, EVD and GD, where CDF(x) is the cumulative density function evaluated

at x. Additionally, a heuristic p-value was determined by calculating the proportion of align-

ment scores for given query that exceed x.

Software version and hardware specs

For benchmarking, we used LocARNA (version 1.8.7), FOLDALIGN (version 2.5), FOLDA-
LIGNM (version 1.0.1), LARA (version 1.3.2), DYNALIGN (from version 5.7 of RNAstruc-
ture), the sequence alignment algorithm MUSCLE (version 3.8.31), STRAL (in-house

implementation due to unavailability of the software [22], and MXSCARNA (version 2.1). For

genome query scan benchmarking, we used RSEARCH 1.1, FOLDALIGN (version 2.5), and

RNAmountAlignScan. Recommended default parameters were used for each software,

including RNAmountAlign from this paper. The commands used to run the software are

given in S1, S2 and S3 Tables. Each software package was run on a cluster of identically config-

ured Intel Xeon 2.66 GHz 4-core nodes with 16GB of memory, running CentOS Linux release

6.10.

In contrast to all other benchmarking work described in this paper, benchmarking tests for

RNAmountAlignScan, RSEARCH, and FOLDALIGN in genome scanning mode, as

described in Section Query Scan, were conducted on a 24-processor Intel Xeon CPU E5-2440

2.40 GHz system with 198GB memory.

Results

We benchmarked RNAmountAlign’s performance for pairwise and multiple alignments on

BRAliBase K2 and K5 datasets, respectively.

Pairwise alignment

Fig 3, S2 and S3 Figs depict moving averages of pairwise global alignment sensitivity, positive

predictive value (PPV) and F1-score for the software described in this paper, as well as for

LocARNA, FOLDALIGN, LARA, DYNALIGN, STRAL, and MXSCARNA. For pairwise bench-

marking, reference alignments of size 2, a.k.a. K2, were taken from the BRAliBase 2.1
database [38]. BRAliBase 2.1 K2 data are based on seed alignments of the Rfam 7.0 data-

base, and consist of 8,976 alignments of RNA sequences from 36 Rfam families.

Moving averages (window size 11) of sensitivity, positive predictive value, and F1 score

were computed as a function of sequence identity, where it should be noted that the number of

pairwise alignments for different values of sequence identity can vary for the BRAliBase
2.1 data (e.g. there are only 35 pairwise alignments having sequence identity< 20%). In com-

puting moving averages, each value represents the average over a symmetric window (k − 5, k
+ 5) of size 11 nt centered at the value from the x-axis. For 504 pairwise global alignments,

FOLDALIGN produced “No global alignment was found. This can either be due to the

RNAmountAlign: Local, global, semiglobal pairwise and multiple RNA sequence/structure alignment
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pruning, or because no structural alignment exists” and for 29, DYNALIGN yielded no align-

ments. The only BRAliBase alignment that both tools failed was Hammerhead_1.apsi36.

sci72.no1. In our benchmarking the sensitivity, PPV and F1 values for such failures of FOLDA-
LIGN and DYNALIGN were all assigned the value of 0, which explains the weaker performance

of these two methods in Fig 3 compared to [14], where such failures are simply excluded from

the analysis. Moreover, we observed a larger number of failed alignments in FOLDALIGN 2.5

than in the previous work of [14]. Default parameters were used for all software. For our soft-

ware RNAmountAlign, gap initiation cost was -3, gap extension -1, and sequence/structure

weighting parameter γ was 0.5 (value obtained by optimizing on a small set of 300 random

alignments from Rfam 12.0, not considered in training or testing set). The sequence-only align-

ment is computed from RNAmountAlign with the same gap penalties, but for γ = 0. While

its accuracy is high, RNAmountAlign is faster by an order of magnitude than LocARNA,

LARA, FOLDALIGN, and DYNALIGN—indeed, algorithmic time complexity of our method is

O(n3) for two sequences of length n. Since STRAL could not be compiled on any of our systems,

we implemented its algorithm by modifying RNAmountAlign and obtained results for

STRAL’s default parameter settings. Therefore, the run time of STRAL is identical to RNA-
mountAlign but RNAmountAlign achieves higher F1 score, sensitivity and PPV.

MXSCARNA and RNAmountAlign have similar average F1 scores. Indeed, a paired 2-tailed

Wilcoxson signed-rank test of the difference between F1 scores, as computed by MXSCARNA
and RNAmountAlign, for the 8,976 pairwise global alignments mentioned in Table 4. It fol-

lows that the (null) hypothesis H0 cannot be rejected, where H0 asserts that the difference is 0

between F1 scores of MXSCARNA and RNAmountAlign—see S4 Table. Note however that

the software MXSCARNA has slower run time than RNAmountAlign. Both MXSCARNA and

RNAmountAlign support global and local alignment; however, unlike MXSCARNA, RNA-
mountAlign also supports semiglobal alignment and reports p-values. The right panel of Fig

4 depicts actual run times of the fastest software, RNAmountAlign, with the next fastest soft-

ware, MXSCARNA and LARA. Unlike the graph in the left panel, actual run times are shown,

graphed as a function of sequence length, rather than logarithms of moving averages.

In addition, Table 4 displays average pairwise global alignment F1 scores for RNAmountA-
lign, LocARNA, LARA, FOLDALIGN, DYNALIGN, STRAL, and MXSCARNA when bench-

marked on 36 families from the BRaliBase K2 database comprising altogether 8,976 RNA

sequences with average length of 249.33. Averaging over all sequences, the F1 scores for the

programs just mentioned were respectively 0.8370, 0.7808, 0.8406, 0.7977, 0.6822, 0.8247,

0.8402; i.e. F1 score 0.8406 of LARA and 0.8402 of MXSCARNA slightly exceeded the F1 score

0.8370 of RNAmountAlign and 0.8247 of STRAL, while other methods trailed by several

percentage points. S4 Table indicates the statistical significance of difference between all 8,976

F1 scores. Morevoer, S6 and S7 Tables display values for global alignment sensitivity and posi-

tive predictive value, benchmarked on the same data for the same programs—these results are

similar to the F1 scores in Tables 2 and 4.

Although there appears to be no universally accepted criterion for quality of local align-

ments, Table 5 shows pairwise local alignment comparisons for the above-mentioned methods

supporting local alignment: RNAmountAlign, FOLDALIGN, and LocARNA. We had

intended to include SCARNA_LM [48] in the benchmarking of multiple local alignment soft-

ware; however, SCARNA_LM no longer appears to be maintained (The SCARNA_LM web

server is no longer functional, and the authors did not respond to our request for the source

code of SCARNA_LM). Since the reference alignments for the local benchmarking dataset are

not known, and sensitivity depends upon the length of the reference alignment, we only report

local alignment length and positive predictive value. Abbreviating RNAmountAlign by MA,

FOLDALIGN by FA, and LocARNA by LOC, Table 5 shows average run time in seconds of

RNAmountAlign: Local, global, semiglobal pairwise and multiple RNA sequence/structure alignment
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MA (2.30 ± 2.12), FA (625.53 ± 2554.61), LOC (5317.96 ± 8585.19), average alignment length

of reference alignments (118.67 ± 47.86), MA (50.35 ± 42.33), FA (114.86 ± 125.33), LOC

(556.82 ± 227.00), and average PPV scores MA (0.53 ± 0.42), FA (0.64 ± 0.36), LOC

(0.03 ± 0.04). S5 Table presents p-values for a 2-tailed paired Wilcoxon signed-rank test

whether the difference in positive predictive values fo 1,500 pairwise local alignments.

Taken together, these results suggest that RNAmountAlign has comparable accuracy, but

much faster run time, hence making it a potentially useful tool for genome processing applica-

tions. Here it should be stressed that all benchmarking results used equally weighted contribu-

tions of sequence and ensemble structural similarity; i.e. parameter γ = 1/2 when computing

similarity by Eq (17).

Statistics for pairwise alignment

Fig 5 shows fits of the relative frequency histogram of alignment scores with the normal (ND),

extreme value (EVD) and gamma (GD) distributions, where local, semiglobal and global align-

ment scores are shown in panels from left to right. The EVD provides the best fit for local

alignment sequence-structure similarity scores, as expected by Karlin-Altschul theory [12, 13].

Moreover, Fig 6 shows a 96% correlation between (expect) E-values computed by our imple-

mentation of the Karlin-Altschul method, and E-values obtained by EVD fitting of local align-

ment scores. In contrast, the ND provides the best fit for semiglobal sequence/structure

alignment similarity scores, at least for the sequence considered in Fig 5. This is not an isolated

phenomenon, as shown in Fig 6, which depicts scatter plots, Pearson correlation values and

sums of squared residuals (SSRs) when computing p-values for semiglobal alignment scores

between Rfam sequences and random RNA. As explained earlier, a pool of 2220 sequences

from the Rfam 12.0 database [34] was created by selecting one sequence of length at most 200

nt from each family, with the property that base pair distance between its minimum free

energy (MFE) structure and the Rfam consensus structure was a minimum. Then 500

sequences were randomly selected from this pool, and for each of five gap initiation and exten-

sion costs gi = −5, −4, −3, −2, −1 with ge ¼
gi
3
. Taking each of the 500 sequences successively as

query sequence and for each choice of parameters, 1000 random 400 nt RNAs were generated

with the same expected nucleotide relative frequency as that of the query. For each alignment

score z for query and random target, the p-value was computed as 1 minus the cumulative

Fig 5. Relative frequency histograms of alignment scores for local (left), semiglobal (middle) and global (right) alignments of random RNAs produced by

RNAmountAlign. For the 5S rRNA AY544430.1:375-465 from the Rfam 12.0 database having nucleotide relative frequencies pA = 0.25, pC = 0.27, pG = 0.26, pU =

0.21, we generated 10,000 random sequences having the same nucleotide relative frequencies, each of length 400 nt. For each method (local, semiglobal, global),

RNAmountAlign was run using default parameters to determine the optimal pairwise alignment score, when aligning the 5S rRNA with each random RNA, thus

producing relative frequency histograms which were subsequently fit by the normal distribution (ND), extreme value distribution (EVD) and gamma distribution

(GD). As expected by Karlin-Altschul theory [12], local alignment scores are best fit by EVD, while semiglobal alignment scores are best fit by ND. Our conclusions

of the best fitting distributions were additionally supported by d computations of variation distance, symmetrized Kullback-Leibler distance, and χ2 goodness-of-fit

tests (data not shown).

https://doi.org/10.1371/journal.pone.0227177.g005
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density function, 1 − CDF(z), for fitted normal (ND), extreme value (EVD) and gamma (GD)

distributions, thus defining 1000 p-values. Additionally, a heuristic p-value was determined by

calculating the proportion of alignment scores for given query that exceed z. For each set of 2.5

million (500 × 5 × 1000) p-values (heuristic, ND, EVD, GD), Pearson correlation values were

computed and displayed in the upper triangular portion of Fig 6, with SSRs shown in paren-

theses. Note that residuals were computed for regression equation row = m � column + b,

where column values constitute the independent variable. Assuming that heuristic p-values

constitute the reference standard, it follows that p-values computed from the normal distribu-

tion correlate best with semiglobal alignment scores computed by RNAmountAlign. Earlier

studies have suggested that protein global alignment similarity scores using PAM120,

PAM250, BLOSUM50, and BLOSUM62 matrices appear to be fit best by the gamma distribu-

tion (GD) [49], and that semiglobal RNA sequence alignment similarity scores (with no contri-

bution from structure) appear to be best fit by GD [50]. However, in our preliminary studies

(not shown), it appears that the type of distribution (ND, EVD, GD) that best fits RNAmoun-
tAlign semiglobal alignment depends on the gap costs applied (indeed, for certain choices,

EVD provides the best fit). Since there is no mathematical theory concerning alignment score

distribution for global or semiglobal alignments, it must be up to the user to decide which dis-

tribution provides the most reasonable p-values.

Multiple alignment

We benchmarked RNAmountAlign with the software LARA, mLocARNA, FOLDALIGNM,

Multilign, MXSCARNA, and sequence only MUSCLE for multiple global K5 alignments in

BRAliBase 2.1. STRAL is not included since the source code could not be compiled. Fig 7

indicates average SPS and SCI as a function of average pairwise sequence identity (APSI). We

Fig 6. (Left) Pearson correlation values and scatter plots for p-values of semiglobal alignment scores between Rfam

sequences and random RNAs. For 500 Rfam sequences, 1000 random semiglobal alignments were computed for 5

different gap penalties yielding the total of 2.5 million alignment scores. For each score a p-value is computed assuming

Normal (ND), Gamma (GD) and Extreme Value (EVD) distributions in order to investigate which distribution is

closest to the heuristic p-value, that is assumed to be the gold standard. Heuristic p-value for score z is determined by

the proportion of alignment scores that exceed z. For all 2.5 million p-values, pairwise Pearson correlation values were

computed and displayed in the upper triangular portion of the figure, with sums of squared residuals shown in

parentheses, and histograms of p-values along the diagonal. It follows that ND p-values correlate best with heuristic p-

values. (Right) Scatter plot of E-values computed by EVD fitting, EEVD, as well as our implementation of the Karlin-

Altschul, EKA, for pairwise local alignments. The regression equation is EEVD = 0.1764 + 0.7991 � EKA; Pearson

correlation between EEVD and EKA is 96%, with correlation p-value of 2 � 10−16 indicating that p-values obtained from

these two methods are in well agreement. E-values were determined from local alignment scores computed by the

genome scanning form of RNAmountAlign with query tRNA AB031215.1/9125-9195 and targets consisting of 300

nt windows from E. coli str. K-12 MG1655 with GenBank accession code NC_000913.

https://doi.org/10.1371/journal.pone.0227177.g006
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used the -sci flag of RNAalifold to compute SCI from the output of each software with-

out reference to the reference alignment. Fig 7 indicates that SCI values for outputs from vari-

ous alignment algorithms is higher than the SCI value from reference alignments, suggesting

that the consensus structure obtained from sequence/structure alignment algorithms has a

larger number of base pairs than the the consensus structure obtained from reference align-

ments (this phenomenon was also in [51]). Fig 7 indicates that RNAmountAlign produces

SPS scores comparable to mLocARNA, LARA and MXSCARNA, and higher than Multilign
and FOLDALIGNM while the SCI score obtained from RNAmountAlign are lower than

other software. Averaging over all sequences, the SPS scores for RNAmountAlign, LARA,

mLocARNA, FOLDALIGNM, Multilign, MXSCARNA, and MUSCLE were respectively:

0.81 ± 0.18, 0.85 ± 0.15, 0.86 ± 0.15, 0.74 ± 0.24, 0.63 ± 0.17, 0.84 ± 0.15, and 0.82 ± 0.17, while

SCI scores are respectively: 0.84 ± 0.24, 0.92 ± 0.22, 0.96 ± 0.21, 0.88 ± 0.23, 0.96 ± 0.21,

0.91 ± 0.20, and 0.79 ± 0.26. SPS score for each reference alignments is 1 by definition, and

average SCI score over all reference alignments is 0.79 ± 0.26. Fig 8 indicates software run time

in seconds on a logarithmic scale. This figure clearly shows that RNAmountAlign has faster

run time than all other structural alignment software in our benchmarking tests, thus confirm-

ing the earlier result from pairwise benchmarking.

Query scan

We developed an extension of RNAmountAlign, called RNAmountAlignScan, which

scans a target genome sequence to find hits having high sequence and structural similarity to a

given query sequence. RNAmountAlignScan functions by computing optimal semiglobal

alignments of the query to sliding windows of the target, then returns the aligned target seg-

ments sorted by p-value. For a query of length n, target genome of length m, window size w> n,

and window step size of s, a total of m
s many semiglobal alignments must be computed, making

the total run time of RNAmountAlignScan O m
s w

3
� �

. In order to show the utility of RNA-
mountAlignScan, we compared it with RSEARCH [30], FOLDALIGN and RNAmountA-
lignScan sequence-only where only sequence homology is considered. RSEARCH takes a

single query sequence with its secondary structure and performs local alignment with the target

Fig 7. Sum-of-pairs (SPS) score (left) and structural conservation index (SCI) (right) for multiple global alignments using RNAmountAlign, LARA,

mLocARNA, FoldalignM, Multilign, MXSCARNA and MUSCLE. SPS and SCI are shown as a function of average pairwise sequence identity(APSI). The k5

BRAliBase 2.1 database was used for benchmarking. Moving averages taken for centered, symmetric windows of size 11.

https://doi.org/10.1371/journal.pone.0227177.g007
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genome, in order to search for homologous RNA. For our comparison, we used the query

sequence from Fig 6, a 71 nt tRNA from Rfam 12.0, selected with the property that the base pair

distance between its MFE structure and its Rfam consensus structure is a minimum compared

with other tRNAs from Rfam 12.0. As target genome, we used the E. coli K12 MG1655 genome

having 4, 641, 652 nt. Since tRNAscan-SE [52] is generally considered to be the gold standard

in tRNA prediction, we measured accuracy of the software by the amount of overlap between

returned predictions and predicted tRNAs according to tRNAscan-SE. tRNAscan-SE
found 49 full tRNA sequences on the forward strand and 37 on the reverse strand. Default

parameters of each software package were used to search the query in the forward strand of E.
coli genome (see S3 Table); in the case of RNAmountAlignScan this means gap initiation of

−3, gap extension of −1, and sequence/structure weighting parameter γ = 0.5. RNAmountA-
lignScan was also used to scan the E. coli genome using sequence-only semiglobal

Fig 8. Run time of multiple global alignment for RNAmountAlign, mLocARNA, LARA, FoldalignM, Multilign, MXSCARNA and MUSCLE. Log run

time is as shown a function of reference alignment length for K5 alignments in BRAliBase 2.1. For the structural multiple alignment algorithms benchmarked

on this data, RNAmountAlign and MXSCARNA both appear to have the fastest runtime, while RNAmountAlign is faster than MXSCARNA for pairwise
alignment.

https://doi.org/10.1371/journal.pone.0227177.g008
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alignments, in which gap parameters were unchanged, but with γ = 0. Genome scanning was

performed using windows of 300 nt, with step size 200, thus ensuring an overlap of 100 nt

between target segments—this resulted in a total of 23, 209 semiglobal alignments. We also

tested FOLDALIGN, which provides an option to scan two sequences and return the best local

alignment score for each pair of positions in the two sequences. The output from FOLDALIGN
with this option then requires subsequent postprocessing using the LocateHits script

included in FOLDALIGN in order to generate a list of non-overlapping local alignments. For

the query tRNA described above, FOLDALIGN could not process the E. coli genome, and

instead produced memory errors. There is a newly developed, specialized form of FOLDALIGN,

called “Foldalign version 2.5.1_long_sequences” that we recently learned of from Jakob Hav-

gaard through personal communication and can process long RNA sequences (of more than

30,000 nt) without such memory errors. Fig 9 indicates the precision-recall plot for the top 49

and 37 tRNA predictions on the forward and reverse strands, respectively. RSEARCH is not

shown in the plot because it reported 89 hits, none of which had any overlap with tRNAs pre-

dicted by tRNAscan-SE and thus its sensitivity and PPV are equal to zero. Sequence length of

the predictions returned by RSEARCH was 11.73 ± 0.58. For calculation of PPV as a function of

sensitivity, for each of the three methods on each strand, we sorted the predictions in descend-

ing order by p-value. Given the i-th prediction, we determined the number of predictions

Fig 9. (A) PPV-sensitivity (precision-recall) plot for tRNA query scan in E. coli genome. Measures are computed for the top 49 and 37 tRNA predictions in

forward (left) and reverse (right) strands of E. coli genome, respectively. Since RSEARCH had no true positives and thus zero sensitivity and PPV, it is not shown

here. (B) The predicted p-values of the top predictions for each software in forward (left) and reverse (right) strands.

https://doi.org/10.1371/journal.pone.0227177.g009
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Fig 10. The MFE secondary structure of an E. coli segment which is predicted to be a tRNA by RNAmountAlignScan and not by tRNAscan-SE.

Two flanking nucleotides on both ends are added to the hit sequence. The structure is color-coded by base pairing probability generated by RNAfold web

server, where red [resp. blue] base pairs (i, j) have base pairing probability pi,j� 1 [resp. pi,j� 0].

https://doi.org/10.1371/journal.pone.0227177.g010
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preceding the current i-th prediction (including the i-th), and calculated the number of true

positives in that collection then divided this number by 49 for positive or 37 for reverse strands

to obtain sensitivity. True positives are predictions with overlap proportion of greater than 0.8 to

any of the tRNAscan-SE sequences. The overlap proportion between predictions and

tRNAscan-SE is defined as the ratio |A \ B|/|B|, where A is a tRNA predicted by each soft-

ware and B is a tRNA detected by tRNAscan-SE, the latter assumed to be the gold standard.

FOLDALIGN with area under the curve of 0.90 and 0.64 for forward and reverse strands outper-

forms RNAmountAlignScan with 0.27 and 0.28 and sequence-only with 0.08 and 0.16. How-

ever, only one the FOLDALIGN predictions on each strand had p-value less than 0.1 while

RNAmountAlignScan reported significant p-values for all of the true positives Fig 9. More-

over, FOLDALIGN finished in 12.06 hours while run time of RNAmountAlign was 1.63.

Fig 10 depicts the sequence and MFE structure of the first false positive of RNAmountA-
lignScan; i.e. that prediction having statistically significant sequence and structural similar-

ity to the query tRNA, but which shares no overlap with a tRNA predicted by tRNAscan-
SE. This prediction has 42% sequence identity to the query tRNA, and its MFE forms a clover-

leaf secondary structure. In contrast to all other benchmarking computations of this paper,

due to the memory requirements for genome scanning mode, each program for query search

was run on a 24-processor Intel Xeon CPU E5-2440 2.40 GHz system with 198GB memory.

The commands to run the software are given in S3 Table. Run time for FOLDALIGN, RNA-
mountAlignScan, and RSEARCH were respectively 12.06, 1.63, and 0.62 hours and mem-

ory usage were 0.57, 20.61 and 0.49 Gigabytes. The number of random RNAs used for p-value

computation in both RSEARCH and RNAmountAlignScan was 1000, and both used the

RIBOSUM 85-60 matrix. The outputs of all the program are available at http://bioinformatics.

bc.edu/clotelab/RNAmountAlign/.

Conclusion

RNAmountAlign is a new C++ software package for RNA local, global, and semiglobal

sequence/structure alignment, which provides accuracy comparable with that of a number of

widely used programs, but provides much faster run time. RNAmountAlign additionally

computes E-values for local alignments, using Karlin-Altschul statistics, as well as p-values for

normal, extreme value and gamma distributions by parameter fitting.

Supporting information

S1 Table. Commands used for benchmarking various software packages for global align-

ment.

(TIFF)

S2 Table. Commands used for benchmarking various software packages for local align-

ment.

(TIFF)

S3 Table. Commands used for benchmarking software packages for query scan.

(TIFF)

S4 Table. p-values from two-tailed paired Wilcoxon signed rank test of all 8,976 F1 scores

for pairwise global alignments indicated in Table 4 of the main text. Tables of p-values com-

puted separately for each family are available at http://bioinformatics.bc.edu/clotelab/

RNAmountAlign.

(TIFF)
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S5 Table. p-values from two-tailed paired Wilcoxon signed rank test of all 1500 positive

predictive values for pairwise local alignments indicated in Table 5 of the main text. Tables

of p-values computed separately for each family are available at http://bioinformatics.bc.edu/

clotelab/RNAmountAlign.

(TIFF)

S6 Table. Average sensitivity scores (± one standard deviation) for pairwise global align-
ment of RNAmountAlign and four widely used RNA sequence/structure alignment algo-

rithms on the benchmarking set of 8,976 pairwise alignments from the BRaliBase K2
database [38]. For each indicated Rfam family, the the number of alignments (NumAln),

sequence identity (SeqId), and sensitivity scores for RNAmountAlign, LocARNA, LARA,

FOLDALIGN, DYNALIGN, STRAL and MXSCARNA are listed, along with pooled averages

over all 8,976 pairwise alignments. Parameters used in Eq (17) of the main text for RNAmoun-
tAlign were similarity matrix RIBOSUM85-60, structural similarity weight γ = 1/2, gap ini-

tiation gi = −3, gap extension ge = −1.

(TIFF)

S7 Table. Average positive predictive value (PPV) scores (± one standard deviation) for

pairwise global alignment of RNAmountAlign and four widely used RNA sequence/struc-

ture alignment algorithms on the benchmarking set of 8,976 pairwise alignments from the

BRaliBase K2 database [38]. For each indicated Rfam family, the the number of align-

ments (NumAln), sequence identity (SeqId), and PPV-scores for RNAmountAlign,

LocARNA, LARA, FOLDALIGN, DYNALIGN, STRAL and MXSCARNA are listed, along with

Pooled averages over all 8,976 pairwise alignments. Parameters used in Eq (17) of the main

text for RNAmountAlign were similarity matrix RIBOSUM85-60, structural similarity

weight γ = 1/2, gap initiation gi = −3, gap extension ge = −1.

(TIFF)

S8 Table. Initial portion of a table that determines expected base pairing probabilities p(,

p•, p) as a function of nucleotide probabilities pA, pC, pG, pU. The full table (not shown) has

1770 rows. To determine average base pairing probabilities, given nucleotide probabilities pA,

pC, pG, pU, a total of N = 10000 RNA sequences of length n = 200 were randomly generated to

have the given expected nucleotide frequency. To compute p( [resp. std(], a library call of

function pf_fold() from Vienna RNA Package [4] was made in order to determine

Prob½i pairs to right� ¼
Pn

i¼1

Pn
j¼iþ1

pi;j for position in each sequence, and the average [resp.

standard deviation] was taken over all sequences and values i = 1, . . ., n. In a similar fashion, p•

and p) were determined.

(TIFF)

S1 Fig. Consensus structure for the pairwise alignment indicated in Fig 1 of the main text.

The consensus structure is computed by a calling function alifold() from Vienna RNA

Package. The figure is obtained from RNAalifold web server.

(TIFF)

S2 Fig. F1-score for RNAmountAlign, LocARNA, LARA, FOLDALIGN, DYNALIGN,

STRAL, MXSCARNA and sequence-only alignments(γ = 0) for pairwise global alignment.
Moving averages of F1-score for centered, symmetric windows of size 11 are shown as a func-

tion of sequence identity for pairwise alignments in the BRAliBase 2.1 database used for

benchmarking. Moving averages taken for centered, symmetric windows of size 11.

(TIFF)
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S3 Fig. Average sensitivity (Sen) and positive predictive value (PPV) for RNAmountA-
lign, LocARNA, LARA, FOLDALIGN, DYNALIGN, STRAL, MXSCARNA and sequence-

only alignments (γ = 0) for pairwise global alignment. Sensitivity is shown as a function of

sequence identity for pairwise alignments in the BRAliBase 2.1 database used for bench-

marking. Moving averages taken for centered, symmetric windows of size 11.

(TIFF)

S4 Fig. Average pairwise sensitivity (left) and positive predictive value (right) for multiple
global alignments using RNAmountAlign, LARA, mLocARNA, FoldalignM and Mul-
tilign in the k5 BRAliBase 2.1 database used for benchmarking. Note that in our

definition of Sen and PPV, pairs of the form (X, —) and (—, X) are also counted while SPS is

the average pairwise sensitivity only considering aligned residue pairs (Fig 7). However, the

results with and without gap counts, indicated in this figure and Fig 7, respectively, are very

close. Moving averages taken for centered, symmetric windows of size 11.

(TIFF)

S5 Fig. Matthews Correlation Coefficient (MCC) for the quality of secondary structure

prediction (see text) from each of RNAmountAlign, LocARNA, LARA, FOLDALIGN,

DYNALIGN, STRAL, MXSCARNA and sequence-only alignments (γ = 0) for pairwise global
alignment. Moving averages of MCC are computed for centered, symmetric windows of size

11 and shown as a function of sequence identity for a subset of 7, 154 reference pairwise align-

ments from k2 BRAliBase 2.1. Overall average MCC values ± one standard deviation are

shown in parentheses. These 7, 154 alignments were selected with the property that both

sequences in the alignment (exactly) appear in an Rfam family seed multiple alignment from

Rfam 7.0, and so can be assigned an Rfam consensus secondary structure as described in the

text. These consensus structures are taken as the reference structures in the computation of

MCC. Predicted structures are obtained directly from the output of each software in the

benchmarking test. For RNAmountAlign and for our in-house implementation of STRAL,

the -alifold flag was used to compute the consensus structure by a function call to ali-
fold() from libRNA.a in the Vienna RNA Package.

(TIFF)

S6 Fig. F1-score for RNAmountAlign, LocARNA, LARA, FOLDALIGN, DYNALIGN,

STRAL, MXSCARNA and sequence-only alignments(γ = 0) for pairwise global alignment,
where any failure of the benchmarked program to output an assignment is simply ignored.

Moving averages of F1-score for centered, symmetric windows of size 11 are shown as a func-

tion of sequence identity for pairwise alignments in the BRAliBase 2.1 database used for

benchmarking. Moving averages taken for centered, symmetric windows of size 11. This figure

should be compared with S2 Fig, where failure to output an alignment is counted as zero.

(TIFF)

S7 Fig. Average sensitivity (Sen) and positive predictive value (PPV) for RNAmountA-
lign, LocARNA, LARA, FOLDALIGN, DYNALIGN, STRAL, MXSCARNA and sequence-

only alignments (γ = 0) for pairwise global alignment, where any failure of the bench-

marked program to output an assignment is simply ignored. Sensitivity is shown as a func-

tion of sequence identity for pairwise alignments in the BRAliBase 2.1 database used for

benchmarking. Moving averages taken for centered, symmetric windows of size 11. This figure

should be compared with S3 Fig, where failure to output an alignment is counted as zero.

(TIFF)
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S8 Fig. Illustration of a potential weakness of RNAmountAlign. Using RNAmountAlign
genome-scanning software, semiglobal alignments of the query tRNA AB031215.1/9125-9195

were made with each 300 nt window (successive window overlap of 200 nt) of the E. coli str. K-

12 substr. MG1655 genome. This figure shows the MFE structure, color-coded by positional

entropy [53], for the alignment of positions 696097-696164 with score −7.70, p-value of

4.145010 � 10−6. (gap costs gi = −3, gi = −1, γ = 0.5, scaling factor αseq = 0.447648, shift term αstr

= 0.304766, γ = 1/2). However, this RNA is clearly not a tRNA, since the three loops are not

within the scope of a multiloop, and the variable loop is located in the wrong position, and the

large positional entropy suggests that there is not an unambiguous structure. Moreover, this

sequence is not one of the 40 tRNA genes/pseudogenes on the plus-strand predicted by

tRNAscan-SE [52].

(TIFF)

S1 Appendix. Software tutorial.

(PDF)
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