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Abstract

Hepatic steatosis occurs when lipids accumulate in the liver leading to steatohepatitis, which can 

evolve into cirrhosis and consequently may end with hepatocellular carcinoma. Several automatic 

classification algorithms have been proposed to detect liver diseases. However, some algorithms 

are manufacturer-dependent, while others require extensive calculations and consequently 

prolonged computational time. This may limit the development of real-time and manufacturer-

independent computer-aided detection of liver steatosis. This work demonstrates the feasibility of 

a computationally-efficient and manufacturer-independent wavelet-based computer-aided liver 

steatosis detection system using conventional B-mode ultrasound (US) imaging. Seven features 

were extracted from the approximation part of the second-level wavelet packet transform (WPT) 

of US images. The proposed technique was tested on two datasets of ex-vivo mice livers with and 

without gelatin embedding, in addition to a third dataset of in-vivo human livers acquired using 

two different US machines. Using the gelatin-embedded mice liver dataset, the technique exhibited 

98.8% accuracy, 97.8% sensitivity, and 100% specificity, and the frame classification time was 

reduced from 0.4814 s using original US images to 0.1444 s after WPT preprocessing. When the 

other mice liver dataset was used, the technique showed 85.74% accuracy, 84.4% sensitivity, and 

88.5% specificity, and the frame classification time was reduced from 0.5612s to 0.2903 s. Using 
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human liver image data, the best classifier exhibited 92.5% accuracy, 93.0% sensitivity, 91.0% 

specificity, and the classification time was reduced from 0.660 s to 0.146 s. This technique can be 

useful for developing computationally-efficient and manufacturer-independent noninvasive CAD 

systems for fatty liver detection.
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Fatty liver disease; steatosis; ultrasound images; wavelet packet transform; computer-aided 
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1. Introduction

The non-alcoholic fatty liver disease (NAFLD) is a common liver disease with 20–30% 

prevalence in Western countries, comparable prevalence in the Middle East, and 2–4% 

worldwide [1]. The prevention of NAFLD is crucial in Asian countries and particularly in 

the Gulf countries because of the high prevalence of obesity, diabetes and metabolic 

syndrome (MS) [1]. Liver fat accumulation occurs due to hyperinsulinemia and insulin 

resistance, and hepatic accumulation of triglycerides (TG) producing an imbalance between 

increased free fatty acid (FFA) flux from adipose tissues to the liver, increased caloric 

intake, and increased de novo lipogenesis in the liver and liver handling and export of the 

extra fat [2].

Liver fibrosis, which is considered the most common chronic liver disease, is caused by the 

accumulation of extracellular matrix proteins including collagen. NAFLD is among the main 

reasons of chronic liver diseases in addition to Hepatitis B viruses (HBV), hepatitis C 

viruses (HCV), and alcoholic fatty liver disease (FLD) [3]. If hepatic fibrosis is left 

untreated, fibrosis typically progresses to liver cirrhosis that cannot be treated and may 

increase the chance of mortality. The prevalence of liver disease in patients with central 

obesity, diabetes mellitus, dyslipidemia, and high blood pressure are respectively 32, 31, 22 

and 23 folds higher than the liver disease prevalence in other people [4].

Liver biopsy (LB) is the gold-standard procedure for diagnosing fatty liver disease. 

However, LB is invasive, painful and bears the risk of infection and bleeding. Thus, LB may 

not be a preferred choice for many patients. Instead, non-invasive methods using medical 

imaging techniques represent suitable replacements of LB. Medical imaging modalities 

include ultrasound (US), computed tomography (CT) and magnetic resonance imaging 

(MRI) [5].

US grayscale brightness mode (B-mode) imaging may be considered the first choice for 

clinicians to non-invasively diagnose liver disease because of its safety, cost effectiveness, 

and wide availability. However, US imaging is both operator and machine dependent, and 

can only detect livers with more than 30% steatosis [6]. CT provides a reliable tool for the 

examination of diffuse and focal fatty livers, but it uses ionizing radiation and is strongly 

influenced by the iron deposition in the liver leading to misdiagnosis. Although MRI is a 

very useful imaging modality, it is not commonly used due to the expensive exam cost, 
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limited availability, and lack of standardization [7]. Several US-based techniques can be 

used to improve the diagnostic process in combination with conventional imaging.

Transient elastography (TE) is an important non-invasive US method that measures stiffness 

changes in liver tissues to detect cirrhosis in patients with chronic liver disease. Liver 

stiffness was found to be significantly correlated with the clinical, biological, and 

morphological parameters of liver fibrosis [8]. TE was shown to reduce the need for LB in 

the follow up of chronic liver disease [9]. Also, TE exhibited good sensitivity and specificity 

for cirrhosis, but lower ability for mild degrees of fibrosis [10]. However, TE has not shown 

enough accuracy to assess various stages of fibrosis. TE classifies liver diseases through 

liver stiffness that is correlated with shear wave speed in the liver. Hence, any other 

conditions that may increase liver stiffness measurement (LSM) other than fibrosis can 

mislead the diagnosis of liver fibrosis [11]. Shear wave elastography (SWE) may be more 

suitable than TE [12]. Shear wave velocity generated by focused US beams is directly 

related to liver stiffness [13]. The use of SWE as a non-invasive technique in the diagnosis 

and staging of liver fibrosis has been increasing. However, for patients with a high body 

mass index, erroneous values may be obtained, and the diagnosis of liver fibrosis can be 

confounded by edema, inflammation, cholestasis and congestion [14].

US thermal strain imaging (TSI) is a noninvasive technique that can be adopted for liver 

tissue characterization. It is based on the physical observation of changes in sound speed 

with temperature [15]. For tissue characterization, the change in temperature can be 

relatively small (≤ 3°C) compared to human body temperature (37°C). This change does not 

cause significant tissue thermal expansion [16]. Mahmoud et al. [17] showed the feasibility 

of US-TSI in the discrimination between fatty and normal livers using two US systems. 

Although the study demonstrated the feasibility of USTSI as a non-invasive technique for 

hepatic steatosis diagnosis, US-TSI can be easily affected by physiological motions such as 

respiratory and cardiac motions and/or thermal diffusion [16]. The complexity of current 

TSI systems and the precautions that must be taken for classifying liver fibrosis limit US-

TSI applicability in clinics compared to the CAD techniques that uses conventional B-mode 

images. Computer-aided diagnosis (CAD) methods based on conventional B-mode US 

images can improve the diagnosis of liver steatosis, decrease user dependency, and help 

quantifying percentage liver fats [18].

The progress in computer technology and machine learning has promoted the use of CAD 

systems in the clinical field. Feature extraction plays an important role in CAD system 

design due to its direct effect on the accuracy and computational time [18]. Some features 

can be evaluated by considering the spatial relationship between pixels over small 

neighborhoods [19] such as grey-level co-occurrence matrices (GLCM) [20], gray-level 

difference statistics (GLDS), gray-level run-length matrices (GLRLM), statistical feature 

matrices (SFM), local binary patterns (LBP) [21], etc. Another way to extract features is the 

transformation of images into other domains, followed by the analysis of the transform 

coefficients over different scales using multiresolution patterns. Examples of transform 

features are those of the Fourier power spectrum (FPS), discrete wavelet transform (DWT) 

[22], wavelet packet transform (WPT), Gabor wavelet transform (GWT), etc. In particular, 

WPT performs a multiresolution analysis in all frequency bands. Extracted WPT features are 
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robust since they contain valuable information in the middle and high frequency bands [23]. 

However, the transformation process itself costs additional computations and time.

Several CAD systems have been proposed for fatty liver classification. Ricardo and Sanches 

[24] used intensity and texture features to classify normal and fatty hepatic parenchyma 

using 10 subjects (20 images). A region of interest (ROI) of 128 × 128 pixels in size was 

selected manually. They achieved 95% overall accuracy using a Bayesian classifier. Wan and 

Zhou [25] applied WPT to classify normal and cirrhotic livers using the mean and energy 

features, and then applied SVM for classification to reach an accuracy of 85.5%. Virmani et 
al. [23] aimed to characterize normal and cirrhotic livers, and hepatocellular carcinoma 

(HCC) using SVM on 56 US images. The multiresolution wavelet packet texture descriptor 

was constructed from the mean, standard deviation, and energy, and achieved an accuracy of 

88.8%. Acharya et al. [26] trained a decision tree classifier using a combination of features 

based on the texture wavelet transform, and higher order spectra from 100 liver US images. 

An accuracy of 93.3% was achieved. Singh et al. [27] used a set of seven texture features, 

namely the spatial gray-level co-occurrence matrix, gray-level difference statistics, first-

order statistics, Fourier power spectrum, statistical feature matrix, Laws’ texture energy 

measures, and fractal features. Using the linear discriminant analysis (LDA), an accuracy of 

95% was achieved. Owjimehr et al. [28] used completed local binary patterns (CLBP) for 

the discrimination of fatty, normal, and heterogeneous livers. They selected the ROIs 

automatically and applied SVM and reached 89.66% accuracy. Later, Owjimehr et al. [29] 

used the same dataset and improved the classification technique using median, standard 

deviation, and interquartile range to reach an accuracy of 97.7%. Alivar et al. [30] used the 

same dataset with different feature descriptors of GLCM, CLBP, WPT, and Gabor filter 

banks and achieved 97.73% accuracy.

Quantitative ultrasound (QUS) techniques such as acoustic attenuation backscatter 

coefficient, speed of sound (SOS), envelope statistics, scatterer size or diameter, and tissue 

elasticity can be used for tissue characterization [31]. In particular, the mean scatterer 

spacing (MSS), which is the average spacing among coherent scatterers, provides a direct 

assessment of microstructures. For liver tissue characterization, the liver contains two types 

of scatterers including diffuse and quasi-periodic scatterers. Liver fibrosis alters the value of 

the MSS compared to normal livers. MSS can be evaluated using the wavelet transform 

directly from US images [31].

In this work, a different approach for CAD system design is proposed. WPT was applied to 

US B-mode images as a pre-processing step to produce a quarter-size approximation replica 

of the original image that will be used for further classification analyses. This approximation 

image includes the low-frequency components of the original image, which preserves major 

information needed for the proposed feature extraction and classification [32]. Most of the 

above-mentioned CAD techniques that use conventional US B-mode images are 

computationally expensive and consequently require prolonged computational time and 

power. A crucial factor that directly affects the computational power is the data size [33].

In this work, we investigate the feasibility of a computationally-efficient and manufacturer-

independent wavelet-based technique that can be used to characterize liver tissues and detect 
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fatty livers. The technique adopts quarter-size wavelet decompositions of US B-mode 

images for liver classification instead of using original images. Ex-vivo animal and in-vivo 
human experiments were performed using commercially available US machines to test the 

proposed CAD system on several datasets of liver images. Our goal is to reduce hardware 

complexity (memory space), computational power, and consequently processing time, while 

keeping the main information needed for accurate classification. The rest of the paper is 

organized as follows. Section 2 describes the methods including region-of-interest (ROI) 

selection, feature extraction, and classification methods. Then, experimental results are 

shown (Section 3) and discussed (Section 4). Finally, conclusions are given in Section 5.

2. Methods

The block diagram of the proposed fatty liver CAD system is described in figure 1. The 

system is divided into learning and testing stages. For each US B-mode image, a region of 

interest (ROI) is selected. Several features are extracted after applying two-level wavelet 

packet transform (WPT). A feature selection criterion is then applied to reduce the number 

of features and improve the computational efficiency for both training and testing images. A 

robust predictive model was built using supervised learning to classify fatty and normal liver 

images. In the following, the main components of the block diagram are described in detail. 

All algorithms were developed using MATLAB R2015b on a PC with a Core i5 processor 

and a 4GB RAM.

2.1. Image Acquisition

The proposed CAD system was trained to classify fatty and normal livers of both animals 

and humans. Two animal studies were conducted to acquire normal and fatty livers of mice. 

Animal studies were performed according to a protocol approved by the University of 

Pittsburgh Institutional Animal Care and Use Committee (IACUC), while the human pilot 

study was performed at the Endemic Medicine Department and Liver Unit, Faculty of 

Medicine, Cairo University. The Research Ethics Committee (REC) at Cairo University has 

approved the study protocol with IRB code (N-58–2016). Each patient signed an informed 

consent form.

2.1.1. Animal Data—US images of mice livers were acquired using a high-frequency 

linear US imaging transducer (13–24 MHz) (Vevo2100, FUJIFILM VisualSonics Inc., 

Canada) and the operating parameters were kept constant throughout experiments (center 

frequency: 21 MHz, dynamic range: 75 dB, and gain ~50%). Further details about the 

experimental setup can be found in [17]. The size of each image was 900×1200 pixels. The 

study was conducted using two different datasets collected in different experiments.

The first dataset is for ex-vivo mice livers embedded in gelatin (EXMLG) and consists of 

164 frames including 82 for training (46 control, 36 fatty) and 82 for testing (46 control, 36 

fatty). Control livers were extracted from 6 wild-type (C57B6) mice (7–13 weeks old) fed 

with normal diet, whereas fatty livers were extracted from 6 obese (ob/ob) mice (7–13 weeks 

old). These livers were embedded in 6% gelatin blocks with approximate dimensions of 13.5 

× 11.5 × 4.8 cm (G-2500, Sigma Aldrich Corp., St. Louis, MO) mixed with 1% cellulose 

(S3504, Sigma Aldrich Corp., St. Louis, MO) by weight in the role of US scatterers [17]. 
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Figures 2(a) and 2 (b) show, respectively, typical US images for control and fatty livers 

embedded in gelatin blocks.

The second dataset is for ex-vivo mice livers (EXML), where imaging was performed 

transcutanously right after euthanasia. This dataset consists of 1200 frames including 700 

images used for training (200 control, 500 fatty) and 500 images for testing (150 control, 

350 fatty). Control livers were extracted from 5 wild-type (C57BJ6) mice, while fatty livers 

were extracted from 4 (ob/ob) mice with various degrees of steatosis. Original frames were 

extracted as RF frames, then processed to obtain B-mode images. Figures 2(c) and 2(d) 

show sample US images of control and fatty livers, respectively, reconstructed from RF data.

2.1.2. Human Data—US images of human livers were acquired using a dual frequency 

convex US transducer (3.0–3.75 MHz) connected to US equipment (Famio5 portable, 

Toshiba Medical Systems Corporation, Japan). The operating parameters were kept constant 

throughout the experiments. The size of each image was 768 × 1366 pixels.

The dataset of in-vivo human livers (INHL) consists of 57 frames including 37 for training 

(15 control, 22 Fatty), and 20 for testing (10 control, 10 Fatty) from 23 human patients. 

Control liver images were acquired from 11 patients (5 men, 6 women) whose ages ranged 

from 25 to 49 years old, while fatty livers were imaged from 12 patients (5 men, 7 women) 

whose ages ranged from 29 to 56 years old. The body mass index ranged between 20 – 25 

kg / m2. Figures 2 (e) and 2 (f) show typical B-mode images for human control and fatty 

livers, respectively.

2.2. Region of Interest Selection

ROIs were selected away from non-homogenous structures like blood vessels and hepatic 

ducts. For reliable statistics, a proper ROI size must be selected. It has been reported that the 

minimum number of pixels needed for a proper ROI is about 800 pixels [34]. In another 

report, a ROI size of at least 1,000 pixels was recommended [35]. However, different sizes 

ranging from 10×10 [36], 30×30 [27], 64×64 [37] and 128×128 pixels [26] have been used 

for classification of liver diseases.

In this work, ROIs of equal physical dimensions were used. A ROI size of 3 mm × 2 mm 

was used for mouse livers. The average size of mice livers used in this study is 

approximately 15 mm × 5 mm. The same procedures were followed for ROIs in human 

livers, where a square region of 2 cm × 2 cm was used for an average size of human livers of 

approximately 9 cm × 9 cm [38]. This corresponds to ROI size of 60 × 160 pixels for animal 

images and 100 × 170 pixels for INHL images.

2.3. Image Pre-processing

A two-level WPT was applied using the Daubechies 6 wavelet. The approximation part of 

WPT was used to reduce the number of pixels required for feature calculations and 

consequently reduce the processing time, while keeping important information. The detailed 

part was neglected. Daubechies 6 is considered the most common wavelet family supporting 

orthonormal wavelets, which makes discrete wavelet analysis practicable [39]. Additionally, 

Daubechies wavelets provide higher signal-to-noise ratios and lower mean square error than 
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other wavelet families [40]. Dogra et al. compared different wavelet families on bone vessel 

fusion and reported that the Daubechies wavelets outperformed other wavelet families [41].

Each original US image (Figure 3(a)) is decomposed into 4 bands after applying WPT. The 

first band is the approximation part of the first level (Figure 3(b)) where the main 

information of the original image exists. Figure 4(c) shows the approximation part of the 

second-level of quarter-size the original image. It was observed that the details parts contain 

high-frequency components that may not add substantial information for discriminating 

benign and malignant tumors.

WPT is preferred in the analysis of nonstationary signals because the same frequency 

bandwidths can provide good resolution regardless of high and low frequencies [42]. There 

are two main reasons to extract features in the wavelet domain. First, textural properties of 

the US image can be analyzed easily in the decomposed image at different frequency levels. 

This textural information is much more reliable for the human visual system [23]. Second, 

the use of WPT sublevels reduces the computational cost of the classification technique 

since only the approximation (low-frequency) part of the image whose size is quarter of the 

size of the original image was used. This keeps the essential information required for feature 

extraction [25].

2.4. Feature Extraction

In conventional B-mode images, sonographers or radiologists may observe pathological 

changes qualitatively as a coarseness, inhomogeneity, or heterogeneity. To quantify these 

changes, a ROI within the liver is selected as previously explained and several features are 

calculated from the approximation part of WPT as will be described.

2.4.1. First-Order Gray Level Parameters (FOP)—According to clinical reports, a 

normal liver has relatively darker B-mode images compared to fatty or cirrhotic livers due to 

the uniform acoustic impedance [43]. Thus, the first-order gray level parameters of a normal 

liver image are supposed to be smaller than those of fatty or cirrhotic livers. These 

parameters are the mean, variance, skewness and kurtosis.

2.4.2. Gray - Level Co-occurrence Matrix (GLCM)—The GLCM is commonly used 

for estimating second-order textural features. There are more than 20 features that are 

typically calculated from the GLCM [44]. We selected features that consider the spatial 

relationship of pixels known as the gray-level spatial dependence matrix. These features 

include contrast, correlation, angular second moment, and homogeneity.

2.4.3. Local Binary Patterns (LBP)—Textural information encoded by means of local 

binary patterns (LBP) has also been applied to identify textural uniformity patterns of US 

images. LBP is a non-parametric gray-scale invariant texture analysis model [45]. LBP is 

computationally simple and efficient for texture analysis.

2.5. Feature Selection and Reduction

Feature selection is used to eliminate redundant and irrelevant features. Feature selection 

improves the classifier performance and provides faster and cost-effective models 
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throughout specific metrics calculated from the dataset to determine the best feature 

combination [46]. Wilcoxon rank-sum test is a statistical hypothesis test used to compare 

two interrelated samples on a solitary sample to evaluate whether their population means 

differ in terms of mean ranks [47]. We used this test in our work due to the non-parametric 

nature of data. Nonparametric methods do not require any assumptions to be made about the 

data format [48]. A low p-value (<0.05) indicates the rejection of the null hypothesis, which 

implies that the mean values of two classes are significantly different, and hence, the feature 

is significant [48].

The purpose of the dimensionality reduction techniques is to decompose a signal into 

significant components that are optimal for a given classification task. Principal component 

analysis (PCA) was adopted as one of the most popular dimensionality reduction techniques 

[49]. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly uncorrelated 

variables called principal components. The number of principal components is less than or 

equal to the number of original variables [50]. It explains the maximum amount of variance 

with the minimum number of principal components through projection of given data points 

in a higher-dimensional space into a lower-dimensional space, while preserving as much 

information as possible [49].

2.6. Classification

Classification models are predictive models built from an input dataset by adopting 

supervised, unsupervised, or manifold learning algorithms that help in identifying the class 

of a test dataset. The proposed technique is based on non-parametric supervised learning 

models such as kNN, linear SVM, kernel-based SVM and LDA. In this work, several 

classifiers were tested and compared.

The k-nearest neighbors (kNN) classifier is a non-parametric classifier that uses occurrence-

based learning to classify samples. The unclassified data is compared with the training data 

to determine the k-nearest neighbors. The class of the majority of the k-nearest neighbors is 

used to predict the class of a new sample [51].

Support vector machines (SVM) use information from two classes to determine a maximum-

margin hyperplane that distinguishes the two classes according to intuition and the probably 

approximately correct learning (PAC) framework [52]. SVM can efficiently apply non-linear 

classification kernels via mapping their inputs into high-dimensional feature spaces [53]. 

Linear SVM (LSVM) and kernel-based SVM were applied for non-linear classification. That 

kernels include the Gaussian radial basis function (RBF) kernel, the multilayer perceptron 

(MLP) kernel, and the quadratic kernel.

Linear discriminant analysis (LDA) is used to find a linear combination of features that 

characterizes or separates two or more classes of objects or events. LDA extracts low 

dimensional features of the most sensitive discriminant ability from high dimensional 

feature space [54].
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For each classifier, performance parameters such as accuracy, sensitivity, specificity, area 

under the curve (AUC), and the processing time were computed and compared to investigate 

the effect of using wavelet pre-processing in reducing the processing time. These 

performance parameters are defined as follows:

Sensitivity = True positive
∑condition positive = TP

TP+FN (2.7.1)

Specificity = True negative
∑condition negative = TN

FP+TN (2.7.2)

Accuracy = True positive+True negative
∑total population = TN+TP

TP+TN+FN+FP (2.7.3)

where for the true positive (TP) samples the disease is present and the test shows the 

presence of disease, for the true negative (TN) samples the disease is absent and the test 

shows the absence of disease, for the false negative (FN) samples the test shows the absence 

of disease but in fact the sample has the disease, and for the false positive (FP) samples the 

test shows the presence of disease but in fact there is no such disease [55].

The area under the receiver operator characteristic (ROC) is called the area under the curve 

(AUC). The curve is generated by plotting TP rates and FP rates at different threshold values 

[56]. The diagonal divides the ROC space. As the AUC approaches 1, the classifier becomes 

better [26].

3. Results

3.1. Wavelet Technique

In a pilot study using the kNN classifier applied on the EXMLG dataset, Daubechies wavelet 

was compared with the most common Wavelet families using the first coefficient for image 

decomposition. Figure 4 shows the results of classification accuracies, where Daubechies 

exhibited the highest accuracy of 92.49%, followed by Biorthogonal (91.02%), Coiflets 

(89.15%), Symlets (87.47%), and reverse Biorthogonal (83.70%). No significant difference 

was found in processing time. Additionally, in order to determine the optimum number of 

Daubechies moments/coefficients, the same experiment was performed using different 

number (N) of Daubechies moments/coefficients (dbN). It was observed that db6 exhibited 

the highest accuracy of 97.75 % (Figure 5) with no significant difference in time.

3.2. Experimental results

Table 1 summarizes the results of four experiments when the proposed CAD system was 

applied on different datasets of liver images with and without WPT. The kNN and MLP-

kernel SVM classifiers exhibited very good accuracies of 98.78% and 96.3%, respectively, 

using the original EXMLG dataset (without WPT). When WPT was applied, accuracies 

were slightly reduced by ~1% for both classifiers. However, there was a drastic reduction in 

the image classification times after incorporating WPT. The classification time was 0.4814s 
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when features were extracted from original US images, while it was reduced to one-third 

(0.1444s) when the same features were extracted from the approximation image (with WPT) 

using the kNN classifier. The MLP-kernel SVM classifier showed similar results. Using the 

EXML dataset, both classifiers exhibited similar performance to that of the EXMLG dataset, 

but with lower accuracies (85.74% using the kNN classifier) and longer classification times. 

However, a significant reduction was observed in classification time. The time was reduced 

from 0.5612s without WPT to 0.2903s with WPT. When the MLP-kernel SVM was applied 

to the EXMLG dataset, the frame classification time was reduced from 0.8296s to 0.3109 s 

without and with adopting WPT, respectively.

In a further experiment using the animal datasets, the EXMLG and EXML datasets were 

combined (EXMLG – EXML), where the EXMLG dataset was used for training and images 

from the EXML dataset were used for testing. There was not a noticeable change in the 

classification time compared to the EXMLG experiment. After applying WPT, a similar 

behavior was observed where the accuracy dropped slightly while there was a major 

reduction in the classification time without and with WPT. The classification accuracies 

when the kNN and MLP-kernel SVM were applied on the INHL dataset slightly decreased 

from 92.5% to 91.8%, and from 91.1% to 89.8%, without and with WPT, respectively. 

However, the computation time was significantly reduced to less than one-third (0. 1460s 

and 0. 1590s) when the WPT was applied using the kNN and MLP-kernel classifiers, 

respectively.

The ROC curves in Figure 6 (a) show the performance parameters when the six classifiers 

were applied on the EXMLG dataset w/o WPT. The kNN exhibited an AUC of 0.9988. At 

the optimal point, the sensitivity and specificity were 100% and 97.83%, respectively. For 

the LSVM, the AUC was 0.9245, and the specificity and sensitivity were 94.44 % and 

97.83%, respectively. When the MLP-kernel SVM was used, the AUC was 0.9988, and the 

specificity and sensitivity were 98.23% and 90.74%, respectively. For the RBF-kernel SVM, 

the AUC was 0.9994, and the specificity and sensitivity were 100 % and 97.32%, 

respectively. For the Quadratic-kernel SVM, the AUC was 0.9921, and the specificity and 

sensitivity were 98.23 % and 98.5%, respectively. For the LDA, the AUC was 0.9914, and 

the specificity and sensitivity were 83.44 % and 89.13%, respectively.

The ROC curves in figure 6 (b) show the performance parameters when the six classifiers 

were applied on EXML dataset w/o WPT. The kNN exhibited an AUC of 0.9177. At the 

optimal point, the sensitivity and specificity were 90% and 95.83%, respectively. For the 

LSVM, the AUC was 0.4330, and the specificity and sensitivity were 40.44 % and 55.83%, 

respectively. When the MLP-kernel SVM was used, the AUC was 0.9203, and the specificity 

and sensitivity were 78% and 98.74%, respectively. For the RBF-kernel SVM, the AUC was 

0.6620, and the specificity and sensitivity were 98 % and 67.32%, respectively. For the 

Quadratic-kernel SVM, the AUC was 0.6466, and the specificity and sensitivity were 82 % 

and 68.5%, respectively. For the LDA, the AUC was 0.4442, and the specificity and 

sensitivity were 89.44 % and 27.13%, respectively.

The ROC curves in figure 6 (c) show the performance parameters when the six classifiers 

were applied on INHL dataset w/o WPT. The kNN exhibited an AUC of 0.8250. At the 
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optimal point, the sensitivity and specificity were 60% and 90 %, respectively. For the 

LSVM, the AUC was 0.7792, and the specificity and sensitivity were 78.69 % and 90%, 

respectively. When the MLP-kernel SVM was used, the AUC was 0.8250, and the specificity 

and sensitivity were 60% and 90.23%, respectively. For the RBF-kernel SVM, the AUC was 

0.6333, and the specificity and sensitivity were 42 % and 100%, respectively. For the 

Quadratic-kernel SVM, the AUC was 0.7750, and the specificity and sensitivity were 

78.69 % and 90%, respectively. For the LDA, the AUC was 0.7583, and the specificity and 

sensitivity were 67.77 % and 90.32%, respectively.

The performance of different SVM kernel functions was compared when the EXML dataset 

was used as it was hardly separable by a linear plane. The accuracy and the processing time 

were evaluated for each kernel. All SVM kernel functions exhibited the same computational 

time. When the linear kernel (LSVM) was used (Figure 7(a)), the accuracy was 57%. When 

the MLP kernel was applied with the default scale of [1 –1] (Figure 7(b)), the accuracy 

increased to 75%.

4. Discussion

4.1. Implementation details

High performance classification performance is usually evaluated by memory cost, speed, 

and accuracy. Currently, many CAD systems for US-based liver classification are 

computationally and memory intensive, which limits their practicality and common use. For 

example, it is difficult to integrate resource-intensive algorithms into US devices for real-

time applications. In some resource-limited regions or countries, many lives were lost 

because of unavailability of accurate and low-cost fatty liver detection techniques and 

devices; high performance approaches consume much less resources than traditional 

approaches, and is vitally important to provide an affordable means for early detection of 

fatty liver disease [57].

This work investigated the feasibility of characterizing hepatic steatosis using a 

computationally-efficient wavelet-based CAD system. The technique was applied on 

conventional B-mode liver images of three datasets acquired using two different US systems. 

Two datasets of mice livers were acquired using a high-frequency small-animal imaging 

system, while the last dataset of human liver images was acquired using a clinical US 

system. Generally, it was observed that extracting features from US B-mode images after 

WPT preprocessing did not have a significant effect on the classification accuracy (~ 1% 

reduction), while there was a major reduction in the average processing time of more than 3 

folds. Without this WPT preprocessing, it would be necessary to search through the entire 

image, which could be more time consuming and a complex system would be needed for a 

manufacturer-independent noninvasive software solution.

To build a machine learning technique for classification, the training and testing datasets 

must be collected under the same conditions, but US imaging is operator-dependent. To 

demonstrate that the proposed technique minimizes the manufacturer and user dependencies, 

the experiments of this study were performed in two different places where datasets were 
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collected by different operators. The operating parameters (central frequency, gain, depth, 

dynamic range) were kept similar for animal studies.

Wavelets is a powerful tool that can be used for a wide range of applications including image 

de-noising, feature extraction, and face detection [58]. It can be used for image compression 

to remove redundancy in the data, where it determines which data is kept to enable image 

reconstruction using a smaller number of bits [56]. Doukas et al. [59] designed a Picture 

Archiving and Communication Systems (PACS) application designed for viewing DICOM 

compliant medical images using wavelet compression with ROI coding support on mobile 

devices. We also studied the usage of WPT as a classification feature not as a pre-processing 

step and we observed higher performance parameters of our proposed system versus using 

WPT coefficients as classification features.

4.2. Speed-accuracy tradeoff

The reduction in ultrasound classification accuracy associated with the reduction in the 

computational time cost is an example of the speed-accuracy tradeoff (SAT) [60]. This 

phenomenon, namely the covariance of the decision speed with the decision accuracy, is 

exhibited by living organisms such as insects, rodents, and primates [61]. Liu and Watanabe 

[62] argued for the importance of accounting for both accuracy and response time in 

perceptual learning experiments. Moreover, this tradeoff is demonstrated in artificial 

intelligent agents and has been receiving growing attention. For example, Collingwood and 

Wilkerson [63] analyzed the accuracy and efficiency tradeoffs of supervised machine 

learning systems for large-scale text classification problems, where the marginal 

improvements in performance may be outweighed by the additional time costs. Huang et al. 

[64] explored different deep learning schemes that balance speed, memory, and accuracy 

requirements for different applications and platforms. Also, Xie et al. [65] restructured 

complex deep learning architectures to achieve a better speed-accuracy tradeoff in video 

classification. For medical ultrasound imaging, the speed-accuracy tradeoff was investigated 

in the construction of ultrasound images [66], [67]. Careful consideration of this tradeoff 

should be made as big data and deep learning methodologies emerge in ultrasound signal 

processing. Our work is one stepping stone in this direction. We seek a balance between 

speed and accuracy by building an effective and efficient US classification system through 

determining how best to tradeoff model complexity with speed [68] via selecting the 

optimum level of db6. Figure 8 shows this tradeoff as the level of WPT increase the 

classification accuracy reduced with more than 4 % but the time reduction become minimal. 

So 2nd level of db6 was the optimum to give the balance between accuracy and 

computational time for classification.

The significance of the proposed features in classifying normal and fatty livers were 

assessed individually via the Wilcoxon rank-sum test (p<0.05). Features such as the mean, 

variance, contrast, correlation, angular second moment, homogeneity, and LBP exhibited p-

values < 0.001, while the p-values for skewness and kurtosis were 0.1749 and 0.4705, 

respectively. Both skewness and kurtosis were hence excluded.

This wavelet-based technique classified fatty livers in the EXMLG dataset within 0.1444 s 

with 97.75% accuracy and an AUC of 0.9988 using the kNN classifier. The sample size of 
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the EXML dataset was 1200 frames of mice livers acquired transcutaneously right after 

euthanizing the mice. Results supported our hypothesis that the application of WPT as a 

preprocessing step before feature extraction in combination with kNN shall reduce the 

computational time drastically while keeping other performance parameters almost the same 

and exhibited a frame characterization computation time in the range of milliseconds 

(0.2903 s). For human liver classification, the CAD system exhibited an accuracy of 91.80% 

and an average computational time of 0.146s.

One major challenge of the proposed technique is the reliability of the dataset used for 

building the machine learning system. The dataset can influence the system response as 

observed from the difference in performance parameters between the EXMLG and EXML 

datasets. This may have occurred because the EXML dataset was acquired from the US 

machine as RF frames, then we applied envelop detection and logarithmic compression to 

render B-Mode images rather than using conventional B-Mode images (EXMLG dataset). 

Hence, the accuracy was reduced from 98.78% to 85.74%. Also, the ROC curves in Figures 

6 (a) and 6 (b) showed how the AUC was reduced using EXMLG dataset compared to the 

EXML for all classifiers. This can be minimized via following the standard processing 

algorithms for B-mode reconstruction and/or incorporating large number of B-mode images 

from several US machines in the training and testing datasets.

Despite these limitations, one of the key findings of the proposed CAD technique is that 

conventional US liver images are the only input required. To the best of our knowledge, this 

study is considered the first to exploit the use of WPT as a pre-processing step not as a 

classification feature and it showed a superior effect in reducing the complexity of the 

system by making the entire process computationally less complex and cost effective. A high 

classification accuracy has been obtained (98.78%) with 164 samples within 0.15 second.

4.3. Comparison with the existing techniques

Table 2 compares the proposed technique with few recent studies that described various 

CAD techniques for liver image classification sorted by publication year. Ribeiro et al. [24] 

used intensity and texture features to classify normal and fatty hepatic parenchyma from 10 

subjects (20 images). ROI was selected manually of 128 × 128 pixels, achieving 95% overall 

accuracy using Bayesian classifier. Wan et al. [25] applied wavelet packet transform to 

classify normal and cirrhosis one using mean and energy features then applied SVM and got 

85.5%. Virmani et al. [23] aimed to characterize normal liver, cirrhotic liver and HCC using 

SVM from 56 US image. The multiresolution wavelet packet texture descriptor constructed 

from mean, standard deviation and energy were calculated and achieved accuracy of 88.8%. 

Acharya et al. [26] used a combination of features based on the texture wavelet transform, 

and higher order spectra from 100 liver US images using decision tree classifier. They were 

able to achieve 93.3% accuracy. Singh et al. [27] used a set of seven texture features which 

are: spatial gray level co-occurrence matrix, gray level difference statistics, first order 

statistics, Fourier power spectrum, statistical feature matrix, law’s texture energy measures 

and fractal features. Based upon the results of Linear Discriminative Analysis (LDA) they 

achieved accuracy of 95%. Owjimehr et al. [28] used CLBP for fatty, normal and 

heterogeneous liver discrimination. They selected the ROI fully automatically and applied 
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SVM then they got 89.66% accuracy. In the following year, the same group [29] used the 

same dataset and improved the classification technique using Median, standard deviation, 

and interquartile range and the accuracy was improved to 97.7%. Alivar et al. [30] used the 

same data set used by Owjimehr [28] with different feature descriptors GLCM, CLBP, 

Wavelet packet transform, Gabor filter bank and achieved 97.73% accuracy.

The proposed CAD system exhibited a superior accuracy using the EXMLG dataset. It was 

difficult to perform a fair comparison between our results and recently published CAD 

studies due to the differences in the sample size, target classes, cross-validation technique, 

and the evaluation criteria. To overcome this problem, based on the summery in table 2, the 

technique described by Owjimehr et al. [29] and Alivar et. al [30] showed the highest 

accuracy, so we implemented them. Table 3 describes the results of this comparison, where 

our algorithm achieved higher accuracy, sensitivity and specificity using both datasets 

compared to the technique by Owjimehr et al. [29] who reported superior performance 

parameters (97.7% Accuracy, 100% sensitivity) in their previous studies using their dataset. 

We tested their technique on our EXMLG and INHL datasets. WPT was applied as a pre-

processing step before feature extraction and showed a significant effect on reducing the 

computation time with minimal degradation in performance parameters. However, the 

processing time reported by Owjimehr et al. was shorter than the time taken by our 

technique. This was due the smaller number of features that Owjimehr et al. used. However, 

when WPT was applied to the method of Owjimehr et al., there was a major reduction in 

their computational time with a slight degradation in performance. This comparison 

demonstrates the tradeoff between the number of effective features and processing time as it 

is not favored to achieve a quicker decision with lower accuracy. Owjimehr et al.’s technique 

was slightly faster (0.1413s) than our proposed CAD system (0.1443s) since they are using a 

fewer number of features including only the median, standard deviation, and interquartile 

range that are very simple features. Whereas, the accuracy of our proposed technique was 

higher (91.8%) than the algorithm in [29] (88.6%).

Alivar et. al [30] combined the spatial and wavelet domains for feature extraction. GLCM 

and completed local binary pattern features were used as spatial domain features and a 

number of statistical features of 2-D wavelet packet transform sub-images which are the 

median, standard deviation, and interquartile range and 2-D Gabor filter banks transformed 

images as transform domain features with five frequencies and six orientations. As a result, 

there would be a feature vector with 62 elements that is attained from 30 Gabor transformed 

images and the original ROI image, totally 31 images that each has two features for Gabor 

filter bank. Ended up with a complex feature vector of 71 elements obtained from the spatial 

and transformed domains. Both spatial and transform domain based features are used in the 

classification, since they have positive effects on the classification accuracy. However, the 

complexity of the system increased and the processing time is the largest through all the 

technique. Still the extraction of all the feature from the transformed domain is more suitable 

due to massive reduction as ~ 3 folds.
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5. Conclusion

This study demonstrated the feasibility of a wavelet-based algorithm to detect hepatic 

steatosis using conventional US images combined with a computer-aided diagnostic system. 

The use of the second-level wavelet packet transform (WPT) of B-mode images for feature 

extraction utilized less memory and accelerated the classification process of liver images by 

a factor more than 3 folds compared to directly using B-mode images. Meanwhile, the 

algorithm using original B-mode image exhibited a high accuracy (98.8%), sensitivity 

(97.8%) and specificity (100%), and the classification time was reduced from 0.4818s to 

0.1444s using WPT and an accuracy of 97.75%, sensitivity (97%) and specificity (99.3%) 

compared to state-of-the-art methods. Additionally, the proposed CAD system demonstrated 

a vendor independency as it was tested using both animal and human datasets using two 

different US systems and several users. Such speed and accuracy may pave the road for 

implementing real-time algorithms for standard US scanners. Currently, an ongoing study on 

this technique focuses on developing an add-on smart software solution for characterizing 

liver tissues that can be used with a wide range of commercial US machines and can be used 

easily in clinical practice.
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Highlights

• This work develops a computationally-efficient technique to classify fatty 

livers using conventional B-mode ultrasound images.

• The technique relies on extracting features from the Wavelet domain using the 

approximation part of ultrasound images.

• The technique was tested ex vivo on mice livers using two different datasets 

and in vivo on human livers using different ultrasound machines.

• This technique shall improve the implementation of manufacturer-

independent real-time techniques for fatty liver classification.
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Figure 1: 
Block diagram of the proposed CAD system to classify normal and fatty liver using 

conventional ultrasound (US) B-Mode images. I/P is the training US images of EXMLG, 

EXML and INHL datasets, and I is the testing US images.
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Figure 2: Sample B-mode US images of different datasets for normal and control livers (L).
(a) control and (b) fatty mouse livers embedded in gelatin (G) of the EXMLG dataset, (c) 

control and (d) fatty mouse livers of the EXML dataset, and (e) control and (f) fatty human 

livers of the INHL dataset.
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Figure 3: 
Liver US B-mode images after applying wavelet packet decomposition: (a) Original image, 

(b) approximation coefficients of the first-level, (c) approximation coefficients of the 

second-level. Numbers beside each image indicate the image size in pixels (px)
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Figure 4: 
Accuracy for the most common wavelet families using kNN classifier
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Figure 5: 
Accuracy for different db coefficients
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Figure 6: 
The ROC curves of 6 classifiers applied on different datasets including (a) EXMLG (b) 

EXML (c) INHL.
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Figure 7: 
The separating plane between the two principal components (x1, x2) used for classification 

by SVM on the EXML dataset. (a) LSVM (b) Multilayer perceptron.
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Figure 8: 
Accuracy vs classification time trade-off for different db6 orders
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Table 1:

Performance evaluation with (w/) and without (w/o) WPT of four different experiments when the kNN and 

MLP-kernel SVM classifiers were used.

Data Set w/ & w/o WPT preprocessing MLP-kernel SVM kNN

Accuracy Classification
Time (s)

Accuracy Classification
Time (s)

EXMLG w/o 96.3% 0.5649 98.78% 0.4814

w/ 95.12% 0.1621 97.75% 0.1444

EXML w/o 76.25% 0.8296 85.74% 0.5612

w/ 72.00% 0.3109 84.23% 0.2903

EXMLG-EXML w/o 96.14% 0.5649 97.94% 0.4814

w/ 95.05% 0.1622 96.23% 0.1443

INHL w/o 91.10% 0.5512 92.50% 0.6600

w/ 89.80% 0.1590 91.80% 0.1460
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Table 2:

Summery of recent studies that presented various CAD techniques for liver image classification sorted by 

publication year

Author/Year Sample size Features Classifier (s) Accuracy

Riberiro et. al/2009 [24] 10 normal 10 fatty Intensity and texture feature Bayes classifier 95%

Wan and Zhou/2010 [25] 390 normal 200 cirrhosis Mean and Energy SVM 85.5%

Virmani et. al/2012 [23] 15 Normal 16 cirrhotic 25HCC Mean, standard deviation and 
energy

SVM 88.8%

Acharya et. al/2012 [261 58 abnormal 42 normal Texture, wavelet transform, and 
higher order spectra

Decision tree 
classifier

93.3%

Singh et. al/2013 [27] 40 Normal 60 Fatty GLCM, Gray Level Difference 
Statistics, Fourier Power Spectrum, 
Statistical Feature Matrix, Fractal 
Features

LDA 95%

Owjimehr et. al/2014 [69] 39 normal 30 fatty 19 
heterogeneous

CLBP SVM 89.66%

Owjimehr et. al/2015 [29] 39 normal 30 fatty 19 
heterogeneous

Median, standard deviation, and 
interquartile range.

SVM 97.7%

Alivar et. al/2017 [30] 39 normal 30 fatty 19 
heterogeneous

GLCM. CLBP, Wavelet packet 
transform Gabor filter bank

SVM 97.72%

The proposed technique 46 normal 36 Fatty FOP GLCM LBP kNN MLP-kernel 
SVM

98.78% 
97.56%
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Table 3:

Performance parameters of the proposed technique versus Owjimehr et al. [29] and Alivar et. Al [30] with and 

without applying WPT as a pre-processing step.

Dataset Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

w/o w/ w/o w/ w/o w/ w/o w/

Proposed technique EXMLG 98.78 97.75 97.8 97 100 99.3 0.4800 0.1443

INHL 92.5 91.8 93 92.7 91 90 0.6600 0.1480

Owjimehr et al. [29] EXMLG 95.5 95 96 95 96.5 95.2 0.5300 0.1413

INHL 89.2 88.6 90 89 89.4 89 0.6100 0.1140

Alivar et. al [30] EXMLG 98.84 98.02 100 99.02 99.7 98.2 5.236 2.782

INHL 94.5 93.8 95.6 95.2 96.3 95.8 5.489 2.258
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