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Abstract

All data are prone to error and require data cleaning prior to analysis. An important example

is longitudinal growth data, for which there are no universally agreed standard methods for

identifying and removing implausible values and many existing methods have limitations

that restrict their usage across different domains. A decision-making algorithm that modified

or deleted growth measurements based on a combination of pre-defined cut-offs and logic

rules was designed. Five data cleaning methods for growth were tested with and without the

addition of the algorithm and applied to five different longitudinal growth datasets: four

uncleaned canine weight or height datasets and one pre-cleaned human weight dataset

with randomly simulated errors. Prior to the addition of the algorithm, data cleaning based

on non-linear mixed effects models was the most effective in all datasets and had on aver-

age a minimum of 26.00% higher sensitivity and 0.12% higher specificity than other meth-

ods. Data cleaning methods using the algorithm had improved data preservation and were

capable of correcting simulated errors according to the gold standard; returning a value to

its original state prior to error simulation. The algorithm improved the performance of all data

cleaning methods and increased the average sensitivity and specificity of the non-linear

mixed effects model method by 7.68% and 0.42% respectively. Using non-linear mixed

effects models combined with the algorithm to clean data allows individual growth trajecto-

ries to vary from the population by using repeated longitudinal measurements, identifies

consecutive errors or those within the first data entry, avoids the requirement for a minimum

number of data entries, preserves data where possible by correcting errors rather than

deleting them and removes duplications intelligently. This algorithm is broadly applicable to

data cleaning anthropometric data in different mammalian species and could be adapted for

use in a range of other domains.
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Introduction

Since the turn of the millennium, there has been an explosion in the amount of data available

to the public, industry and academia. However, it has been acknowledged for over 50 years

that large, computer-based datasets contain errors due to transcription, coding and misunder-

standings [1]. Ignoring extreme errors has substantial adverse effects on data summaries [2],

statistical tests [3] and may invalidate results [4]. In studies identifying risk, errors increase the

variance of the covariate and lead to regression dilution [5]. To remove errors, data cleaning is

required: defined as the “process of detecting, diagnosing, and editing faulty data” [6]. Ideally,

data cleaning methods should prioritise data repair over data removal [7] and use computer

programs to improve reproducibility [8].

It is difficult to distinguish errors from genuine anomalies in certain types of data, such as

height and weight records, because biological data is heterogenous and may contain unusual

but plausible values. These datasets are variable in terms of how accurate they are, with authors

estimating error rates to be anything from 0.03% to 4.5% [9–13]. Since the first computational

cleaning method for longitudinal growth [14] there have been enormous technological

advancements, yet there remains no standardised data cleaning method. A review of 42 studies

including growth parameters reported that 41% did not describe data cleaning and a further

26% described methods that were not reproducible. The methods used by the remaining per-

centage were very different from each other and when tested on the same dataset detected

between 0.04% and 1.68% errors; a 42 fold difference [15].

Many researchers have used externally defined limits to identify implausible values, such as

outlier cut-offs based on arbitrary values, guides defined by the WHO and growth charts pub-

lished by the CDC [9,16–21]. However, cut-offs like these have poor specificity and can under-

estimate population change such as the increasing prevalence of obesity [22]. In other domains,

such as veterinary epidemiology, externally validated information is rarely available and is usu-

ally species or breed specific. Other authors have reported using internally defined cut-offs that

rely on the average to remove outliers. Simple examples include removing all values with a z-

score of less than or more than three [23] or five [24] or more than 1.5 box lengths away from

the 25th or 75th percentile using Tukey’s method [25]. This approach has been enhanced by add-

ing age bins [26] or algorithms [27] to account for age-related shifts in weight. However, these

methods are specific to the studies they were designed for and rely on population averages,

which are distorted by extreme values and do not account for individual variation.

Longitudinal data cleaning methods (those that consider an individual’s other data points)

are becoming more common but are widely variable. SITAR (Superimposition by Translation

And Rotation) [28] and the ‘Outliergram’ [29] are visualisation methods that allow individual

trajectories to be viewed but are specific to each dataset they are applied to and require subjec-

tive judgements to be made, which can be time consuming when applied to large datasets.

Algorithms that examine the change between two measurements are simple to apply in com-

parison with many longitudinal methods but are limited by poor specificity and are not cable

of identifying consecutive errors [30]. Daymont and colleagues designed an automated data

cleaning technique based on exponentially weighted moving average standard deviation scores

combined with a decision-making algorithm to identify implausible growth data. The method

deals with erroneous duplications, aims to correct errors rather than exclude them and has

been validated by simulating errors and obtaining physicians reviews [12]. However, despite

high sensitivity (97%), the method could not detect errors in the first or last measurements or

in highly erroneous individuals and the specificity of the method was relatively low (90%). A

study that compared this method with a regression-based weight change model [31] and

another method based on standard deviation scores [32] demonstrated that all methods had
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good specificity (>98%) and poor sensitivity (<19%) [33]. Daymont and colleagues’ method

performed the worst, indicating it is not as effective on other datasets as the one it was origi-

nally designed for. Other longitudinal methods have had similar limitations. Yang and Hutch-

eon [11] published a conditional growth percentile method that predicts a weight percentile at

time t based on the individual’s weight percentile at time t-1 but cannot be used on an individ-

ual’s first measurement and does not identify consecutive errors. Shi, Korsiak, & Roth [34]

used a jack-knife residual method, which had a higher sensitivity and specificity when com-

pared to Yang and Hutcheon’s method but could only be used on individuals with at least four

measurements. Linear mixed-effects models have been used to identify erroneous weight mea-

surements in human adults [35] and have been adapted for use in growth data by combining

sex-stratified, mixed effects, linear spline regression models with externally defined z-score

cut-offs [13]. However, the method is unvalidated so it is difficult to assess its effectiveness and

it has many of the limitations of other approaches; it does not address duplications, it removes

errors rather than corrects them and it is specific to the study population.

In summary, despite numerous attempts by many researchers to produce a data cleaning

method capable of detecting erroneous growth values, there is no ‘gold standard’ and many

methods have limited applicability. Furthermore, few data cleaning methods [12, 32] for

growth address duplication in addition to error, which is well-documented to be an issue in

electronic databases [36–38]. Based on these observations, our primary aim was to develop an

adaptable, computer-based data cleaning algorithm that could be applied to a variety of growth

datasets. We required the algorithm to use pre-applied cut-offs to influence decision making,

to include de-duplication, to prioritise data repair over data removal, to be effective on conse-

cutive errors and to operate despite the number of data entries per individual. Our secondary

aim was to simulate different types of artificial errors into a pre-cleaned dataset and compare

the data preservation, sensitivity, specificity and convergence of five commonly used data

cleaning approaches with and without the algorithm.

In this paper, we describe the five datasets we used to test our algorithm and report how we

identified and subsequently simulated errors in this data. We demonstrate that our novel data

cleaning algorithm improves the performance of five commonly used methods for identifying

implausible values in growth data. Finally, we apply the method with the highest performance

to all five datasets.

Materials and methods

We follow the STROBE [39] and RECORD [40] Statements in reporting this study. All data

analysis was carried out using R statistical software. An example of the code, including the spe-

cific packages and functions used for this study, is available at https://github.com/

CharlotteWoolley/growth_cleanR.

Data sources

A brief description of the study design, data collection, cohort details and data accessibility of

the five datasets used are given in Table 1. Dogslife was approved by the University of Edin-

burgh Veterinary Ethical Review Committee (Ref: 7.5.09) and Human Ethical Review Com-

mittee (Ref: HERC_161_17). Further detailed information about Dogslife data collection is

given in S1 File. The Small Animal Veterinary Surveillance Network (SAVSNET), Banfield

and Cohort and Longitudinal Studies Enhancement Resources (CLOSER) data were obtained

from third party sources and the information for their relevant ethical approvals and data col-

lection methods can be obtained from the relevant citations given in Table 1. CLOSER data is

shown in Fig 1 and all other data are shown in S1 to S4 Figs.
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Error and duplication identification

All four of the datasets that were not pre-cleaned contained evidence of erroneous measure-

ments and duplications. Suspected errors were identified by manually and visually examining

the datasets for biologically implausible values, patterns (for example, where the incorrect unit

had been used) and common typing discrepancies. Duplicate entries were identified as mea-

surements that shared an individual’s identity and were entered on the same date. Removing

duplications by keeping only the most recent data entry in a set of duplicates had an impact on

the mean and standard deviation of the growth measurements in all datasets but was not suffi-

cient to clean the data alone. This preliminary examination of the data created the basis for the

design of our data cleaning algorithm. Table 2 describes the effect of removing duplications on

the size, mean and standard deviation of the datasets.

Error and duplication simulation in CLOSER data

CLOSER data was pre-processed and cleaned by the CLOSER authors prior to our receival of

the data. In brief, subsets of the National Child Development Study, the 1970 British Cohort

Study and the Millennium Cohort Study were selected based on bias-minimising criteria.

They were merged and cleaned in Stata statistical software by replacing missing data where

possible, attempting to correct for previously over-cleaned measurements and removing any

data that were regarded as unaccountable or biologically implausible. Weight and height mea-

surements were deemed as biologically implausible by using a combination of cut-offs (e.g.

Table 1. Description of the study design, data collection and processing, cohort details and data accessibility for longitudinal height or weight measurements in

Dogslife, SAVSNET, Banfield and CLOSER datasets.

Details Dogslife SAVSNET Banfield CLOSER

Study design A longitudinal, online

study of the

morphology, lifestyle

and health of pedigree

UK Kennel Club

registered Labrador

Retrievers in the UK

[41]

A structured health surveillance

program for UK companion animals

through the collection of laboratory

and veterinary clinical records [42]

A large-scale network of more than

1000 veterinary hospitals based

primarily in the US that store

electronic records from veterinary

consultations [43]

A consortium of longitudinal studies

based in the UK. Data used was

harmonised from the 1958 National Child

Development Study, the 1970 British

Cohort Study and the Millennium Cohort

Study [21, 44–49]

Data type Owner-reported digital

questionnaires

Digital records of veterinary

consultations from 387 practices

Digital records of veterinary

consultations from 652 hospitals

A combination of self-reports and data

collected by health and scientific

professionals

Species Dog Dog Dog Human

Breed

classification

UK Kennel Club

registered Labrador

Retrievers

UK self-classified Labrador

Retrievers

US self-classified Labrador Retrievers _ _ _

Data collection

period

July 2010 to June 2017 April 2014 and September 2017 October 1994 to March 2013 Various [30–36]

Data condition Raw/uncleaned Raw/uncleaned Raw/uncleaned Pre-processed/cleaned

Measurement

type

Weight Height Weight Weight Weight

Age of cohort

(Mean ± SD)

1.65 ± 1.55,

(0.01–7.41)

0.71 ± 0.53,

(0.01–5.26)

1.70 ± 1.88,

(0.04–13.99)

0.70 ± 0.51,

(0.00–2.00)

16.63 ± 15.80,

(0.00–51.17)

Data

accessibility

Available to

download: https://doi.

org/10.7488/ds/2569

[50]

Available on request:

https://www.liverpool.ac.uk/savsnet/

using-savsnet-data-for-research/

Available on request: https://doi.org/

10.1371/journal.pone.0182064 [26]

Available to

download: http://doi.org/10.5255/

UKDA-SN-8207-1 [44]

The age of the cohort describes the mean plus or minus the standard deviation followed by the range of the age in years of individuals in the study.

https://doi.org/10.1371/journal.pone.0228154.t001
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over 250kg) and scatter plot visualisation [21]. After we received the data, it contained no out-

liers or duplications upon examination.

To accurately simulate an unclean dataset so that we could test the sensitivity and specificity

of various data cleaning methods with and without our algorithm, inaccuracies and duplica-

tions were randomly introduced to the CLOSER data. For all simulations, 2.5% of the data was

randomly selected, duplicated once and added back to the data. A further 2.5% of this data was

again randomly selected, duplicated twice and added back to the data. Twelve types of error

were simulated by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, con-

verting to the metric and imperial units, transposing the number (reversing the order of two

digits) or selecting a random number between 0.0001 and 500. Errors were simulated for 0%,

0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20% and 50% of the data, where random number errors

comprised between 0% and 100% (in 10% intervals) of the total errors and other errors made

up the remaining percentage in equal proportions. This addition of 0% error rates allowed ran-

dom and fixed errors to be simulated separately and in combination with each other. Sensitiv-

ity was calculated as the percentage of simulated (true-positive) measurement errors that were

correctly identified and specificity was calculated as the percentage of non-simulated (true-

negative) measurements that were correctly identified. We report CLOSER weights with simu-

lated duplications and 1% simulated errors because we estimated that this was a realistic error

rate for an unclean dataset based on previous research. We also report the average values

across all different error simulations to demonstrate the applicability of methods to datasets

with very low or high error rates. CLOSER weights prior to error simulation, with simulated

duplications and 1% simulated errors (50% random and 50% fixed) and post-cleaning are

shown in Fig 1.

Fig 1. Weights of humans by age in CLOSER data without simulated duplications and errors (a), with simulated

duplications and 1% errors prior to data cleaning (b) and with simulated duplications and 1% errors after data

cleaning with the NLME-A method (c). Duplications were simulated by randomly selecting 2.5% of the data and

duplicating it once, followed by randomly selecting a further 2.5% of the data and duplicating it twice. Simulated errors

were made up of 50% random errors and 50% fixed errors. Random errors were simulated between the values of

0.0001 and 500. Fixed errors comprised of manipulating measurements by multiplying and dividing by 10, 100 and

1000, adding 100 and 1000, converting to the metric and imperial units and transposing the number.

https://doi.org/10.1371/journal.pone.0228154.g001

Data cleaning in growth data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228154 January 24, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0228154.g001
https://doi.org/10.1371/journal.pone.0228154


Data cleaning algorithm

A five-step data cleaning algorithm (see Fig 2) was designed to improve the performance of

five standard data cleaning methods (see sections below), to correct, delete or retain measure-

ments that were suspected to be erroneous and to preserve data where possible.

There were several definitions that had to be made based on the chosen data cleaning method

prior to the application of the algorithm. Throughout, the algorithm required outliers to be

defined by lower and upper measurement prediction limits. For steps 2 and 3, exact measurement

predictions needed to be defined so that logical decisions using the most likely values could be

made. In step 3, numbers were not transposed when the difference between the original and trans-

posed numbers was 9 because we considered this value to be a biologically plausible deviation

from the prediction limits in these datasets. For step 4, the largest predicted size change between

two measurements was defined as the difference between the lower measurement prediction limit

of the first data point and the upper measurement prediction limit of the second data point. For

step 5, implausible measurements based on knowledge of the subject area needed to be defined.

For dog weights, implausible measurements were considered as less than 0.5 kg and more than 90

kg and for dog heights, less than 3 cm and over 90 cm. For human weights, the upper limit was

250kg for all ages and two lower limits were set to account for premature births: less than 0.5 kg

under the age of five years old and less than 10 kg for ages five years old and older.

Data cleaning methods with and without the addition of our algorithm

General cut-off and general cut-off with algorithm. Outliers were defined in the same

manner as for implausible measurements in step 5 of our data cleaning algorithm. In the gen-

eral cut off (GCO) method, duplicates were removed by keeping only the most recent data

entry in a set of duplicates and outliers were deleted. In the general cut off with algorithm

Table 2. Description of the data entries, individuals, data entries per individual, mean and standard deviation of the longitudinal height or weight measurements

in Dogslife, SAVSNET, Banfield and CLOSER data with and without simulated duplications and 1% errors before and after removal of duplicated measurement

records.

Details Dogslife SAVSNET Banfield CLOSER

Weight Height Original

pre-cleaned data

With simulated duplications and errors

Before duplication removal
Data entries 43 421 28 012 49 893 17 447 236 564 255188

Individuals 5622 5521 5195 1974 42 803 42 803

Data entries per individual 17.52 ± 12.35,

1–76

9.01 ± 5.81,

1–59

13.56 ± 9.82,

1–74

10.37 ± 4.38,

5–32

6.13 ± 1.70,

1–9

6.75 ± 2.14,

1–19

Mean ± SD 25.71 ± 69.77 47.90 ± 12.50 23.72 ± 18.26 21.32 ± 10.65 41.03 ± 30.20 63.61 ± 1135.70

After duplication removal
Data entries 37 482 23 498 44 362 17 313 _ _ _ 236 564

Individuals 5622 5521 5195 1974 _ _ _ 42 803

Data entries per individual 14.79 ± 10.12, (1–58) 7.00 ± 3.74,

(1–27)

10.55 ± 5.13,

(1–51)

10.28 ± 4.34,

(3–32)

_ _ _ 6.13 ± 1.70,

(1–9)

Mean ± SD 25.36 ± 52.38 48.36 ± 11.91 23.70 ± 19.01 21.31 ± 10.65 _ _ _ 65.42 ± 1179.51

Duplications were simulated by randomly selecting 2.5% of the data and duplicating it once, followed by randomly selecting a further 2.5% of the data and duplicating it

twice. Simulated errors were made up of 50% random errors and 50% fixed errors. Random errors were simulated between the values of 0.0001 and 500. Fixed errors

comprised of manipulating measurements by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, converting to the metric and imperial units and

transposing the number. Data entries per individual describes the mean plus or minus the standard deviation followed by the range of the number of data entries

inputted by each individual in the study. The mean ± SD describes the mean plus or minus the standard deviation of the growth measurements

https://doi.org/10.1371/journal.pone.0228154.t002

Data cleaning in growth data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228154 January 24, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0228154.t002
https://doi.org/10.1371/journal.pone.0228154


(GCO-A) method, the measurement prediction was set as the average measurement

defined by the American Kennel Club Labrador Retriever weight and height breed standards

[51] and the Office for National Statistics UK average weight statistics [52] and the algorithm

Fig 2. A five-step data cleaning algorithm for growth data that uses pre-defined measurement predictions and

prediction limits to identify which measurements are likely to be erroneous and to make appropriate corrections and

deletions.

https://doi.org/10.1371/journal.pone.0228154.g002
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was applied to the data to make appropriate modifications and deletions in a step-by-step

manner.

Standard z-score cut-off and standard z-score cut-off with algorithm. Outliers were

defined as those with a z-score with an absolute value of greater than 3; otherwise described as

values that were more than three standard deviations away from population mean. In the stan-

dard z-score cut-off (SZCO) method, duplicates were removed by keeping only the most

recent data entry in a set of duplicates and outliers were deleted. In the standard z-score cut-

off with algorithm (SZCO-A) method, the measurement prediction was set as the mean popu-

lation measurement for that dataset and the algorithm was applied to the data to make appro-

priate modifications and deletions in a step-by-step manner.

Temporal z-score cut-off and temporal z-score cut-off with algorithm. Data were

divided into age category bins from the minimum to the maximum age in the dataset. Age cat-

egory bins were 30 days for dogs and 365 days for humans unless there were less than 100 data

entries in that category, in which case the time period was increased by the appropriate age cat-

egory bin until there were at least 100 data entries in each category. Outliers were defined as

those with a z-score with an absolute value of greater than 3 within each age category. In the

temporal z-score (TZCO) method, duplicates were removed by keeping only the most recent

data entry in a set of duplicates and outliers were deleted. In the temporal z-score with algo-

rithm (TZCO-A) method, the measurement prediction was set as the mean population mea-

surement for that dataset and the algorithm was applied to the data to make appropriate

modifications and deletions in a step-by-step manner.

Non-linear regression model cut-off and non-linear regression model cut-off with algo-

rithm. We applied non-linear modified Gompertz regression models and a non-linear

asymptotic regression model to the uncleaned weight and height data to provide measurement

predictions. For further details of model setup and fitting, please refer to S2 File, S1 Table and

S2 Table. Outliers were defined as measurements outside of the population predicted value

plus or minus four times the standard deviation because values that exceed this boundary are

considered ‘far outliers’ according to statistical convention [53]. In the non-linear regression

cut-off (NLR) method, duplicates were removed by keeping only the most recent data entry in

a set of duplicates and outliers were deleted. In the non-linear regression cut-off with algo-

rithm (NLR-A) method, the algorithm was applied to the data to make appropriate modifica-

tions and deletions in a step-by-step manner.

Non-linear mixed effects model cut-off and non-linear mixed effects model cut-off with

algorithm. We applied non-linear modified Gompertz mixed effects models and a non-lin-

ear asymptotic mixed effects model to the uncleaned weight and height data to provide mea-

surement predictions. For further details of model setup and fitting, please refer to S2 File, S1

Table and S2 Table. The data was divided into age category bins as described in the TZCO

method, data was simulated for each ID and sex at the mean age of each age category and mea-

surement predictions were calculated for each simulation. The variation due to random effects

was estimated as four times the standard deviation of these measurement predictions [53]. The

residual variation was estimated as four times the ‘smoothed’ (using local regression) standard

deviations of the residuals at each age category. Individual prediction intervals were estimated

as the measurement prediction including random effects plus or minus the estimated residual

variation. Where individual predictions were not possible, population prediction intervals

were estimated as the measurement prediction for the population plus or minus the estimated

variation of random effects in addition to the estimated residual variation. Outliers were

defined as measurements that were outside of the individual prediction intervals when avail-

able and population prediction intervals when not available. In the non-linear mixed effects

model cut-off (NLME) method, duplicates were removed by keeping only the most recent data
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entry in a set of duplicates and outliers were deleted. In the non-linear mixed effects model

cut-off with algorithm (NLME-A) method, the algorithm was applied to the data to make

appropriate modifications and deletions in a step-by-step manner.

Results

Comparison of the effect of different data cleaning methods on uncleaned

datasets

Table 3 compares the effect of the five data cleaning approaches with and without our algo-

rithm on the mean, standard deviation and preservation of data in longitudinal growth mea-

surements from Dogslife, SAVSNET and Banfield. Most data cleaning methods resulted in

data that had different means and standard deviations than the uncleaned data. The NLME

method reduced the variation the most in Dogslife height and weight data, while the TZCO-A

method reduced the variation the most in SAVSNET and BANFIELD weight data. The

GCO-A method resulted in the highest or joint highest data preservation out of all methods in

all datasets. Dogslife heights had the lowest percentage of post-cleaning data preservation

(80.39% to 83.61%) whilst Banfield weights had the highest (98.74% to 99.23%).

Comparison of the effect of different data cleaning methods on CLOSER data with sim-

ulated duplications and 1% simulated errors. Table 4 compares the effect of the five data

cleaning approaches with and without our algorithm on the mean, standard deviation, preserva-

tion of data and the sensitivity and specificity of outlier detection in longitudinal growth mea-

surements from CLOSER data with simulated duplications and 1% simulated errors. All data

cleaning methods resulted in different means and standard deviations than the data with simu-

lated duplications and 1% simulated errors. The NLME-A method resulted in a mean and stan-

dard deviation closer to the original data without simulated errors and duplications (0.07kg less

than the original mean and 0.03kg less than the original standard deviation) than any other

method. The GCO-A method resulted in the highest data preservation, the NLME-A method

had the highest sensitivity and the NLR-A method had the highest specificity.

Table 3. The mean, standard deviation and preservation of data (PD) of five data cleaning approaches with and without an algorithm (A) compared to uncleaned

longitudinal growth measurements in Dogslife, SAVSNET and Banfield data.

Method Dogslife SAVSNET Banfield

Weight Height

Mean ± SD PD (%) Mean ± SD PD (%) Mean ± SD PD (%) Mean ± SD PD (%)

Uncleaned 25.71 ± 69.77 100.00 47.90 ± 12.50 100.00 23.72 ± 18.26 100.00 21.32 ± 10.65 100.00

GCO 24.52 ± 8.80 86.20 48.48 ± 11.20 83.33 23.57 ± 9.93 88.90 21.31 ± 10.62 99.20

GCO-A 24.53 ± 8.82 86.33 48.46 ± 11.20 83.61 23.58 ± 9.92 88.91 21.31 ± 10.62 99.23

SZCO 24.57 ± 9.21 86.26 48.56 ± 10.92 83.00 23.57 ± 9.93 88.90 21.28 ± 10.59 99.15

SZCO-A 24.52 ± 8.81 86.26 48.39 ± 10.92 83.54 23.57 ± 9.92 88.91 21.28 ± 10.58 99.21

TZCO 24.46 ± 8.71 85.92 48.85 ± 10.50 81.91 23.54 ± 9.86 88.41 21.29 ± 10.58 98.80

TZCO-A 24.45 ± 8.68 86.30 48.69 ± 10.54 83.54 23.52 ± 9.84 88.91 21.29 ± 10.57 99.21

NLR 24.47 ± 8.69 86.11 48.99 ± 10.41 81.45 23.57 ± 9.93 88.90 21.30 ± 10.62 99.21

NLR-A 24.46 ± 8.70 86.32 48.96 ± 10.39 83.57 23.57 ± 9.92 88.91 21.30 ± 10.62 99.21

NLME 24.46 ± 8.63 85.49 49.22 ± 10.05 80.39 23.58 ± 9.91 88.51 21.31 ± 10.61 98.74

NLME-A 24.45 ± 8.66 86.10 49.25 ± 10.10 83.26 23.57 ± 9.91 88.77 21.30 ± 10.61 99.08

The mean ± SD describes the mean plus or minus the standard deviation of the growth measurements. The preservation of data (PD) describes the percentage of the

original data that was preserved.

https://doi.org/10.1371/journal.pone.0228154.t003
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Gold standard (GS) corrections during data cleaning can be defined as modifying an error

according to the complementary method to which it was introduced. For example, the GS cor-

rection for an error that had been induced by multiplying a value by 1000 would be to divide

the error by 1000 and for an induced random error it would be any modification to that mea-

surement. Table 5 below reports the percentage of GS corrections made by the algorithm-

Table 4. The mean, standard deviation, preservation of data (PD), sensitivity and specificity of five data cleaning approaches with and without an algorithm (A)

compared to uncleaned longitudinal growth measurements in CLOSER data with and without simulated duplications and 1% errors.

Method Mean ± SD PD (%) Sensitivity (%) Specificity (%)

Pre-cleaned without simulations 41.03 ± 30.20 _ _ _ _ _ _ _ _ _

Uncleaned with simulations 63.61 ± 1135.70 100.00 0.00 100.00

GCO 41.34 ± 30.86 92.15 56.38 99.96

GCO-A 41.43 ± 30.82 92.70 59.85 99.99

SZCO 43.39 ± 57.54 92.64 6.10 99.96

SZCO-A 41.32 ± 30.79 92.27 60.05 99.99

TZCO 42.61 ± 47.84 92.56 14.71 99.95

TZCO-A 41.28 ± 30.77 92.33 61.52 99.99

NLR 41.09 ± 30.39 92.18 53.51 99.95

NLR-A 41.10 ± 30.35 92.57 71.93 100.00

NLME 40.94 ± 30.16 91.64 86.00 99.75

NLME-A 40.96 ± 30.17 92.45 90.55 99.85

Duplications were simulated by randomly selecting 2.5% of the data and duplicating it once, followed by randomly selecting a further 2.5% of the data and duplicating it

twice. Simulated errors were made up of 50% random errors and 50% fixed errors. Random errors were simulated between the values of 0.0001 and 500. Fixed errors

comprised of manipulating measurements by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, converting to the metric and imperial units and

transposing the number. The mean ± SD describes the mean plus or minus the standard deviation of the growth measurements. The preservation of data (PD) describes

the percentage of the original data that was preserved. Sensitivity was calculated as the mean percentage of simulated (true-positive) measurement errors that were

correctly identified. Specificity was calculated as the mean percentage of non-simulated (true-negative) measurements that were correctly identified.

https://doi.org/10.1371/journal.pone.0228154.t004

Table 5. The percentage of gold standard corrections of errors induced into CLOSER data with simulated duplications and 1% errors using the algorithmic data

cleaning methods.

Induced error type GS error correction GCO-A SZCO-A TZCO-A NLR-A NLME-A

Random Any 45.69 0 7.52 59.80 53.92

Transpose Transpose 0 0 1.37 0 24.66

/10 x10 33.91 0 5.22 55.65 84.35

/100 x100 59.48 38.79 61.21 87.07 84.48

/1000 x1000 65.52 65.52 90.52 90.52 90.52

x10 /10 33.62 0 1.72 0 47.41

x100 /100 28.45 0 0 0 44.83

x1000 /1000 35.34 0 0 0 47.41

+100 -100 0 0 1.72 9.48 18.97

+1000 -1000 41.38 0 23.28 83.62 83.62

Metric Imperial 0.86 0 0 0 22.41

Imperial Metric 0 0 0 8.62 42.24

Average across all errors 28.69 8.69 16.05 32.90 53.74

Duplications were simulated by randomly selecting 2.5% of the data and duplicating it once, followed by randomly selecting a further 2.5% of the data and duplicating it

twice. Simulated errors were made up of 50% random errors and 50% fixed errors. Random errors were simulated between the values of 0.0001 and 500. Fixed errors

comprised of manipulating measurements by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, converting to the metric and imperial units and

transposing the number. Gold standard (GS) corrections are defined as modifying a simulated error according to the complementary method to which it was introduced

https://doi.org/10.1371/journal.pone.0228154.t005
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based methods for the different error types in the CLOSER data with simulated duplications

and 1% simulated errors. Non-algorithm-based methods are not reported as they are not capa-

ble of making corrections. The NLME-A method made more or equivalent GS corrections

than all other methods in all error types except in random errors, and divide by 100 errors,

where it made 5.88% and 2.59% fewer GS corrections respectively than the NLR-A method.

The mean percentage of GS corrections across all error types was highest in the NLME-A

method.

Comparison of the mean effect across different rates and types of simulated errors and

duplications of different data cleaning methods on CLOSER data. Table 6, Fig 3 and Fig 4

compare the mean preservation of data, sensitivity and specificity of outlier detection and con-

vergence rate across different rates and types of simulated errors and duplications of the five

data cleaning approaches with and without our algorithm in longitudinal growth measure-

ments from CLOSER data. The mean convergence rate across the different rates and types of

simulated errors and duplications for all methods was 100% except for the NLME and

NLME-A methods, for which it was 76.36%. The SZCO and TZCO methods were the most

variable in terms of mean sensitivity across different rates and types of simulated errors and

duplications and did not perform well at high error rates and low proportions of randomness.

Conversely, the GCO method had a relatively consistent mean sensitivity across all different

rates and types of simulated errors and duplications. The mean sensitivity across different

rates and types of simulated errors and duplications of the NLME-A method was superior to

all other methods when it converged, and when it did not converge the NLME method had the

highest mean sensitivity across different rates and types of simulated errors and duplications.

The addition of our data cleaning algorithm improved the mean sensitivity across different

rates and types of simulated errors and duplications in all methods. Removing duplications

alone led to very poor mean sensitivity (0.93%). The overall mean specificity across different

Table 6. The mean preservation of data (PD), sensitivity, specificity and convergence rate across different rates and types of simulated errors and duplications of

uncleaned, de-duplicated and data cleaned with five data cleaning approaches with and without our algorithm (A) for longitudinal growth measurements from

CLOSER data.

Method Sensitivity (%) Specificity (%) PD (%) Convergence rate (%)

Uncleaned 0.00 100.00 100.00 100.00

De-duplicated 0.93 99.34 92.70 100.00

GCO 57.01 99.34 87.38 100.00

GCO-A 59.85 99.87 92.70 100.00

SZCO 11.02 99.33 92.28 100.00

SZCO-A 60.39 99.57 87.78 100.00

TZCO 25.08 99.29 92.04 100.00

TZCO-A 64.78 99.56 87.93 100.00

NLR 54.03 99.33 87.62 100.00

NLR-A 71.35 99.94 91.47 100.00

NLME 80.03 99.46 88.96 76.36

NLME-A 87.71 99.88 91.76 76.36

Errors were simulated for 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20% and 50% of the data. Random errors were simulated between the values of 0.0001 and 500, for

0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the overall errors, where fixed errors made up the remaining percentage of errors. Fixed errors

comprised of manipulating measurements by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, converting to the metric and imperial units and

transposing the number. The preservation of data (PD) describes the percentage of the original data that was preserved. Sensitivity was calculated as the mean

percentage of simulated (true-positive) measurement errors that were correctly identified. Specificity was calculated as the mean percentage of non-simulated (true-

negative) measurements that were correctly identified. The convergence rate was calculated as the mean percentage of times a method was able to execute correctly.

https://doi.org/10.1371/journal.pone.0228154.t006
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Fig 3. The sensitivity of uncleaned, de-duplicated data cleaned with five data cleaning approaches with and without our algorithm (A) for longitudinal weight

measurements in CLOSER data with different rates and types of simulated errors. Errors were simulated for 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20% and 50% of

the data. Random errors were simulated between the values of 0.0001 and 500, for 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the overall errors,

where fixed errors made up the remaining percentage of errors. Fixed errors comprised of manipulating measurements by multiplying and dividing by 10, 100 and 1000,

adding 100 and 1000, converting to the metric and imperial units and transposing the number. Sensitivity calculated as the mean percentage of simulated (true-positive)

measurement errors that were correctly identified.

https://doi.org/10.1371/journal.pone.0228154.g003
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Fig 4. The specificity of uncleaned, de-duplicated and data cleaned with five data cleaning approaches with and without our algorithm (A) for longitudinal

weight measurements in CLOSER data with different rates and types of simulated errors. Errors were simulated for 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20% and

50% of the data. Random errors were simulated between the values of 0.0001 and 500, for 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the overall

errors, where fixed errors made up the remaining percentage of errors. Fixed errors comprised of manipulating measurements by multiplying and dividing by 10, 100

and 1000, adding 100 and 1000, converting to the metric and imperial units and transposing the number. Specificity was calculated as the mean percentage of non-

simulated (true-negative) measurements that were correctly identified.

https://doi.org/10.1371/journal.pone.0228154.g004

Data cleaning in growth data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228154 January 24, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0228154.g004
https://doi.org/10.1371/journal.pone.0228154


rates and types of simulated errors and duplications in all methods was very high (close to

100%) and invariable.

Application of the superior data cleaning method to all datasets. The NLME-A method

outperformed other methods in most scenarios, so it was chosen to clean the five datasets.

Table 7 presents the percentage of alterations made at each step of the method in each of the

datasets. In all datasets, most alterations took place during the first two steps of the algorithm,

where identical and similar duplications were removed respectively. The dataset with the most

duplicates and errors according to the NLME-A method was the Dogslife heights (16.14%

duplicate removals and 3.309% error alterations) while the dataset with the least duplicates was

Banfield (0.768% duplicate removals) and the dataset with the least errors was SAVSNET

(0.249% error removals). The CLOSER data with simulated duplications and 1% simulated

errors after cleaning with the NLME-A method is shown in Fig 1. To visualise all other datasets

after cleaning with the NLME-A method, please refer to S1 to S4 Figs.

Discussion

Biologically implausible measurements were apparent in all uncleaned growth datasets. The

effectiveness of commonly used data cleaning methods varied considerably. By developing and

applying a novel, reproducible, adaptable, data cleaning algorithm to established data cleaning

Table 7. The percentage of alterations made to Dogslife, SAVSNET, Banfield and CLOSER data with simulated duplications and 1% simulated errors using the

NLME-A data cleaning method.

Step of algorithm Description

of step

Dogslife SAVSNET Banfield CLOSER

Weights Heights

STEP 1 Remove identical duplications 12.52 11.42 10.21 0.671 7.183

STEP 2 Remove similar duplications 1.193 4.716 0.886 0.097 0.119

STEP 3

Replace outliers with the closest correction to the measurement predictionTranspose 0.025 0.382 0.000 0.000 0.060

/10 0.108 0.000 0.006 0.011 0.167

/100 0.018 0.000 0.004 0.000 0.132

/1000 0.002 0.000 0.000 0.000 0.041

x10 0.051 0.143 0.008 0.040 0.025

x100 0.000 0.000 0.000 0.000 0.021

x1000 0.000 0.000 0.000 0.000 0.022

-100 0.025 0.004 0.000 0.000 0.016

-1000 0.000 0.000 0.000 0.000 0.038

+100 0.000 0.000 0.000 0.000 0.001

+1000 0.000 0.000 0.000 0.000 0.000

x metric 0.124 1.960 0.032 0.080 0.100

x imperial 0.081 0.200 0.056 0.046 0.045

STEP 4 Remove outliers that jump in size 0.219 0.603 0.142 0.138 0.214

STEP 5 Remove implausible entries 0.005 0.018 0.000 0.017 0.041

Total duplicates removed 13.71 16.14 11.10 0.768 7.301

Total errors removed 0.659 3.309 0.249 0.332 0.924

Simulated errors were made up of 50% random errors and 50% fixed errors. Random errors were simulated between the values of 0.0001 and 500. Fixed errors

comprised of manipulating measurements by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, converting to the metric and imperial units and

transposing the number.

https://doi.org/10.1371/journal.pone.0228154.t007
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methods, these datasets’ errors could be removed or corrected with marked improvements in

the sensitivity and specificity of error detection and the preservation of data.

The GCO method benefited from using externally sourced limits to detect outliers and per-

formed consistently across all datasets. The SZCO and TZCO methods relied on z-scores,

which are greatly distorted by outlying values distant from the mean and performed worse

when the datasets had evidence of more errors or there were larger proportions of simulated

errors. The NLR and NLME methods used models built on cleaned subsets of the data and

were the most effective out of the non-algorithmic methods across all datasets. The addition of

our data cleaning algorithm led to improved data preservation in most datasets, improved the

sensitivity and specificity of all methods and was capable of making GS corrections, where sim-

ulated errors were returned to their original values.

In general, the NLME-A method was the most sensitive out of all methods but had margin-

ally lower specificity than the NLR-A method. In CLOSER data with simulated errors, the

NLME-A method resulted in a mean and standard deviation closer to the original data (with-

out error simulations) than other methods, which demonstrates its ability to detect and modify

errors appropriately. The NLME-A method resulted in a greater average percentage of GS

error corrections than the NLR-A method, which implies it is superior at making modifica-

tions. The evident trade-off between sensitivity and specificity in the NLR-A and NLME-A

methods is a common phenomenon and its significance lies within the application of the test

that is used; while high sensitivity makes an excellent ‘rule-out’ test, high specificity is a better

‘rule-in’ test. Therefore, if it is vital that minimal false positives are detected, we recommend

using the NLR-A method. For all other applications, we recommend using the NLME-A

method because it is only marginally less specific but identifies more errors.

Furthermore, the NLME-A method’s general specificity may be higher than is indicated.

The CLOSER data was recorded in both metric and imperial units and during certain data col-

lection sweeps, interviewers were able to weigh and/or record the weights of subjects in either

kgs or lbs. We propose that the NLME-A method might accurately identify certain instances

where the unit of weight had been mis-coded by the interviewer or participant. In support of

this, CLOSER data was subject to the application of several different data cleaning protocols

before it was made publicly available. CLOSER acknowledge that this led to distortion of the

distribution of certain subsets of the data, although attempts were made to rectify these issues

[21, 44]. Therefore, it is difficult to understand if the NLME-A method is truly not as specific

as the NLR-A method or whether certain errors went undetected by the combination of the

CLOSER and specific cohort studies’ data cleaning processes.

The NLME-A method detected duplications, decimal point and unit errors in all datasets

but transpose and addition errors seemed to be unique to Dogslife and CLOSER data with

simulated errors. The prevalence of errors in our datasets ranged from 0.25% to 3.31%, which

is within the same range as previous studies that have identified implausible values in growth

data [9–13]. The presence of duplications and errors in medical records emphasises the impor-

tance of cleaning datasets even if they have been recorded by professionals. Previous research

has reported that duplications can be computer-generated or caused by human error [54] and

inaccuracies in weight and height measurements have been attributed to social desirability

bias, measurement errors, inaccurate recall and poor measurement equipment [55–62].

The main limitation of the NLME-A method is that the model it was based on failed to con-

verge in 23.64% of CLOSER error simulations. Issues with the convergence of mixed effects

models in R are well acknowledged and contrary to statistical premises, are not necessarily an

indication that the structure of random effects is over-parameterised [63]. For example, the

particular ‘seed’ chosen to randomly simulate errors can affect convergence. We also made no

attempt to choose a different weight model for growth in humans than for dogs, although
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there may be others that could improve convergence. We tested the methods on data with sim-

ulated error rates up to 50%, which is likely to be far higher than in real life scenarios. The fact

that the NLME model converges in data without error simulations and in CLOSER data with

less than 2% simulated errors indicates that the issue is not with the model itself but with the

nature of artificial error simulations. A limitation of the algorithm is that it is based on

assumptions and require various measurement predictions and limits, implausible measure-

ments, potential error corrections and the limits for transposing numbers to be pre-defined.

The assumptions we defined might not be appropriate for other datasets but could be easily

modified if necessary. We believe that this algorithm could be adapted not only to different

types of growth data but to other forms of temporal data with a functional form.

The NLME-A method allows individual growth trajectories to vary from the population

and unlike previously published methods, it does not fail to identify consecutive errors or those

within the first or last data entry [11, 12] or require a minimum number of data entries [34]. The

method also deals with duplications intelligently by choosing the duplicate that is most likely be

correct for that individual. These features offer a reliable and reproducible solution for outlier

detection in anthropometric data that has been and continues to be sought after by many

researchers [13]. Although we recommend the use of the NLME-A method, we acknowledge that

other researchers might not achieve the same sensitivity and specificity in other datasets and that

they might need to adapt and improve the models and cut-offs we used for this method. Further

work is needed to improve the process of fitting mixed-effects regression models to unclean

growth data and to reduce the complexity of ensuring convergence, ideally resulting in the auto-

mation of the application of the most appropriate data cleaning method for a given dataset.

This is the first publication that has compared commonly reported data cleaning methods

with and without our proposed data cleaning algorithm on data collected with different study

designs, from different species, in pre-cleaned data with simulated errors and in uncleaned

data with ‘real’ errors. Our methods are easily reproducible and we propose that our algorithm

could be adopted in a multitude of different data-related scenarios to improve the stringency

of data cleaning.
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S1 Fig. Weights of Labrador Retrievers by age in Dogslife data prior to data cleaning (a) and

after data cleaning with the NLME-A method (b).
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S4 Fig. Weights of Labrador Retrievers by age in Banfield data prior to data cleaning (a) and

after data cleaning with the NLME-A method (b).
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S1 Table. Starting values for the asymptote, lag phase and growth rate of dog and human

growth measurements in non-linear regression models for data from Dogslife, SAVSNET,

Banfield and CLOSER with and without simulated duplications and 1% simulated errors.

Simulated errors were made up of 50% random errors and 50% fixed errors. Random errors

were simulated between the values of 0.0001 and 500. Fixed errors comprised of manipulating

measurements by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, con-

verting to the metric and imperial units and transposing the number. Starting values for Dog-

slife, SAVSNET, Banfield and original CLOSER data were based on a combination of

published values and arbitrary guesses. Starting values for CLOSER weights with 1% simulated

errors were predicted from non-linear regression models fitted to the original CLOSER data.
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S2 Table. Starting values for the asymptote, lag phase and growth rate of dog and human

growth measurements in non-linear mixed effects models for data from Dogslife, SAVS-

NET, Banfield and CLOSER with simulated duplications and 1% simulated errors. Simu-

lated errors were made up of 50% random errors and 50% fixed errors. Random errors were

simulated between the values of 0.0001 and 500. Fixed errors comprised of manipulating mea-

surements by multiplying and dividing by 10, 100 and 1000, adding 100 and 1000, converting

to the metric and imperial units and transposing the number. Starting values were predicted

from non-linear regression models fitted to the data previously.
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