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Abstract

Objective: To develop a deep convolutional neural network (CNN) to automatically segment an 

axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN 

approach would achieve high accuracy when compared to manual segmentations as the reference 

standard.

Material and Methods: We manually segmented 200 axial CT images at the supraacetabular 

level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-

muscular adipose tissue (IMAT), bone and miscellaneous intra-pelvic content. The dataset was 

randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was 

utilized to enlarge the training dataset and all images underwent preprocessing with histogram 

equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 

8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used 

to assess similarity between the manual segmentations and the CNN predicted segmentations.

Results: The CNN model with data augmentation of N=3,000 achieved accurate segmentation of 

body composition for all classes. The Dice scores were as follows: background (1.00), 

miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91) and bone 
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(0.92). Mean time to automatically segment one CT image was 0.07 seconds (GPU) and 2.51 

seconds (CPU).

Conclusions: Our CNN based model enables accurate automated segmentation of multiple 

tissues on pelvic CT images, with promising implications for body composition studies.
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INTRODUCTION

The gluteal, piriformis and iliopsoas muscles play an important role in providing stability 

and mobility of hips and lower extremities. Atrophy and fatty infiltration of pelvic muscles 

are associated with pathological conditions such as hip osteoarthritis, neuromuscular 

disorders and iatrogenic injury during hip replacement surgery [1–4]. Moreover, this process 

can be seen as part of a more generalized age-related loss of muscle volume and fatty 

infiltration known as sarcopenia [5–8]. Body composition (amount and distribution of 

adipose tissue and muscle in the human body) and sarcopenia are increasingly relevant as 

predictors of overall health, and has been associated with osteoporosis [9] and poor 

outcomes after surgery, trauma and cancer [10–13].

Cross-sectional imaging techniques, such as computed tomography (CT) and magnetic 

resonance imaging (MRI), are part of the clinical workup for many diseases and enable 

accurate measurement of body composition [11]. Accurate segmentation of different tissues 

plays a key role in reliably measuring body composition, which is currently done using time-

consuming manual or semi-automated methods. Consequently, the use of valuable body 

composition parameters for clinical management is limited, underlining the need for reliable 

automated segmentation methods. Recently, fully automated segmentation methods using 

deep learning techniques have been published for automatic segmentation of abdominal CTs 

at a lumbar level [14–16] and MRI at the mid-thigh level [17]. However, no prior studies 

have evaluated automated systems to measure muscle mass at the pelvis. The purpose of our 

study was to develop a deep convolutional neural network (CNN) to automatically segment 

an axial CT image at a standardized pelvic level for body composition measures. We 

hypothesized that the application of a U-net CNN would achieve high accuracy as compared 

to the reference standard of manual segmentation.

MATERIALS AND METHODS

Our study was IRB-approved and complied with Health Insurance Portability and 

Accountability Act (HIPAA) guidelines with exemption status for individual informed 

consent.

Dataset

A dataset of 200 patients who underwent an abdominal CT examination between January 

2017 and December 2019 was collected retrospectively. The abdominal CTs were performed 

using multi-detector CT scanners (General Electric, Waukesha, WI, USA) at our institution. 
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Patients were scanned in supine position, head first and with arms over the head. The field of 

view was adapted to the patient’s body habitus.

Ground truth labeling (manual segmentation)

In order to evaluate pelvic muscle mass, we selected a standardized single axial image 

immediately cranial to the acetabular roof. This supra-acetabular level was chosen as it is 

easily recognizable and contains substantial muscle mass that includes the main hip 

stabilizers (gluteal, piriformis and iliopsoas muscles), having been used in previous studies 

of pelvic body composition [1, 2, 18, 19]. Manual segmentation was performed using 

manual and semi-automated thresholding using the Osirix DICOM viewer (version 6.5.2, 

www.osirix-viewer.com/index.html) by a single operator with 9 years of experience, with 

images and segmentations audited by a second investigator with 22 years of experience. As 

shown in Figure 1, examinations were segmented manually into six classes, each with a 

unique color: (1) background pixels (external to the pelvis; black), (2) subcutaneous adipose 

tissue (SAT; green); (3) muscle (blue); (4) inter-muscular adipose tissue (IMAT; yellow); (5) 

bone (magenta); (6) miscellaneous intra-pelvic content (e.g. bowel, vessels and visceral 

adipose tissue; cyan). Previously used thresholds in Hounsfield Units (HU) were applied: 

−29 to +150 HU for muscle and −190 to −30 HU for SAT [20]. For IMAT, we first 

performed a morphological erosion with a structuring element of radius 3 pixels on the 

muscle region to remove artifacts at the edges of segmentation. This was followed by 

thresholding pixels in the −190 to −30 HU range within the eroded muscle region. The 

segmented images were stored as anonymized Tag Image File Format (TIFF), with masks 

being 8-bit RGB and corresponding CT images being 8-bit single-channel grayscale. All 

images had dimensions of 512×512 pixels.

Model

Preprocessing—The dataset was randomly divided into training (180/200, 90%) and test 

(20/200, 10%) datasets, ensuring training and test datasets were fully segregated with no 

overlap. Manually segmented IMAT labels (yellow) in masks of the training dataset were 

converted to the muscle class (blue). As discussed below, we aimed to first train a model that 

would reliably predict the location of muscle pixels on a slice. Then, using standard HU 

thresholding after the CNN prediction, we proceeded to select IMAT pixels within the 

predicted muscle region. Contrast limited adaptive histogram equalization (CLAHE) was 

performed on all grayscale images followed by image augmentation of the training dataset. 

Image augmentation was performed on grayscale and ground truth mask pairs to enlarge the 

training dataset by applying random rotation, flipping, cropping and scaling (N=500, 1000, 

2000, 3000). In addition, 50% of augmented grayscale images were randomly added with 

Poisson noise to further increase variability and improve generalizability.

Training and testing—We used the U-Net convolutional neural network (CNN) 

architecture [21], which was previously developed by others to segment medical images. A 

schematic of the used U-Net architecture is depicted in Figure 2. Briefly, images with 

512×512 pixels were input in our U-Net structure that consisted of five layers with four 

down-sampling steps resulting in a 32×32×512 representation followed by four up-sampling 

steps. Each step consisted of two successive 3×3 padded convolutions, and in the down-

Hemke et al. Page 3

Skeletal Radiol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.osirix-viewer.com/index.html


sizing steps, a dropout of 0.20 was applied. This was followed by a rectified linear unit 

(ReLU) activation function and a max-pooling operation with a 2×2 pixel kernel size. The 

up-sampling operations were performed using a 2×2 transposed convolution followed by a 

3×3 filter size convolution after which the output concatenates with the corresponding 

decoding step. The final layer consisted of a 1×1 convolution followed by a sigmoid 

function, resulting in an output prediction score for each class.

Our model was written and trained in Python 3.7 (Python Software Foundation, Beaverton, 

Oregon) using the Keras library (v2.2.4, https://keras.io) with Tensorflow 1.13.1 (Google, 

Mountain View, California) [22]. For training, optimal parameters were experimentally 

determined. The training dataset (N=180) was corrected for differences by weighting class 

prevalence. A batch size of 8 was used with a learning rate of 0.0001, Adadelta optimizer, 

dropout of 0.20 and 50 epochs. Training was performed on a multi-GPU (4x NVIDIA Titan 

Xp units) Linux workstation running the Ubuntu 14.04 operating system.

Testing followed the workflow described in Figure 3. Grayscale images from the test dataset 

(N=20) were exposed to the trained model to produce predictions in 5 classes (background, 

SAT, muscle, bone and miscellaneous). As described above, a morphological erosion 

procedure of the muscle predicted region was followed by thresholding of pixels with values 

< −30HU being classified as IMAT. The final segmentation was then tested by comparing its 

predictions of 6 classes to the manually segmented test dataset.

Statistical Analysis

Descriptive statistics were reported in terms of percentages and means ± standard deviations 

(SD). The Dice (F1) score was used to assess similarity between the manual segmentations 

and the CNN predicted segmentations [23]. A Dice score of 1.00 is a perfect similarity. For a 

ground truth segmentation Sg and a predicted segmentation Sp the Dice score can be 

calculated as:

Dice score =
2 Sg ∩ Sp
Sg + Sp

RESULTS

A total of 200 CT images were collected from 200 patients who underwent an abdominal CT 

examination between January 2017 and December 2019. The included patients had a mean 

age of 49.9±17.7 years and consisted of 102/200 (51%) males. The patients had a mean 

weight of 82.3±19.2 kg and mean BMI of 29.0±6.1 kg/m2.

Of the included examinations, 106/200 (53%) were non-enhanced with intravenous contrast, 

67/200 (33%) had intravenous contrast enhancement only, 15/200 (8%) had only oral 

contrast, and 12/200 (6%) had both intravenous and oral contrast. CT imaging parameters as 

taken from the Digital Imaging and Communications in Medicine (DICOM) headers are 

depicted in Table 1. Manual segmentations were accomplished in approximately 15 minutes 

per image.
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Augmentation provided incremental benefit to segmentation accuracy beyond N=1,000. 

Given our focus on accuracy of soft tissue boundaries (i.e., muscle, fat, intra-pelvic content) 

we used the model generated from N=3,000 augmentations (Table 2). Training for 50 epochs 

took approximately 1.11 hours. At testing, our model produced accurate segmentations of 

body composition for all classes. The Dice scores were as follows: background (1.00), 

miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone 

(0.92). On our multi-GPU workstation, each automated segmentation was accomplished in 

0.07 ± 0.23 seconds. On an older 8-core workstation (Apple Mac Pro 2009) using CPU only, 

each segmentation was performed in 2.51 ± 0.22 seconds.

Figures 4–8 show examples of automatic prediction of the different segmented classes with 

high accuracy level. Although overall accuracy was high throughout the test dataset, some 

prediction errors were found in challenging areas, such as interfaces between muscles and 

pelvic content (Figure 5) and along anterior abdominal wall muscles (Figures 7, 8).

DISCUSSION

In this study we show that a deep CNN model is able to accurately and automatically 

segment pelvic compartments relevant to body composition on clinical CT scans of the 

abdomen/pelvis. Our results are comparable to prior studies using automated methods to 

measure muscle mass in other anatomic regions, such as the abdomen at the third (L3) and 

fourth (L4) lumbar vertebrae, and the mid-thigh [14–16]. Importantly, our results are novel 

in showing the feasibility of this method to obtain reliable muscle mass measures in the 

pelvis, which has important implications for studies of muscle wasting and sarcopenia. 

Further, we introduce a novel workflow for automated segmentation of IMAT, whereby 

pixels within a CNN-predicted muscle region undergo standard HU thresholding.

There is growing interest in oncology on the prognostic value of muscle wasting, sarcopenia 

and body composition. Studies in cancer patients showed that muscle and adipose tissue 

distribution are risk factors for clinical outcomes such as post-operative complications, 

chemotherapy-related toxicity, and overall survival [11,24,25]. Further, sarcopenia has been 

associated with a decreased bone mineral density [9] and unfavorable outcomes (e.g. 

prolonged hospitalization and increased 1-year mortality) after major surgery and trauma 

[10,12,13]. Currently, one of the major drawbacks for broader implementation of body 

composition and sarcopenia measures in routine clinical care is the necessity of manually 

segmenting images.

Accurate manual segmentation is a tedious task requiring up to 20–30 min per slice [26]. To 

overcome this practical limitation, automatic segmentation techniques have been described 

in recent years. These techniques include the use of atlas-based methods for the purpose of 

segmenting skeletal muscles [27] and use of threshold-based methods for automatic 

segmentation of adipose tissue [28–30] at abdominal levels. The abdominal and pelvic 

anatomical variations pose a considerable challenge for these methods, potentially requiring 

manual editing of segmentations. To address this limitation, we examined – after manual 

slice selection – a fully automated CNN-based method, which enabled complete 
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segmentation of all tissues of interest in about 2.5 seconds per patient with a high level of 

accuracy.

Currently, body composition and muscle mass derived from abdominal CT scans are mostly 

evaluated at the level of L3 and L4. For the purpose of our study, we focused on a standard 

pelvic level since fatty infiltration and atrophy of pelvic musculature is found to be 

associated with hip osteoarthritis, neuromuscular disorders such as limb-girdle muscular 

dystrophies and Miyoshi distal myopathy, and post-polio syndrome [1–3,31]. Although total 

body muscle volume correlates strongly with an axial level 5 centimeters above the L4–L5 

level [32], measurements of sarcopenia at L3 have also shown value and can be significantly 

different from other vertebral levels [33]. Moreover, muscle mass at the pelvic girdle is 

larger compared to muscle mass at L3 and L4 [33] and is functionally an important 

compartment in regards to trunk and lower extremity mobility.

The results from our segmentation of different pelvic compartments showed an accuracy 

comparable or better to deep learning methodologies performed at the L3 level [14–16]. For 

example, Weston et al. found Dice scores of 0.93, 0.88, and 0.95 at the L3 level for SAT, 

muscle, and bone, respectively [14]. Lee et al. found a Dice score of 0.93 for muscle [15] 

and Wang et al. found a Dice score of 0.97 for SAT at the L3 level [16]. Although the results 

of our model are promising regarding accuracy and short analysis time per image, some 

over- and underestimations were seen. These errors occurred most commonly at the borders 

of the pelvic cavity and muscles: in some cases, our model was challenged by the margins 

between abdominal muscles and the adjacent bladder or bowel structures especially in 

patients with low amounts of visceral adipose tissue. These anomalies are in line with the 

results of Weston et al., who showed that the automatic segmentation of visceral adipose 

tissue had a larger standard deviation compared to other segmented compartments [14]. 

Nevertheless, the observed errors had no substantial effect on the overall accuracy of the 

model.

Strengths of our study include demonstration of highly accurate automated segmentations of 

pelvic soft tissues derived from a relatively small training dataset of manual segmentations 

(N=180). This feature has important implications for development of future models in body 

composition, given the labor-intensive nature and expertise required for generating such 

ground truth datasets. Another innovation of our study was the successful implementation of 

IMAT segmentation using thresholding of pixels located within the model-predicted muscle 

region. This simple but robust technique has not been previously described and yielded 

excellent Dice scores, suggesting this approach may be a strong candidate for similar tasks 

in other anatomic areas (e.g., muscle mass of thigh or at L4, T12). Given the potential 

metabolic implications of high amounts of IMAT and its link to sarcopenia, having accurate 

measures of this particular parameter represent an important technical contribution.

Limitations of our study include the model being trained using a single standardized slice at 

the pelvis. Likely, evaluation of multiple levels in the pelvis could provide further detail on 

muscle mass. However, this addition would require dedicated models to preserve high 

accuracy, increasing the computational cost at the prediction stage. Our model was trained 

and tested on CT at the level of acetabular roof, and its accuracy at pelvic levels more caudal 

Hemke et al. Page 6

Skeletal Radiol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or cranial is therefore not clear. Although our model was trained using a dataset with varied 

characteristics (e.g., gender, with and without oral/intravenous contrast, varied BMIs), data 

was from a single institution and variations in patient population, equipment and scanning 

technique may affect accuracy. A potential limitation may include our cohort trending 

towards overweight BMIs, with possible variations in accuracy for subjects with very low 

BMI. Although a division of datasets into 90% for training and 10% for testing is commonly 

used in the literature [14], testing our model on larger datasets may show variations in 

performance that were not present when using our limited test dataset of randomly selected 

patients (20/200, 10%). Finally, the clinical value of pelvic muscle mass measures should be 

evaluated in prospective clinical studies to determine their role in predicting outcome and 

prognosis in different oncology and non-oncology conditions. This clinical validation is 

important when subjects may present ascites (e.g. liver cirrhosis, ovarian cancer) or 

hemoperitoneum (e.g., major trauma), as such variations may limit accurate delineation of 

intra-pelvic content and adjacent muscles.

In conclusion, we showed that our CNN-based model enables accurate automated 

segmentation for body composition on abdominal CTs at the pelvic level. This model can 

generate highly accurate body composition measures within seconds, which has promising 

implications for clinical risk stratification and large-scale research workflows. Further 

testing on a larger patient population scanned on a wider variety of equipment is needed to 

validate these highly promising preliminary results.
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Figure 1. 
Example of manual ground truth segmentation. The axial CT image at pelvic level (A) is 

manually segmented into multiple tissues (B) resulting in a mask (C) with 6 classes: 

background (black); subcutaneous adipose tissue (SAT, green); muscle (blue); inter-

muscular adipose tissue (IMAT, yellow); bone (magenta); and miscellaneous intra-pelvic 

content (cyan).
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Figure 2. 
Schematic of U-Net architecture used to predict segmentations. As can be seen in the figure, 

the processing map resembles a “U”.
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Figure 3. 
Schematic of the segmentation and analysis workflow.
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Figure 4. 
Example of high accuracy segmentation. Original grayscale image (A), manual 

segmentation (B) and CNN segmentation (C). Minor CNN prediction overestimations noted 

at anterior muscle/subcutaneous interface (arrow) and surrounding distal sacral cortex 

(arrowhead). Bowel contrast material and cross section of scanner bed were consistently 

classified correctly by the CNN model as intra-pelvic content and background, respectively.
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Figure 5. 
Example of high accuracy segmentation with minor misclassification on a subject with more 

prominent IMAT. Original grayscale image (A), manual segmentation (B) and CNN 

segmentation (C). A small area of CNN misclassification is seen along the left iliopsoas 

muscle (arrow), which was predicted instead as intra-pelvic content.
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Figure 6. 
Example of high accuracy segmentation on a subject with prominent SAT. Original 

grayscale image (A), manual segmentation (B) and CNN segmentation (C). The CNN model 

successfully resolved prediction in boundaries such as skin folds (arrows) and field-of-view 

cut-off (arrowheads).
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Figure 7. 
Example of misclassification of soft tissue density in the right anterior abdominal wall. 

Original grayscale image (A), manual segmentation (B) and CNN segmentation (C). An area 

of soft tissue density (arrowhead), likely related to scarring from prior surgery, was 

misclassified by the CNN model as muscle.
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Figure 8. 
Example of misclassification of soft tissue density in the left anterior abdominal wall. 

Original grayscale image (A), manual segmentation (B) and CNN automated segmentation 

(C). A small area of CNN misclassification is seen along the left rectus abdominis muscle 

(arrowhead). A metallic density on the anterior skin was correctly ignored by the model as 

background (arrow).
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Table 1.

CT imaging parameters of 200 images used in the study.

Value

Device 
a

 Lightspeed VCT, GE 154 (77%)

 Revolution CT, GE 42 (21%)

 Discovery CT750, GE 4 (2%)

CT tube current (mA) 
b 343.1±124.3

Peak tube voltage (kVp) 
a

 100 4 (2.0%)

 120 159 (79.5%)

 140 37 (18.5%)

Section thickness (mm) 
a

 2.5 mm 200 (100%)

a
Data are number (percentage)

b
Data are mean ± standard deviation
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Table 2.

Effect of data augmentation on tissue Dice scores.

Augmentation (N) Background Muscle SAT Bone Miscellaneous

500 0.99 0.93 0.95 0.91 0.95

1,000 1.00 0.96 0.97 0.93 0.97

2,000 0.99 0.96 0.96 0.93 0.97

3,000* 1.00 0.96 0.97 0.92 0.98

4,000 1.00 0.96 0.97 0.92 0.97

SAT, subcutaneous adipose tissue. Miscellaneous class include all non-muscle intra-pelvic content.

*
, model with highest Dice scores for soft tissue classes used for final experiments.
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