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Abstract

Nanoscale distribution of proteins and their relative positioning within a defined subcellular region 

are key to their physiological functions. Thanks to the super-resolution imaging methods, 

especially single-molecule localization microscopy (SMLM), mapping the three-dimensional 

distribution of multiple proteins has been easier and more efficient than ever. Nevertheless, in spite 

of the many tools available for efficient localization detection and image rendering, it has been a 

challenge to quantitatively analyze the 3D distribution and relative positioning of proteins in these 

SMLM data. Here, using heterogeneously distributed synaptic proteins as examples, we describe 

in detail a series of analytical methods including detection of nanoscale density clusters, 

quantification of the trans-synaptic alignment between these protein densities, and automatic en 
face projection and averaging. These analyses were performed within customized Matlab routines 

and we make the full scripts available. The concepts behind these analytical methods and the 

scripts can be adapted for quantitative analysis of spatial organization of other macromolecular 

complexes.
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1. Introduction

Neuronal communication via synaptic transmission is a complex biological process that 

must coordinate specialized protein structures within connected cells. Proteins in the 

presynaptic active zone mediate the release of neurotransmitters which diffuse within the 

synaptic cleft and activate postsynaptic receptors[1]. In spite of their significant impacts on 

synaptic transmission[2–5], subsynaptic structure and protein interactions are still unclear. 

This is chiefly because synapses are too small (hundreds of nanometers in diameter), 

existing beyond the limitation of optical diffraction of the conventional light microscope. 

Electron microscopy provides high enough resolution[6], but it is difficult to specifically 

mark and accurately recognize particular protein species, and cannot be applied in living 

cells. Recently developed methods of single molecule localization microscopy (SMLM) [7–

9] provides the best opportunity for visualizing the protein distribution at structures such as 

synapses.

SMLM includes a variety of super-resolution imaging techniques that localize isolated 

fluorescent molecules with precision well beyond the diffraction limit by fitting their images 

with a version of the microscope’s point spread function. Application of these methods, 

especially stochastic optical reconstruction microscopy (STORM)[9, 10], photoactivated 

localization microscopy (PALM)[8, 11] and point accumulation for imaging in nanoscale 

topography (PAINT)[12], has led to series of discoveries of new biological structures and 

processes[13–18]. Specifically in neuroscience, these methods have revealed a new layer of 

protein organization at nanometer scale that is critical for modulation of synaptic functions. 

Postsynaptic scaffolding proteins are organized in nanoclusters enriched with AMPA 

receptors[19,20], while the presynaptic vesicle fusion sites are guided by nanoclusters of 

active zone proteins RIM[21] and Munc13[22]. Most surprisingly, nanoclusters of 

postsynaptic scaffolds and receptors were found to be spatially aligned with presynaptic 

RIM nanoclusters, suggesting a trans-synaptic nanocolumn structure[21] that couples 

presynaptic transmitter release to the densities of postsynaptic receptors and optimizes the 

synaptic transmission[4, 5, 19, 23]. The reorganization of nanocolumns in synapses may 

underlie the tuning of synaptic strength during plasticity and pathological conditions[4, 24].

Despite the magnificent details SMLM has provided, performing quantitative analysis on 

this data has proven to be a challenge. This has become a barrier for the efficient application 

of SMLM in the biomedical field, especially since more sophisticated and customized 

analyses are often required to meet the demands of most specific projects than the image 

processing capabilities of most general software packages[25]. Indeed, many reports rely 

heavily simply on presenting images rather than exploiting the wealth of information present 

in them. Here, we describe detailed analytical methods on quantification of trans-synaptic 

alignment on three-dimensional STORM data with the full Matlab script attached. 

Compared with the previous work of Tang et al[21 ], we have made several new 

improvements besides developing new analytical methods. Specifically, the nanocluster 

detection function was re-written and its performance was greatly improved so it could cover 

a larger range of overall density and give lower false positive rate. The cross-cleft 

translation, paired cross-correlation and enrichment analysis were revised in minor details to 

increase the efficiency. The automated detection of cleft plane and 2D projection were newly 

Chen et al. Page 2

Methods. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developed. Some of the methods could be easily adapted to analysis of other biological 

structures.

2. Result

To begin, we assume that all the three-dimensional coordinates of localized fluorophores 

labeling the proteins of interest were previously determined, using Gaussian fitting or other 

methods[26]. Numerous prior works and reviews cover details of the localization process, 

and we will not address it here[10, 27]. Synapses are structurally unique, with presynaptic 

active zone (AZ) and postsynaptic density (PSD) always symmetrically aligned across the 

synaptic cleft, as is clearly visible under the electron microscope[28]. Therefore, when one 

AZ protein and one PSD protein are separately labeled, synapses can be efficiently identified 

as sandwich-shaped structures in the scatter plot of localizations[13]. Then we applied the 

DB-SCAN method[29] on the localizations in selected ROI by using Matlab function 

‘DBSCAN.m’ created by S. Mostapha Kalami Heris to define the final synaptic boundaries, 

which we term the “synaptic cluster”. Only those localizations with a minimum of 60 

localizations (MinPts=60) within a radius of 5 times mean minimal distance (epsilon = 5 x 

MMD ≈ 100-120 nm) were considered members of the synaptic cluster. With the same 

epsilon, MinPts varying from 20 to 80 could pick up the cluster with differences of only a 

small set of localizations around the boundary.

2.1. The detection of high-density nanoclusters.

Basic strategy—Within the synaptic cluster are frequently found further smaller clusters 

of protein, which we term “nanoclusters”[21] or nanodomains[19, 20]. To automatically 

identify nanoclusters, we segmented the localizations within a cluster based on their local 

density, thus defining nanoclusters as groupings of particularly high-density localizations. 

Thus, accurately calculating the density threshold of nanoclusters is the most critical step. 

This is made more difficult because although the border of the synaptic cluster is often 

abrupt and steep, most synaptic proteins are not distributed with a high-density contrast 

between nanoclusters and the background within the synaptic cluster, and the finite imaging 

resolution blurs apparent nanocluster borders.

We took a strategy similar to the DB-SCAN method[29]to calculate the local density (LD) 

of localizations by counting the number of localizations within a certain distance (d) from 

each localization. To account for the variation in localization density across different 

synaptic clusters, we defined d as T x MMD instead of a fixed value[19, 21], where MMD is 

the mean minimal distance of all localizations within the synaptic cluster, and T is a scalar 

multiplying factor. The appropriate value for T was determined empirically, as shown below. 

The threshold of local density for nanocluster detection was defined as Mean(LDO) + 4 × 

Std(LD0), where LD0 is the local density of a randomized cluster with the same overall 

density as the synaptic cluster. We set up the threshold based on two major considerations: 

first, to minimize the detection of nanoclusters in clusters with randomized uniform 

distribution, and second, to maximize the number of nanoclusters detected in labeled protein 

clusters with different total densities. The threshold we used represented the 99.95% 

confidence that the measured density differs from chance. With this high threshold, the 
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occurrence of false positives is greatly reduced, and all localizations with a local density 

larger than this threshold were considered within nanoclusters.

These positions are then divided into sub-clusters using a “top-down” splitting strategy. We 

ranked all localizations with an above-threshold local density based on their local density in 

a descending order, and then assigned each localization sequentially as the peak of a new 

nanocluster or a part of an existing nanocluster based on whether it’s further enough from 

peaks of all existing nanoclusters. The localization with highest local density, if above the 

threshold, was defined as the peak of the first nanocluster. The second-highest-density 

localization would be considered as the peak of another potential nanocluster. If the distance 

between the first peak to this potential second peak was larger than the defined cutoff 

distance, we consider the second localization the peak of the second nanocluster; otherwise, 

the second localization was considered a part of the first nanocluster. According to the 

previously measured average nanocluster diameter 80 nm, the minimum peak-to-peak 

distance is 80 nm, which is about the average size of synaptic nanoclusters[21]. With this, 

even if the valley between two local peaks has a density much higher than the threshold, as 

long as the distance between the two peaks is far enough, they will organize two different 

nanoclusters.

Then, each potential nanocluster was further divided into sub-clusters based on the point-to-

point distance with a cutoff of 2 x Mean(MMD) using Matlab function ‘clusterdata’, and 

only the sub-cluster having the original peak localization of this potential nanocluster was 

selected. This step was designed to deal with situations when there were multiple 

“nanoclusters” within an 80-nm-dimeter region. This was more common in our simulations 

when overall density was high. The cutoff distance of 2 x Mean(MMD) was decided based 

on a series of tests on measured data and randomized simulations. Finally, to be accepted as 

a nanocluster, the subclusters had to include at least 4 localizations which is the minimal 

number to define a 3D structure.

Practical example—We labeled the postsynaptic scaffold protein PSD-95 in cultured 

hippocampal neurons with antibodies conjugated with Alexa647 and used 3D-STORM to 

map its distribution[10, 30]. We integrated all the above processes into one MATLAB 

function nanocluster_detection_3d.m and used it to detect nanoclusters by varying the 

parameter T (Figure 1A). At the same time, we also randomized the distribution of 

localizations within the measured borders of the cluster and used the same function to detect 

any “false positive” nanoclusters (figure 1B). When T was small, i.e. local density was 

calculated within a smaller radius, the algorithm was too sensitive to the localization 

distribution within a very close vicinity and therefore the nanocluster number and their peak 

positions showed a larger variation; when T was too large, local densities were more washed 

out due to a larger averaging radius and therefore some visually identifiable nanoclusters 

were missing from the result, and the detected peak of a nanocluster (red dots in Figure 1A) 

did not represent the intuitive peak (Figure 1A, T = 8). At almost all values of T, the rate of 

detecting false-positives was very low (Figure 1C–D). For the example PSD-95 cluster, the 

nanocluster number was constant and the result matched our visual expectation with T 1~3 

(figure 1C). When results from more PSD-95 clusters (n = 59) were pooled together, the 
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nanocluster number was stable for T 1~2 and then started reducing with higher T (figure1D). 

Based on these, we chose T of 2.5 for all our analysis.

To further test the performance of our algorithm for clusters with various localization density 

and background noise, we performed nanocluster detection on two sets of simulated synaptic 

clusters. First, we randomly selected a subset of localizations to form low-density clusters 

and added a random subset of localizations with an extra −30 to 30 nm error in each 

dimension to generate high-density clusters (figure 1E). The results showed that the number 

of nanoclusters detected is consistent for clusters with a density of 0.66 to 2 times the 

original density. When the density is lower, less dominant nanoclusters are less likely to be 

reliably detected (figure 1F). At the same time, we added randomly distributed localizations 

in the cluster to increase the background noise (figure 1G) and found that when added noise 

was less than the original overall density, detection of nanoclusters was consistent and 

reliable. When the noise level was equal to or higher than the original density, detected 

nanoclusters became less reliable (figure 1H). Together, these tests further demonstrated the 

robustness of our nanocluster detection algorithm.

Discussion—The key parameter T was decided 2.5 as a tradeoff between two errors for 

this binary classification. First, we would like to reduce the false negative error, which is 

favored by a lower T and a lower initial density threshold. Second, we want to minimize the 

false positive error, which requires a parameter set in the opposite direction. In our case, 

especially for the following protein enrichment analysis, the false positives would greatly 

affect the result by diluting the potential enrichment, while the impact of false negatives on 

enrichment is minimal and the main risk is reducing the number of observations. 

Accordingly, we set the parameters to favor a lower false positive error, and as a result, we 

may have underestimated the nanocluster numbers within synapses. In cases that the false 

negative is more critical, a lower T and a lower initial density threshold should be 

considered.

Overcounting represents a great challenge for most analysis on data of localization 

microscopy[31–33]. In our case, though we have combined those peaks lasting for multiple 

frames into single localizations (temporal grouping) to minimize the overcounting error, this 

problem cannot be fully eliminated due to the use of highly reversible probes. Therefore, 

there is a possibility that the multiple blinkers would create some artificial nanoclusters. In 

our previous study[21], we have taken multiple experimental and numerical approaches to 

argue that in spite of the possible contamination by overcounting, the large majority of our 

detected nanoclusters arise from local densities of synaptic proteins. One clear test is that the 

normalized auto-correlation of putative synaptic nanoclusters was very different than that of 

either measured or simulated repetitively activated single emitters. Due to the large variation 

of nanocluster size, it is hard to estimate what proportion of detected nanoclusters arose 

from overcounting. However, this proportion appears to be quite small, because the 

nanocluster detection-dependent enrichment analysis showed a significant co-enrichment of 

multiple synaptic proteins across the cleft, and the analysis was sensitive to discern subtle 

changes of protein enrichment during plasticity.
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This algorithm can also obtain some detailed information regarding the nanoclusters 

themselves, including their volume and the internal localization density. Since the number of 

localizations in one nanocluster was typically small, using a convex hull or alpha shape to 

delineate it would greatly under-estimate the nanocluster volume due to the boundary effect. 

Therefore, following published suggestions[34], we tessellated the synaptic cluster with 

polyhedrons using Matlab function voronoin(), with each Voroni cell containing one 

localization. The nanocluster volume was calculated as a summation of volumes of all 

polyhedrons containing the nanocluster localizations. To avoid unexpected unbounded 

Voronoi cells and over-estimating the volume of cells near the cluster surface, we introduced 

~10% background noise by adding randomly distributed localizations around the cluster. 

Polyhedron volume for each localization was averaged across ten independent simulations. 

The nanocluster is not a discrete structure but a density gradient, and therefore this 

threshold-based algorithm would have a certain degree of arbitrariness. However, by 

applying the same set of detection parameters to different proteins or treatments, the method 

is sensitive enough to pick up differences in nanocluster number, volume, or interior 

localization density[21].

For subsequent analysis below, it is not critical what method is used to delineate the borders 

of subsynaptic nanoclusters. Indeed, there have been several methods well established for 

nanocluster detection in 2D data, including those based on DB-SCAN[19, 20] or Voronoi 

tessellation[34], and these could be expanded to operate on 3D localizations[35]. No matter 

which method is used, the localizations near cluster boundaries would have under-estimated 

local densities and as a result they are more likely to be excluded from the detected 

nanoclusters. We have tried to correct this bias by normalizing the calculated local density 

with the density at the same positions when all other localizations were randomly distributed 

within the synaptic cluster. This worked in most cases except that sometimes the boundary-

defining localizations, especially those at sharp corners, got over-estimated densities due to 

small in-cluster volume around them. However, the majority of these localizations cannot 

generate nanoclusters owing to our strict criteria in the detection function. We compared the 

nanocluster detection based on original local density and normalized density and got very 

similar results; the only differences were some nanoclusters close to synapse edge that might 

include a small extra number of localizations when detected with the later method, 

suggesting under our experimental conditions, nanoclusters were naturally away from 

synaptic boundaries[21]. Therefore, we used the original instead of normalized local density 

for nanocluster detection to increase the computation efficiency.

2.2 Analysis of trans-synaptic protein alignment

To quantify the alignment of protein distributions across the synapse, we provide two 

independent methods: 1) 3D paired cross-correlation function (PCF) analysis to quantify the 

overall correlation of protein densities, and 2) a protein enrichment analysis to calculate the 

local protein density at positions opposing a given nanocluster on the other side of 

synapse[21, 31]. Both methods were based on the assumption that the high densities within 

two proteins are distributed at similar positions within their own cluster, i.e. if the two 

synaptic clusters are overlapping, the two sets of high densities should be colocalized. 

However, the pre- and postsynaptic proteins are distributed at different sides of synaptic cleft 
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with a distance of 50-200 nm[13]. Therefore, before performing these analyses of alignment, 

we first have to translate one cluster to overlap with the other without bias towards local 

densities.

2.2.1 Overlapping pre- and postsynaptic clusters without bias towards local 
densities.

Basic strategy: Though in EM images we cannot distinguish the protein identity or local 

density of specific proteins within active zones and postsynaptic densities, AZs and PSDs 

were always aligned well across the cleft[36], i.e., the AZ and PSD are two disc-shaped 

structures of the same size, paralleled with each other. Thus for proteins distributed within 

these two regions, such as RIM1/2 in AZ and PSD-95 in PSD, the space they take under 3D 

STORM should be similar in volume and shape[13, 21]. Therefore, we could translate one 

cluster along a certain direction across a certain distance and get a good overlap with the 

other. It is worth emphasizing that this overlapping is for the general shape of the two 

synaptic clusters, as if aligning the edges of AZ and PSD in EM images. To guarantee that, 

we set a density ceiling of ρ/4 for the density matrix of both clusters, where ρ is the average 

localization density within synaptic clusters. Without a density ceiling, the cross-correlation 

would be dominated by those high-density sub-regions and the translation would 

preferentially overlap high-density nanoclusters of the two proteins, which would result in 

strong artificial enrichment, so the effect of local high density within the synaptic boundary 

should be minimized. The ρ/4 density ceiling was chosen based on series of simulations by 

randomly shuffling all nanocluster positions within the synaptic boundary. We tested 

different density ceiling values and found that with a ceiling of ρ/4 the positioning of 

nanoclusters inside the synapse had very little impact on the translation. However, if the 

ceiling was too low, the translation was too sensitive to the boundary definition and 

including one or two extra localizations on edges was able to greatly reshape the full cluster 

and dramatically affect the translation. For this consideration, a higher ceiling could reduce 

the impact of those low-density localizations around edges on the translation. A density 

ceiling of ρ/4 was a good compromise. The magnitude and direction of the translation were 

then defined as the vector from the center to the peak in the cross-correlation space 

calculated with the density matrix of the two clusters[21].

Practical example: RIM1/2 and PSD-95 are key proteins in AZ and PSD[4–6], so we 

labeled these two proteins with antibodies conjugated with Alexa647 and Cy3, respectively, 

and used STORM to map their 3D distribution (Figure 2A)[9, 10, 30]. 3D density matrices 

were built for each cluster with a voxel size of 5 nm, and a 3D convolution with kernel size 

of 11 was applied to smooth the matrices (Figure 2B). As mentioned above, the maximal 

density in a matrix was set to a quarter of the average density to eliminate the major 

heterogeneity inside the synapse (Figure 2C). With these largely homogenized matrices, the 

vector could be calculated, and the two matrices could be translated to have an optimal 

overlap based on their general shapes (Figure 2D). Finally, the overlapping original protein 

densities were restored to the state of measurement for the following quantitative analysis 

(Figure 2E–F). This part of the process was coded into the same Matlab script with the 

following paired cross-correlation function.
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Discussion: The translation was based on the assumption that the two clusters were proteins 

marking the AZ or PSD, that is, the protein structures attached to the synaptic membrane 

and thus fairly planar. So, extra caution should be taken for synaptic proteins with 

substantial presence away from the membrane, such as the protein synapsin which is 

associated with synaptic vesicles and thus fills almost the whole bouton[37, 38].

In the defined function, we set one parameter to constrain the distance range of the 

translation (distance in get_crosscorr_3d.m). For major synaptic protein pairs, the range 

could be estimated based on previous STORM study by Dani et al[ 13]. Depending on the 

imaging system, there may be a channel registration error. Therefore, the range of translation 

distance should be expanded accordingly. For both the following alignment analysis, the 

computation was performed on the overlapped cluster pair after the translation. In this case, 

as long as the channel registration error was linear and not too large to attain the cluster-

shape-dependent translation, it won’t impact the alignment analysis.

2.2.2 Paired cross-correlation analysis

Basic strategy: Pair correlation function has been used to quantify heterogeneity within an 

organization or colocalization between systems[31, 39, 40]. The pair cross-correlation 

function, g(r), reports the increased probability of finding a similar localized signal in 

system 2 at a distance r away from a given localized signal in system 1.

g r = Re
FFT−1 FFT I1 × conj FFT I2

ρ1ρ2FFT−1 FFT−1 W 1 × conj FFT W 2

The function describes the cross-correlation of the two constructed density matrices (I1, I2) 

of the two sets of STORM localizations normalized with the cross-correlation of the two 

window functions (W1, W2) for I1 and I2, respectively. W has the value of 1 inside the 

corresponding cluster and 0 outside. The cross-correlation is tabulated in Matlab using Fast 

Fourier Transforms (FFTs), conj[] indicates a complex conjugate, ρ1 and ρ2 are the average 

densities of matrix I1 and I2 respectively, and Re indicates the real part. This normalization 

is critical as it removes all the effects coming from complex boundary shapes and makes the 

function account only for the internal density distributions within the two matrices. g r ≈ 1
represents a random correlation between the two structures, and the colocalization of any 

high-density structures would result in g r > 1.

Practical example: We used the same RIM1/2 and PSD-95 cluster pair as example. Density 

matrix (I1 and I2) were built with a voxel size of 5 nm and the window functions W1 and W2 

were defined as the same set of matrices with voxels set to 1 inside the cluster defined with 

an alpha shape (α = 150 nm). In the three-dimensional g r  matrix (Figure 3A), the voxels 

in the center region showed significant higher values, as shown clearly with the circularly 

averaged one-dimensional distribution (Figure 3B). The g(r) between the measured proteins 

was significantly larger than 1 within a certain radius range (with ANOVA), suggesting the 

internal densities of RIM1/2 and PSD-95 at this synapse had a significant alignment.
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All these computations were incorporated in a defined Matlab function get_crosscorr_3d.m 
together with the cluster translation in part 2.2.1. Besides the 3D coordinates of the two 

localization sets as inputs, the other parameters included voxel size, radius range for g(r) 
calculate, cluster translation vector, and distance range of the translation. If the cluster 

translation vector was set as null ([] in Matlab), the function would calculate the vector as 

described in 2.2.1, which would be skipped if there was a valid input for cluster translation 

vector.

Discussion: Theoretically, a 2D cross-correlation in the plane of the cleft could provide a 

better approach for this analysis. Though 2D and 3D correlation become equal when the 

thickness of both clusters is close to 0, our data cannot be considered to be close to this limit 

due to the limitations of the biological structure of the synapse and the imaging resolution. 

Our employment of 3D cross-correlation has a potential risk of including certain 

contribution of “out-of-plane” distributions to g(r) at distances within half the cluster 

thickness. However, several considerations indicate that 3D cross-correlation provides better 

results here for testing the trans-synaptic alignment of synaptic proteins. We discuss this in 

detail in section 2.3.

The application of the paired cross-correlation method is not limited to the analysis of two 

neighboring or overlapped protein clusters, but can be expanded to many occasions for 

colocalization or alignment analysis such as the three-dimensional distribution of two 

proteins in a defined space with varied volumes. However, when distributions over a large 

volume are analyzed with a small voxel size, i.e. when there are a large voxel number in the 

constructed density matrix, running the function may be extremely memory-intensive in 

current versions of Matlab. In this case, an alternate computing strategy should be 

employed[41].

The paired cross-correlation method determines whether two three-dimensional clusters 

have correlated internal density structures[31, 39]. It does not rely on the detection of high-

density nanoclusters therefore won’t be affected by potential errors during nanocluster 

detection as discussed in part 2.1. For the same reason, this method cannot provide any 

detailed information about the alignment of individual nanoclusters and therefore it may not 

be sensitive enough to detect all potential alignment, especially when there are multiple 

high-density peaks. Ideally, we need an analysis that could test the alignment for each 

individual nanocluster – therefore, we developed the protein enrichment analysis.

2.2.3 Protein enrichment analysis

Basic strategy: This analysis is based on the prediction that if the pre- and postsynaptic 

nanoclusters align across the cleft, the presence of a nanocluster on one side will predict a 

higher local protein density around its projected point on the other side. To quantitatively 

test this, we calculated the average local density of protein A over the distance from the 

projected peak of a protein B nanocluster. In case of a positive alignment, this curve would 

start from a local density significantly higher than the average at the small distance and then 

decay to the average.
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Practical example: We explored the degree of RIM1/2 enrichment relative to the two 

PSD-95 nanoclusters in the same example synapse. The PSD-95 nanoclusters were detected 

as described in 2.1 and the PSD-95 cluster together with the two nanocluster peaks was 

projected to have a best overlap with RIM1/2 cluster as in 2.2.1. The number of RIM1/2 

localizations were counted within binned distance ranges from the projected peaks (Figure 

3C). However, the volumes corresponding to the bins do not follow the simple cubic power 

distance, but are affected by cluster boundaries and depend heavily on cluster shapes and 

positions of the nanoclusters. Without volumes, local densities could not be calculated and 

the data from different clusters or even from different nanoclusters in the same synapse 

could not be averaged. To measure these volumes, we randomized the RIM1/2 localizations 

within its cluster boundary, and the distribution of randomized localizations along the same 

distance represented the volumes corresponding to the distance bins. A simple ratio of these 

two distributions gave the normalized local densities along distances from the PSD-95 

nanocluster center. If there was a RIM1/2 nanocluster aligning to a given PSD-95 

nanocluster, we would expect a normalized density significantly larger than 1 within a 

certain small range of r, such as for nanocluster b in Figure 3C–D. This r range was 

determined as r < 60 nm based on pooled enrichment, and an enrichment index could be 

defined as the averaged density within the range for further statistical tests[21]. Otherwise, 

the normalized density would be around 1, which suggests a random distribution, as can be 

seen for nanocluster a in Figure 3C–D, or below 1, which would suggest that molecules are 

de-enriched in regions closely aligned with the nanocluster. To simplify the quantification, 

we defined an enrichment index by averaging the normalized density within 60 nm from the 

projected peak. The radius of 60 nm was chosen based on the fact that most key synaptic 

proteins are significantly enriched in the nanocolumn within this radius[21]. Whether 

RIM1/2 is enriched to a given PSD-95 nanocluster could be determined via comparison with 

the enrichment indices of multiple randomized RIM1/2 clusters. With this, the percentile of 

PSD-95 nanoclusters that were enriched with RIM1/2 could be quantified[21].

Discussion: Enrichment analysis and paired cross-correlation function are two independent 

tests on whether two clusters have spatially correlated internal density structures. While the 

paired cross-correlation compares the overall degree of correlation between internal 

distributions of two proteins, the enrichment analysis provides more detailed information by 

quantifying the local density of protein A relative to a defined B sub-region. While in our 

case of nanoscale alignment between high density peaks the sub-region of protein B is the 

defined nanoclusters, the same analysis could be easily adapted to other forms of sub-

structures such as hollow spots or inverse density peaks depending on the demand of specific 

scientific questions. Since the enrichment analysis is based on the positions of sub-regions, 

the false-negatives of the nanocluster detection would have a great impact by diluting the 

distribution profile. Therefore, the analysis will benefit from stricter criteria on nanocluster 

detection.

Due to the discrete nature of SMLM data, the boundary effect could dominate the result in 

special occasions, especially when a ratiometric measurement is made. In our case, 

depending on the cluster shape and the position of the nanocluster, the valid volumes for 

some bins may be very small. Even though we randomized the cluster with a density 10 
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times the original, which was equivalent to averaging across 10 simulations, the numbers of 

randomized localizations within these volumes were still not representative, which would 

result in an extremely large ratio or even an invalid calculation. If a bin showed an infinite 

ratio, its neighboring bins usually suffered from this boundary effect. We exclude these bins 

when pooling the data to reduce potential contamination.

2.3 Automatic enface projection and averaging of synapses

While the enrichment analysis provides detailed spatial distribution of one protein along 

distances from defined points such as peaks of nanoclusters of the reference protein, it 

would be helpful if similar information can be represented as images. Here we present an 

automatic method to make a projection of the three-dimensional synaptic structure to a 

defined plane such as synaptic cleft to generate an enface view of the protein distribution. 

This projection would make it possible to average the enface profile of protein densities or 

even analyze the relative spatial distribution patterns of pre- and postsynaptic nanoclusters.

Basic strategy—With one presynaptic AZ protein and one postsynaptic PSD protein 

labeled with two fluorophores, a typical synapse would be a sandwich shape, or a flat disc 

after one set of localizations were translated to overlay with the other (Figure 2). A plane 

parallel to the cleft can be defined by fitting all localizations after the translation (least 

square of the normal distance to the plane). The two-dimensional enface projection can be 

achieved with calculation of the projected coordinates of all localizations along the fitted 

plane.

Practical example—We use the same synapse as example. After overlaying the two 

cluster together as in Figure 2, we calculated the enface plane (Figure 4A) with the defined 

Matlab function get_2D_projection.m based on the affine_fit.m function by Adrien Leygue. 

The same function also yielded the projected 2D coordinates so we could generate the 

enface density map. To rule out the effect of cluster thickness along the projection direction 

on the local density, we randomized all localizations within the original clusters and 

performed a similar projection to get a map coding the thickness information. Using this as a 

normalizing factor, we obtained a map coding the related local density (Figure 4B).

To visualize the enface distribution of both RIM1/2 and PSD-95 around PSD-95 

nanoclusters, we averaged both normalized density maps centered around the projected 

peaks of PSD-95 nanoclusters (crosses in Figure 4B–C). To further test whether there are 

secondary density structures around the nanoclusters, we performed a free 360-degree 

rotation around the nanocluster peak to find the best correlation with a template (density 

map around the first nanocluster for the first correlation, and the averaged density map for 

the following). Note that this correlation was computed in a similar way as in part 2.1.2 to 

eliminate the effect of cluster boundaries border, i.e. only the internal density structures 

mattered for the correlation. Meanwhile, to avoid any artifact created by the bordering effect, 

all values outside the synaptic cluster were replaced with 1 before averaging was performed. 

This process was incorporated in a defined function get_bestfit_rotate.m. While PSD-95 

maps were freely rotated, the rotation angles of RIM1/2 maps were kept the same as that of 

PSD-95 in the same synapse to maintain the relative positioning of the two clusters. In the 

Chen et al. Page 11

Methods. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



averaged density maps in Figure 4C, besides the center PSD-95 nanocluster, there was a 

secondary but weaker nanocluster, which is a result of freely-rotating averaging across the 

maps of synapses with 2 or more PSD-95 nanoclusters. The distance of ~120 nm from the 

image center suggests an average distance between two neighboring nanoclusters for 

PSD-95. As expected, the averaged map of RIM1/2 also showed a significant higher density 

around the center, representing the enrichment between the two proteins.

Discussion—Theoretically, the translation vector should be vertical to the fitted plane and 

therefore we could simply use that vector to make projections. However, the vector was 

often contaminated by the two-channel registration error, so its direction was not as reliable 

for projection. The current method benefited from the fact that the registration error was 

largely reduced by the overlapping translation, and therefore provided not only a more 

accurate projecting direction but also less error for the 2D enrichment distribution, as 

demonstrated by the secondary PSD-95 nanocluster and the significant enrichment of 

RIM1/2 around the image center (Figure 4C).

Similar with the overlapping translation, the fitting of the enface plane assumed that the 

clusters were representing the disc shape of AZ or PSD. If one protein had a strong 

distribution outside these two specialized compartments, such as presynaptic synapsin and 

postsynaptic actin or mGluRs[38, 42], it should not be included in fitting process. In this 

case, the enface plane could be fitted with only the other protein. Moreover, for large 

synapses, this algorithm may fail if complex border structure in the 2D projection of either 

presynaptic or postsynaptic shape dominates the projection.

As we discussed in section 2.2.2, the 2D and 3D cross-correlations only become equal when 

the slice thickness approaches 0, that our data should not be treated as near that limit. In this 

case, the axial density distribution may contribute to a certain extent to the shape of averaged 

g(r); however, the magnitude of the effect is hard to quantify directly. To address this 

concern, we tried measuring the effect indirectly by comparing the 3D cross-correlation of 

63 synapses with that of the 2D projections with and without the normalization of cluster 

thickness (data not shown). Though g(r) from the three methods varied a little in shape and 

the extent over which it remained above the chance level, the averaged g(r<40 nm) correlate 

well with each other, suggesting they are equally effective for the purpose of generally 

testing the correlation between two density distributions. Therefore, 3D cross-correlation 

works as well as the 2D correlation in testing the trans-synaptic alignment of synaptic 

proteins.

However, the 3D cross-correlation has a few advantages that make it more suitable in our 

analysis. First, defining the synaptic cleft based on two synaptic clusters is frequently 

difficult. While we often consider the synaptic clusters as a sandwich shape, a non-flat cleft 

is more common in real synapses. For such synapses, 2D projection as a simplified 

approximation is very likely to over-estimate the local density. Further, while it is 

biologically sensible to restrict the analysis to a thin slice near the cleft, the observed 

geometry makes it difficult and probably unreliable to attempt this. The 3D paired 

correlation, on the other hand, does not require the definition of the cleft and therefore better 

deals with this situation. Second, the density map of 2D projection suffers from the variation 
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in cluster thickness. Although we could try removing this effect by normalizing with a 

randomized cluster, this normalization is very sensitive to the definition of cluster 

boundaries. Taken together, we conclude that 3D paired cross-correlation is a better 

compromise between accuracy and reliability.

3. Conclusions

Imaging with single molecule localization microscopy provides a wealth of information on 

subcellular structures and protein organizations which underlay their specialized functions. 

To exploit them requires more detailed sophisticated quantitative analyses rather and image 

processing than most general software packages provide. We have described a set of detailed 

analytical methods for quantification of trans-synaptic alignment on three-dimensional 

STORM data and have made all the Matlab scripts available. Some could be easily adapted 

to analysis of other biological structures. We hope our methods could be helpful and 

inspiring for others to design automated and quantitative analysis on their SMLM data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Localization microscopy provides abundant data for precise quantitative 

analysis.

• An algorithm to identify local density peaks within a 3D localization cluster.

• New methods for quantitative analysis of trans-synaptic protein alignment and 

enrichment.

• These algorithms can be easily adapted to analysis of other subcellular 

organizations.
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Figure 1. The detection of nanocluster and its robustness.
A. Detected nanoclusters from the same PSD-95 cluster with different T values as labeled. 

PSD-95 localizations are shown in the enface angle, with the color scale coding local density 

and the red point representing the peak of a nanocluster, i.e. localization with highest local 

density within a nanocluster. Note that the peak of a nanocluster is not necessarily around its 

center. Red circles represent the region within which the local density was calculated for 

nanocluster detection, with the radius (r) roughly calculated and labeled. Scale 100 nm. B. 
Typical example of homogenized cluster of the same one in a, with the same color scale as 

its comparable control in A. C. Pooled results of detected nanocluster number in the 

example cluster in A from 20 rounds of computation. D. Pooled results of detected 

nanocluster number from 59 PSD-95 clusters. Note that in the full parameter space, the 

nanocluster number in measured protein was significantly higher than that of the randomized 

protein (p < 0.001 at all bins, one-way ANOVA on ranks with pairwise comparison 
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procedures).E.Nanocluster detection in simulated synaptic clusters with different sample 

rate (Sr). The cluster was generated by a random subset of localizations (for Sr < 1) or 

adding more localizations with an error within 30 nm in each dimension (for Sr >1). F. 
Number of detected nanoclusters with varied sample rate. Data were averaged from 10 

simulations. G-H. Nanocluster detection in simulated clusters with extra background noise 

by adding randomized localizations. BN or background noise denotes the ratio of added 

localization number to the original. Data were pooled from 10 simulations.
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Figure 2. Translation of synaptic clusters to overlap pre- and postsynaptic clusters without bias 
towards local densities.
A. Scatter plot of RIM1/2 (red) and PSD-95 (green) localizations with the side (top) and 

enface (bottom) view angles. B-E. Volume views of the original synaptic density matrix (B), 

matrix with a low density ceiling(C), matrix with density ceiling after the translation (D), 

and matrix with the original density after the translation (E). The density matrix was 

constructed with a voxel size of 5 nm and a 13x13 convolution was applied. Images were 

made with the 3D viewer plugin in Fiji ImageJ. F. Scatter plot of the two clusters after the 

translation. Scale 100 nm.
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Figure 3. Paired cross-correlation and protein enrichment analysis.
A. Two sections of the 3D paired cross-correlation matrix g r . Inserts on the left represent 

the sectioning angles, and the color coded the normalized coefficients of paired correlation 

between density matrixes of RIM1/2 and PSD-95 after translation. Note the heated color 

near the center of matrix. Images were made with the volume viewer plugin in Fiji ImageJ. 

The color-coded are divided according to the degree of heat, and the left side shows different 

three-dimensional angles, r represents the size of the region between the various angles 

deviating from the best correlation value. B. The paired correlation function distribution g(r) 
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averaged over all angles along distances from the center of matrix g r , as shown with the 

white arrows in A. Note g(r) is significantly higher than 1 within certain radius. C. Strategy 

of the protein enrichment analysis. From the projected peaks of PSD-95 nanoclusters (dark 

green), local density of RIM1/2 (red) was averaged over all angles along distances. In case 

of a positive alignment, a higher averaged density is expected at distances around 0. D. 
Spatial profile of normalized RIM1/2 density along distances from projected peaks of 

PSD-95 nanocluster a and b. Note the significant enrichment of RIM1/2 to nanocluster b but 

not to a.
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Figure 4. Automatic enface projection and averaging of synapses.
A. Calculation of the enface plane by fitting all overlapped localizations after translation. 

RIM1/2 is in red, PSD-95 in green. Top shows the top-view, lower the side-view and middle 

the elevated view. B. Local density distribution after the projection. Crosses present the 

peaks of two PSD-95 nanoclusters. C. Averaged PSD-95 nanocluster in projection plane and 

the corresponding density distribution of RIM1/2 across 103 nanoclusters from 59 

synapses.PSD-95 distribution was rotated to get the best fit of the internal distribution to the 

original template. Note the second nanocluster ~120 nm from the center of the averaged 

nanocluster. RIM1/2 was rotated with the same angle as PSD-95 from the same synapse. 

Note the significant higher density around the averaging center.
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