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Abstract

The basal ganglia and limbic system, particularly the thalamus, putamen, internal and external 

globus pallidus, substantia nigra, and sub-thalamic nucleus, comprise a clinically relevant signal 

network for Parkinson’s disease. In order to manually trace these structures, a combination of 

high-resolution and specialized sequences at 7T are used, but it is not feasible to routinely scan 

clinical patients in those scanners. Targeted imaging sequences at 3T have been presented to 

enhance contrast in a select group of these structures. In this work, we show that a series of atlases 

generated at 7T can be used to accurately segment these structures at 3T using a combination of 

standard and optimized imaging sequences, though no one approach provided the best result 

across all structures. In the thalamus and putamen, a median Dice Similarity Coefficient (DSC) 

over 0.88 and a mean surface distance less than 1.0mm were achieved using a combination of T1 

and an optimized inversion recovery imaging sequences. In the internal and external globus 

pallidus a DSC over 0.75 and a mean surface distance less than 1.2mm were achieved using a 

combination of T1 and inversion recovery imaging sequences. In the substantia nigra and 

subthalamic nucleus a DSC of over 0.6 and a mean surface distance of less than 1.0mm were 

achieved using the inversion recovery imaging sequence. On average, using T1 and optimized 

inversion recovery together significantly improved segmentation results than over individual 

modality (p<0.05 Wilcoxon sign-rank test).
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1 Introduction

The subcortical grey matter is a collection of nuclei situated near the forebrain [1]. These 

nuclei are primarily involved in connecting distinct portions of the brain, to serve as major 

functional systems within the brain [1]. For instance, the globus pallidus internal receives 

GABAergic signaling from the putamen and relays that to the sub-thalamic nucleus. Many 

subcortical structures have been implicated in one or more diseases [2]. In addiction, 

dopamine is dysregulated in the putamen and adjacent structures causing dependence 

phenotypes [3]. In Parkinson’s disease, several subcortical structures undergo Lewy body 

growth and that growth plays a significant role in the motor phenotypes associated with the 

disease [4].

Recently, specialized imaging sequences have been developed for studying subcortical grey 

matter using clinical magnetic resonance (MR) scanners. In particular, the Fast Grey Matter 

Acquisition T1 Inversion Recovery (FGATIR) sequence was developed to improve 

subcortical grey matter contrast with the surrounding tissue [5]. The FGATIR sequence uses 

a longer inversion time than standard T1-weighted approaches, such as Magnetization 

Prepared Rapid Acquisition Gradient Echo (MPRAGE), to null the white matter and 

accentuate the deep brain structures. FGATIR images accentuate the sub-thalamic nucleus, 

lamina separating the internal and external globus pallidus, and the thalamus amongst other 

important structures. On the other hand, many important subcortical structures are still 

difficult to parcellate using the FGATIR [6]. Higher field strength scanners are needed, but 

these scans at higher field strengths are not clinically feasible in most contexts [7].

In this work, we investigate the efficacy of sequences acquirable in a clinically tolerable 

setting, namely standard T1-weighted MPRAGE scans and T1-weighted FGATIR scans 

acquired at 3T. The structures considered in this work are the substantia nigra (SN), 

subthalamic nucleus (STN), internal globus pallidus (GPI), external globus pallidus (GPE), 

putamen, and thalamus. These subcortical structures were manually delineated using a 

combination of scans acquired at 3T and 7T. Furthermore, we compare segmentation using 

only one modality, either the MPRAGE or FGATIR, to multi-modal segmentation using the 

enhanced and complimentary contrast patterns present to improve the overall segmentation 

results. The primary aspect of novelty of this work is the investigation of multi-modal MRI 

in the context of subcortical segmentation.

2 Methods

We propose a multi-atlas segmentation algorithm for automated segmentation of the 

subcortical grey matter. This approach uses multi-modal atlases derived using imaging 

acquired at 3T and 7T. The segmentation uses the imaging sequences acquired at 3T to 

assess the effectiveness of segmenting subcortical structures using clinically feasible 

acquisitions.

2.1 Atlas Imaging

Nine healthy subjects were scanned at 3T and 7T. At 7T, a series of 0.7mm isotropic T1-

weighted MPRAGE (Inversion Time (TI)/ Repetition Time (TR)/Echo Time (TE) 
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=[400,640,960,1120]/4.74/2.09ms) was acquired and a susceptibility weighted image slab 

through the midbrain acquired at 0.2x0.2x1.1mm was acquired sagitally, coronally, and 

axially (TR/TE/Flip Angle (FA)=1952/23ms/45° for all orientations). At 3T, a 1.0mm 

isotropic resolution T1-weighted MP-RAGE (TI/TR/TE=925/8.1/2.7ms) and an FGATIR 

scan was acquired for additional mid-brain contrast (TI/TR/TE=400/7.39/3.43).

2.2 Manual Segmentation

For each subject, the 7T T1-weighted MP-RAGE with the inversion time of 960ms was used 

as the reference space. The other 7T MP-RAGE scans, 3T MP-RAGE, 7T high-resolution 

susceptibility weighted slabs, and 3T FGATIR were co-registered to the reference space. The 

following structures were manually labeled on the left hemisphere for one subject: GPI, 

GPE, STN, SN, thalamus, and the putamen. The labeled atlas was then registered to each of 

the other eight subjects and the labels were deformed to the target space using the Reg 

Aladin rigid affine transformation algorithm in NiftyReg [8]. The deformed labels were then 

manually corrected. Finally, each subject was flipped laterally and the flipped image was 

registered to the standard space image. Each subject’s labels were deformed in the laterally 

flipped space and the results were manually corrected. The final result was nine subjects 

with left and right labels for the GPI, GPE, STN, SN, thalamus, and putamen. All manual 

segmentations were done using CranialVault and the CRAVE Tools [9] (by Pierre F. 

D’Haese).

2.3 Segmentation Algorithm

First, each subject, the 3T T1-weighted MRI was automatically segmented with the 

BrainCOLOR protocol [10] (www.neuromorphometrics.com) following a standard multi-

atlas whole brain segmentation (WBS) approach [11]. Briefly, the target image was affinely 

registerd to MNI space. From a population of 45 atlases (45 T1w MRI scans from Open 

Access Series on Imaging Studies (OASIS) dataset [12] with BrainCOLOR labeling 

protocol are considered as the 45 atlases), the 15 atlases geodesically most similar to the 

target are then empirically selected [13]. These 15 atlases are non-rigidly registered to the 

target image using the Advance Normalization Tools (ANTs) Symmetric Normalization 

algorithm (SyN) [14]. Finally, the registered atlas images and labels are fused to the target 

image using Hierarchical Non-Local Spatial STAPLE [15].

Thus, WBS was used to localize the particular regions of interest. In particular, the thalamus 

label from the WBS was used to localize the thalamus, the globus pallidus and putamen 

labels from the WBS were used to localize the GPI, GPE, and putamen, and the 

diencephalon label from the WBS was used to localize the SN and STN. The bounding box 

of each of these regions of interest was identified and dilated by 5mm. Finally, the labels and 

T1 and FGATIR intensities were extracted from these bounding boxes and saved as reduced 

field of view (RFOV) atlases.

For a given target, the target was segmented with the BrainCOLOR protocol. A series of 

targets (RFOV) were created following the protocol defined above. The RFOV atlases were 

co-registered to the RFOV targets. All registrations were performed using with ANTs and 

the SyN algorithm [16]. After registration, joint label fusion (JLF) was used. In all cases, the 
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same collection of imaging modalities was used for the segmentation [17]. Finally, each 

structure’s segmentation was reinserted into the standard image space. All operations for 

creating and manipulating using RFOV atlases and images used custom MATLAB 

(www.mathworks.org) code.

3 Results

Each of the nine healthy subjects was segmented in a leave-one-out cross validation scheme. 

First, each subject was segmented using the T1-weighted MRI, the FGATIR, and multi-

modally with the T1 and FGATIR. Second, each subject’s scans were flipped left-right to 

produce a second set of atlases. Each subject was then segmented with the 16 atlases, 

leaving out the atlas and the flipped version of the atlas. As a result, each subject was 

segmented six times, twice with each combination of modalities. The results are divided into 

three pieces for ease of visualization: diencephalon (STN and SN), GPI and GPE, and 

thalamus and putamen. For each segmentation result the Dice Similarity Coefficient (DSC), 

mean surface distance (MSD), and Hausdorff distance (HD) were calculated.

3.1 Diencephalon

Four structures were segmented in the diencephalon: the left STN, right STN, left SN, and 

right SN (figure 1). For the left SN, the segmentation with T1 and FGATIR outperformed 

other approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.65, median 

MSD of 0.98 mm, and a median HD of 3.11 mm. For the right SN, no approach significantly 

outperformed other approaches. For the left STN, segmentation with T1 and FGATIR 

outperformed other approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC of 

0.70, median MSD of 0.61 mm, and a median HD of 2.06 mm. For the right STN, no 

approach outperformed other approaches (Wilcoxon sign-rank test).

3.2 Globus Pallidus

Two structures were segmented in the globus pallidus: the GPI and GPE. These structures 

were segmented bilaterally and resulted in four total structures segmented (figure 2). For the 

left GPE, the segmentation with T1 and FGATIR including flipped atlases outperformed 

other approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.68, median 

MSD of 0.94 mm, and a median HD of 2.70 mm. For the right GPE, segmentation with 

FGATIR outperformed other approaches (p<0.05 Wilcoxon sign-rank test) with a median 

DSC of 0.71, a median MSD of 0.96 mm, and a median HD of 3.42 mm. For the left GPI, 

segmentation with FGATIR with flipped atlases and multi-modal segmentation with T1 and 

FGATIR and flipped atlases outperformed other approaches but were not statistically 

distinguishable from each other (p<0.05 Wilcoxon sign-rank test), with median DSC values 

of 0.80 and 0.81, median MSD values of 0.68 and 0.69 mm, and median HD values of 2.50 

and 2.52 mm respectively. For the right GPI, no approach significantly outperformed 

another.

3.3 Thalamus and Putamen

The left and right thalamus and putamen were segmented resulting in four total structures 

(figure 3). For the left putamen the segmentation with T1 and FGATIR including flipped 
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atlases outperformed other approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC 

of 0.93, a median MSD of 0.42 mm, and a median HD of 2.50 mm. For the right putamen, 

segmentation with FGATIR including flipped atlases outperformed other approaches 

(p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.93, a median MSD of 0.45 mm, 

and a median HD of 2.61 mm. For the left thalamus, no approach significantly outperformed 

the others. Finally, for the right thalamus, no approach significantly outperformed the others.

4 Discussion

In this work, we presented segmentation approaches for segmenting six subcortical 

structures bilaterally. These segmentation approaches considered the effect of imaging 

modality on segmentation results. Two distinct imaging modalities were considered. First, a 

standard T1-weighted MPRAGE, a sequence commonly acquired in clinical and research 

settings, was acquired for nine subjects. Second, a T1-weighted FGATIR, a specialized 

sequence with enhanced contrast in subcortical structures, was acquired for the same nine 

subjects. A series of 7T T1-weighted MPRAGE scans with varying inversion times and 

high-resolution susceptibility weighted slabs were acquired on the nine subjects. Then, an 

expert in subcortical anatomy manually delineated the thalamus, putamen, internal and 

external globus pallidus, sub-thalamic nucleus, and substantia nigra bilaterally.

These nine subjects were then used in a leave-one-out cross-validation to assess the 

segmentation accuracy using only T1-weighted MPRAGE, only T1-weighted FGATIR, and 

multi-modally with the MPRAGE and FGATIR. In general, the multi-modal segmentation 

outperformed the other approaches and furthermore including atlases flipped laterally tended 

to improve segmentation results, but there was no single approach that outperformed in all 

cases. Fortunately, the proposed segmentation approach does not require all segmentations to 

be performed with the same modalities. This allows flexibility in which sequences are used 

to segment each structure. From a practical perspective, the lack of a globally best method is 

disappointing as it would seem to necessitate that different methods would be needed for 

different structures. We choose to view this result in a more positive light in that pragmatic 

segmentations are possible with a variety of different imaging modalities. Hence, it is 

possible to consider tradeoffs in imaging time, sequence availability, and segmentation 

approaches when designing a study to use multi-modal MRI for segmentation of subcortical 

structures.

Several recent works have used multi-modal MRI to deal with subcortical structure 

segmentation. Traynor et al. showed that adding T1 with T2 MRI improve thalamus 

segmentation based on a priori anatomical hypothesis and T1/T2 values[18]. Hasan et al. 

utilized T1, T2 and DTI maps to identify lesions appearance frequency in cerebral 

subcortical, lobar white and cortical gray matter subdivisions [19]. Haegelen et al. evaluated 

the effectiveness of using T1 and T2 MRI on different registration approaches and the patch-

based method to identify deep brain structures [20]. Similarly, Xiao et al. proposed patch 

based label fusion methods to segment the STN and its adjacent structures using T1 and T2 

MRIs [21]. Forstmann et al. presented a data set that includes whole-brain and reduced field-

of-view T1 MP2RAGE and T2-W scans of the subcortex and brainstem with an ultra-high 

resolution at a sub-millimeter scale, and the data can be used to develop new algorithms that 
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help to build high-resolution atlases [22]. For instance, Visser et al. use Forstmann’s dataset 

multimodal (T1, T2, and DTI) method for subcortical segmentation and apply it to the 

striatum and globus pallidus, substantia nigra, subthalamic nucleus and red nucleus [23, 24]. 

D’Albis et al. developed PyDBS, which is an automated image processing workflow for 

deep brain stimulation surgery that integrates with a T1-T2 multi-modality input pipeline 

[25]. Liu et al. showed a multi-modal (T1 and T2) learning-based method using regression 

forests to automatically localize the target in pre-operative MR brain scans [26]. Ewert et al. 

used T1, T2, proton density, T2 relaxometry to parcellate STN and GPi functional zones 

using structural connectivity to the cortex and the thalamus respectively [27]. Kim et al. 

demonstrated that Susceptibility Weighted Image (SWI) and T2 approach significantly 

improves volumetric segmentation subcortical structures such as the basal ganglia and 

thalamus at 7T [28]. Coron et al. employed T1-, T2 -weighted and quantitative susceptibility 

mapping (QSM) information to automatically segment major thalamic subnuclear groups 

[29]. Li et al. proposed a QSM/T1 multi-atlas approach to segment subcortical on QSM 

images [30]. We note that the Dice accuracy is imperfect on the smaller structure (e.g., ~0.6 

for the substantia nigra and STN). For population studies, this may be sufficient to detect 

group differences. However, careful consideration of the spatial accuracy would be needed 

before interventional applications would be advised.

These sequences that we proposed in this work are of interest because they are all acquirable 

on a clinical population. As a result, the proposed segmentation approaches can be translated 

to clinical populations and thus aid in the clinical workflow. In particular, the STN and GPI 

are common targets for deep brain stimulation surgery (DBS) [31]. DBS is a surgery 

commonly used in Parkinson’s disease to mitigate the motor symptoms of the disease. 

Generalization for pathological anatomies will require additional evaluation to ensure that 

the registration procedures can adapt between controls and patients. Alternatively, patient 

atlases could be acquired. Overall, this work is a meaningful step toward understanding the 

effects of imaging sequence on segmentation of subcortical grey matter structures and 

optimizing the algorithms for segmentation of these data.
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Figure 1: 
Segmentation results for structures in the dienchephalon. Quantitative segmentation results 

are shown in (A). For the left SN, multi-modal segmentation with T1 and FGATIR 

outperformed other approaches (*; p<0.05; Wilcoxon sign-rank test). For the right SN no 

segmentation approach outperformed other approaches. For the left STN, multi-modal 

segmentation with T1 and FGATIR outperformed other approaches (*; p<0.05; Wilcoxon 

sign-rank test). For the right STN no segmentation approach outperformed other approaches. 

In (B), surface distances between the true and estimated segmentations for the left SN are 

shown for the six proposed segmentation approaches.
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Figure 2: 
Segmentation results for structures in the globus pallidus. Quantitative segmentation results 

are shown in (A). For the left GPE, multi-modal segmentation with T1 and FGATIR with 

double atlases outperformed other approaches (*; p<0.05; Wilcoxon sign-rank test). For the 

right GPE segmentation with FGATIR outperformed other approaches (*; p<0.05; Wilcoxon 

sign-rank test). For the left GPI, multi-modal segmentation with T1 and FGATIR with 

doubled atlases and segmentation with FGATIR with doubled atlases outperformed other 

approaches but were not distinguishable amongst each other (*; p<0.05; Wilcoxon sign-rank 

test). For the right GPI no segmentation approach outperformed other approaches. In (B), 

surface distances between the true and estimated segmentations for the left GPI are shown 

for the six proposed segmentation approaches.
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Figure 3: 
Segmentation results for the putamen and thalamus. Quantitative segmentation results are 

shown in (A). For the left putamen, multi-modal segmentation with T1 and FGATIR with 

double atlases outperformed other approaches (*; p<0.05; Wilcoxon sign-rank test). For the 

right putamen segmentation with FGATIR with doubled atlases outperformed other 

approaches (*; p<0.05; Wilcoxon sign-rank test). For the left thalamus, no segmentation 

approach outperformed other approaches For the right thalamus, no segmentation approach 

outperformed other approaches. In (B), surface distances between the true and estimated 

segmentations for the left putamen are shown for the six proposed segmentation approaches.
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